diff --git a/2.13.0rc1/.buildinfo b/2.13.0rc1/.buildinfo new file mode 100644 index 00000000..f726bcf0 --- /dev/null +++ b/2.13.0rc1/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file records the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 153e74b50a8a93fbf703a1958500d01f +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/2.13.0rc1/.doctrees/environment.pickle b/2.13.0rc1/.doctrees/environment.pickle new file mode 100644 index 00000000..13a9939b Binary files /dev/null and b/2.13.0rc1/.doctrees/environment.pickle differ diff --git a/2.13.0rc1/.doctrees/index.doctree b/2.13.0rc1/.doctrees/index.doctree new file mode 100644 index 00000000..56a8698f Binary files /dev/null and b/2.13.0rc1/.doctrees/index.doctree differ diff --git a/2.13.0rc1/_modules/index.html b/2.13.0rc1/_modules/index.html new file mode 100644 index 00000000..4d8e9edf --- /dev/null +++ b/2.13.0rc1/_modules/index.html @@ -0,0 +1,101 @@ + + + + +
+ + +
+"""
+run_subsetter.py
+
+This script runs L2SS-Py on the given granule.
+"""
+import argparse
+import logging
+import os
+import sys
+
+import numpy as np
+
+from podaac.subsetter import subset
+
+
+
+[docs]
+def parse_args(args: list) -> tuple:
+ """
+ Parse args for this script.
+
+ Returns
+ -------
+ tuple
+ input_file, output_file, bbox, variables, min_time, max_time
+ """
+ parser = argparse.ArgumentParser(description='Run l2ss-py')
+ parser.add_argument(
+ 'input_file',
+ type=str,
+ help='File to subset'
+ )
+ parser.add_argument(
+ 'output_file',
+ type=str,
+ help='Output file'
+ )
+ parser.add_argument(
+ '--bbox',
+ type=float,
+ default=[-180, -90, 180, 90],
+ nargs=4,
+ action='store',
+ help='Bounding box in the form min_lon min_lat max_lon max_lat'
+ )
+ parser.add_argument(
+ '--variables',
+ type=str,
+ default=None,
+ nargs='+',
+ help='Variables, only include if variable subset is desired. '
+ 'Should be a space separated list of variable names e.g. '
+ 'sst wind_dir sst_error ...'
+ )
+ parser.add_argument(
+ '--min-time',
+ type=str,
+ default=None,
+ help='Min time. Should be ISO-8601 format. Only include if '
+ 'temporal subset is desired.'
+ )
+ parser.add_argument(
+ '--max-time',
+ type=str,
+ default=None,
+ help='Max time. Should be ISO-8601 format. Only include if '
+ 'temporal subset is desired.'
+ )
+ parser.add_argument(
+ '--cut',
+ default=False,
+ action='store_true',
+ help='If provided, scanline will be cut'
+ )
+ parser.add_argument(
+ '--shapefile',
+ type=str,
+ default=None,
+ help='Path to either shapefile or geojson file used to subset '
+ 'the provided input granule'
+ )
+
+ args = parser.parse_args(args=args)
+ bbox = np.array([[args.bbox[0], args.bbox[2]], [args.bbox[1], args.bbox[3]]])
+
+ return args.input_file, args.output_file, bbox, args.variables, \
+ args.min_time, args.max_time, args.cut, args.shapefile
+
+
+
+
+[docs]
+def run_subsetter(args: list) -> None:
+ """
+ Parse arguments and run subsetter on the specified input file
+ """
+ input_file, output_file, bbox, variables, min_time, max_time, cut, shapefile = parse_args(args)
+
+ logging.info('Executing subset on %s...', input_file)
+ subset.subset(
+ file_to_subset=input_file,
+ bbox=bbox,
+ output_file=output_file,
+ variables=variables,
+ cut=cut,
+ min_time=min_time,
+ max_time=max_time,
+ origin_source=os.path.basename(input_file),
+ shapefile=shapefile
+ )
+ logging.info('Subset complete. Result in %s', output_file)
+
+
+
+
+[docs]
+def main() -> None:
+ """Entry point to the script"""
+ logging.basicConfig(
+ stream=sys.stdout,
+ format='[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s',
+ level=logging.DEBUG
+ )
+ run_subsetter(sys.argv[1:])
+
+
+
+if __name__ == '__main__':
+ main()
+
+# Copyright 2019, by the California Institute of Technology.
+# ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged.
+# Any commercial use must be negotiated with the Office of Technology
+# Transfer at the California Institute of Technology.
+#
+# This software may be subject to U.S. export control laws. By accepting
+# this software, the user agrees to comply with all applicable U.S. export
+# laws and regulations. User has the responsibility to obtain export
+# licenses, or other export authority as may be required before exporting
+# such information to foreign countries or providing access to foreign
+# persons.
+
+"""
+=========
+subset.py
+=========
+
+Functions related to subsetting a NetCDF file.
+"""
+
+import datetime
+import functools
+import json
+import operator
+import os
+import re
+from itertools import zip_longest
+from typing import List, Optional, Tuple, Union
+import dateutil
+from dateutil import parser
+
+import cf_xarray as cfxr
+import cftime
+import geopandas as gpd
+import importlib_metadata
+import julian
+import netCDF4 as nc
+import numpy as np
+import pandas as pd
+import xarray as xr
+import xarray.coding.times
+from shapely.geometry import Point, Polygon, MultiPolygon
+from shapely.ops import transform
+
+from podaac.subsetter import gpm_cleanup as gc
+from podaac.subsetter import time_converting as tc
+from podaac.subsetter import dimension_cleanup as dc
+from podaac.subsetter import xarray_enhancements as xre
+from podaac.subsetter.group_handling import GROUP_DELIM, transform_grouped_dataset, recombine_grouped_datasets, \
+ h5file_transform
+
+SERVICE_NAME = 'l2ss-py'
+
+
+
+[docs]
+def apply_scale_offset(scale: float, offset: float, value: float) -> float:
+ """Apply scale and offset to the given value"""
+ return (value + offset) / scale
+
+
+
+
+[docs]
+def remove_scale_offset(value: float, scale: float, offset: float) -> float:
+ """Remove scale and offset from the given value"""
+ return (value * scale) - offset
+
+
+
+
+[docs]
+def convert_bound(bound: np.ndarray, coord_max: int, coord_var: xr.DataArray) -> np.ndarray:
+ """
+ This function will return a converted bound, which matches the
+ range of the given input file.
+
+ Parameters
+ ----------
+ bound : np.array
+ 1-dimensional 2-element numpy array which represent the lower
+ and upper bounding box on this coordinate, respectively.
+ coord_max : integer
+ The max value which is possible given this coordinate. For
+ example, the max for longitude is 360.
+ coord_var : xarray.DataArray
+ The xarray variable for some coordinate.
+
+ Returns
+ -------
+ np.array
+ 1-dimensional 2-element number array which represents the lower
+ and upper bounding box on this coordinate and has been converted
+ based on the valid bounds coordinate range of the dataset.
+
+ Notes
+ -----
+ Assumption that 0 is always on the prime meridian/equator.
+ """
+
+ scale = coord_var.attrs.get('scale_factor', 1.0)
+ offset = coord_var.attrs.get('add_offset', 0.0)
+ valid_min = coord_var.attrs.get('valid_min', None)
+
+ if valid_min is None or valid_min > 0:
+ # If coord var doesn't contain valid min, attempt to find
+ # manually. Note: Given the perfect storm, this could still fail
+ # to find the actual bounds.
+
+ # Filter out _FillValue from data before calculating min and max
+ fill_value = coord_var.attrs.get('_FillValue', None)
+ var_values = coord_var.values
+ if fill_value:
+ var_values = np.where(var_values != fill_value, var_values, np.nan)
+ var_min = np.nanmin(var_values)
+ var_max = np.nanmax(var_values)
+
+ if 0 <= var_min <= var_max <= (coord_max / scale):
+ valid_min = 0
+
+ # If the file coords are 0 --> max
+ if valid_min == 0:
+ bound = (bound + coord_max) % coord_max
+
+ # If the right/top bound is 0, set to max.
+ if bound[1] == 0:
+ bound[1] = coord_max
+
+ # If edges are the same, assume it wraps and return all
+ if bound[0] == bound[1]:
+ bound = np.array([0, coord_max])
+
+ # If the file longitude is -coord_max/2 --> coord_max/2
+ if valid_min != 0:
+ # If edges are the same, assume it wraps and return all
+ if bound[0] == bound[1]:
+ bound = np.array([-(coord_max / 2), coord_max / 2])
+
+ # Calculate scale and offset so the bounds match the coord data
+ return apply_scale_offset(scale, offset, bound)
+
+
+
+
+[docs]
+def convert_bbox(bbox: np.ndarray, dataset: xr.Dataset, lat_var_name: str, lon_var_name: str) -> np.ndarray:
+ """
+ This function will return a converted bbox which matches the range
+ of the given input file. This will convert both the latitude and
+ longitude range. For example, an input dataset can have a valid
+ longitude range of -180 --> 180 or of 0 --> 360.
+
+ Parameters
+ ----------
+ bbox : np.array
+ The bounding box
+ dataset : xarray.Dataset
+ The dataset which is being subset.
+ lat_var_name : str
+ Name of the lat variable in the given dataset
+ lon_var_name : str
+ Name of the lon variable in the given dataset
+
+ Returns
+ -------
+ bbox : np.array
+ The new bbox which matches latitude and longitude ranges of the
+ input file.
+
+ Notes
+ -----
+ Assumption that the provided bounding box is always between
+ -180 --> 180 for longitude and -90, 90 for latitude.
+ """
+ return np.array([convert_bound(bbox[0], 360, dataset[lon_var_name]),
+ convert_bound(bbox[1], 180, dataset[lat_var_name])])
+
+
+
+
+[docs]
+def set_json_history(dataset: xr.Dataset, cut: bool, file_to_subset: str,
+ bbox: np.ndarray = None, shapefile: str = None, origin_source=None) -> None:
+ """
+ Set the 'json_history' metadata header of the granule to reflect the
+ current version of the subsetter, as well as the parameters used
+ to call the subsetter. This will append an json array to the json_history of
+ the following format:
+
+ Parameters
+ ----------
+ dataset : xarray.Dataset
+ The dataset to change the header of
+ cut : boolean
+ True to cut the scanline
+ file_to_subset : string
+ The filepath of the file which was used to subset
+ bbox : np.ndarray
+ The requested bounding box
+ shapefile : str
+ Name of the shapefile to include in the version history
+ TODO: add docstring and type hint for `origin_source` parameter.
+ """
+
+ params = f'cut={cut}'
+ if bbox is not None:
+ params = f'bbox={bbox.tolist()} {params}'
+ elif shapefile is not None:
+ params = f'shapefile={shapefile} {params}'
+
+ history_json = dataset.attrs.get('history_json', [])
+ if history_json:
+ history_json = json.loads(history_json)
+
+ if origin_source:
+ derived_from = origin_source
+ else:
+ derived_from = os.path.basename(file_to_subset)
+
+ new_history_json = {
+ "date_time": datetime.datetime.now(tz=datetime.timezone.utc).isoformat(),
+ "derived_from": derived_from,
+ "program": SERVICE_NAME,
+ "version": importlib_metadata.distribution(SERVICE_NAME).version,
+ "parameters": params,
+ "program_ref": "https://cmr.earthdata.nasa.gov:443/search/concepts/S1962070864-POCLOUD",
+ "$schema": "https://harmony.earthdata.nasa.gov/schemas/history/0.1.0/history-v0.1.0.json"
+ }
+
+ history_json.append(new_history_json)
+ dataset.attrs['history_json'] = json.dumps(history_json)
+
+
+
+
+[docs]
+def set_version_history(dataset: xr.Dataset, cut: bool, bbox: np.ndarray = None, shapefile: str = None) -> None:
+ """
+ Set the 'history' metadata header of the granule to reflect the
+ current version of the subsetter, as well as the parameters used
+ to call the subsetter. This will append a line to the history of
+ the following format:
+
+ TIMESTAMP podaac.subsetter VERSION (PARAMS)
+
+ Parameters
+ ----------
+ dataset : xarray.Dataset
+ The dataset to change the header of
+ cut : boolean
+ True to cut the scanline
+ bbox : np.ndarray
+ The requested bounding box
+ shapefile : str
+ Name of the shapefile to include in the version history
+
+ """
+
+ version = importlib_metadata.distribution(SERVICE_NAME).version
+ history = dataset.attrs.get('history', "")
+ timestamp = datetime.datetime.utcnow()
+ params = f'cut={cut}'
+ if bbox is not None:
+ params = f'bbox={bbox.tolist()} {params}'
+ elif shapefile is not None:
+ params = f'shapefile={shapefile} {params}'
+
+ history += f"\n{timestamp} {SERVICE_NAME} v{version} ({params})"
+ dataset.attrs['history'] = history.strip()
+
+
+
+
+[docs]
+def calculate_chunks(dataset: xr.Dataset) -> dict:
+ """
+ For the given dataset, calculate if the size on any dimension is
+ worth chunking. Any dimension larger than 4000 will be chunked. This
+ is done to ensure that the variable can fit in memory.
+
+ Parameters
+ ----------
+ dataset : xarray.Dataset
+ The dataset to calculate chunks for.
+
+ Returns
+ -------
+ dict
+ The chunk dictionary, where the key is the dimension and the
+ value is 4000 or 500 depending on how many dimensions.
+ """
+ if len(dataset.dims) <= 3:
+ chunk = {dim: 4000 for dim in dataset.dims
+ if dataset.sizes[dim] > 4000
+ and len(dataset.dims) > 1}
+ else:
+ chunk = {dim: 500 for dim in dataset.dims
+ if dataset.sizes[dim] > 500}
+
+ return chunk
+
+
+
+
+[docs]
+def find_matching_coords(dataset: xr.Dataset, match_list: List[str]) -> List[str]:
+ """
+ As a backup for finding a coordinate var, look at the 'coordinates'
+ metadata attribute of all data vars in the granule. Return any
+ coordinate vars that have name matches with the provided
+ 'match_list'
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ Dataset to search data variable coordinate metadata attribute
+ match_list : list (str)
+ List of possible matches to search for. For example,
+ ['lat', 'latitude'] would search for variables in the
+ 'coordinates' metadata attribute containing either 'lat'
+ or 'latitude'
+
+ Returns
+ -------
+ list (str)
+ List of matching coordinate variables names
+ """
+ coord_attrs = [
+ var.attrs['coordinates'] for var_name, var in dataset.data_vars.items()
+ if 'coordinates' in var.attrs
+ ]
+ coord_attrs = list(set(coord_attrs))
+ match_coord_vars = []
+ for coord_attr in coord_attrs:
+ coords = coord_attr.split(' ')
+ match_vars = [
+ coord for coord in coords
+ if any(coord_cand in coord for coord_cand in match_list)
+ ]
+ if match_vars and match_vars[0] in dataset:
+ # Check if the var actually exists in the dataset
+ match_coord_vars.append(match_vars[0])
+ return match_coord_vars
+
+
+
+
+[docs]
+def compute_coordinate_variable_names(dataset: xr.Dataset) -> Tuple[Union[List[str], str], Union[List[str], str]]:
+ """
+ Given a dataset, determine the coordinate variable from a list
+ of options
+
+ Parameters
+ ----------
+ dataset: xr.Dataset
+ The dataset to find the coordinate variables for
+
+ Returns
+ -------
+ tuple, str
+ Tuple of strings (or list of strings), where the first element is the lat coordinate
+ name and the second element is the lon coordinate name
+ """
+
+ dataset = xr.decode_cf(dataset)
+
+ # look for lon and lat using standard name in coordinates and axes
+ custom_criteria = {
+ "latitude": {
+ "standard_name": "latitude|projection_y_coordinate",
+ },
+ "longitude": {
+ "standard_name": "longitude|projection_x_coordinate",
+ }
+ }
+
+ possible_lat_coord_names = ['lat', 'latitude', 'y']
+ possible_lon_coord_names = ['lon', 'longitude', 'x']
+
+ def var_is_coord(var_name, possible_coord_names):
+ var_name = var_name.strip(GROUP_DELIM).split(GROUP_DELIM)[-1]
+ return var_name.lower() in possible_coord_names
+
+ lat_coord_names = list(filter(
+ lambda var_name: var_is_coord(var_name, possible_lat_coord_names), dataset.variables))
+ lon_coord_names = list(filter(
+ lambda var_name: var_is_coord(var_name, possible_lon_coord_names), dataset.variables))
+
+ if len(lat_coord_names) < 1 or len(lon_coord_names) < 1:
+ lat_coord_names = find_matching_coords(dataset, possible_lat_coord_names)
+ lon_coord_names = find_matching_coords(dataset, possible_lon_coord_names)
+
+ # Couldn't find lon lat in data variables look in coordinates
+ if len(lat_coord_names) < 1 or len(lon_coord_names) < 1:
+ with cfxr.set_options(custom_criteria=custom_criteria):
+ lat_coord_names = dataset.cf.coordinates.get('latitude', [])
+ lon_coord_names = dataset.cf.coordinates.get('longitude', [])
+
+ if len(lat_coord_names) < 1 or len(lon_coord_names) < 1:
+ try:
+ lat_coord_names = [dataset.cf["latitude"].name]
+ lon_coord_names = [dataset.cf["longitude"].name]
+ except KeyError:
+ pass
+
+ if len(lat_coord_names) < 1 or len(lon_coord_names) < 1:
+ raise ValueError('Could not determine coordinate variables')
+
+ return lat_coord_names, lon_coord_names
+
+
+
+
+[docs]
+def is_360(lon_var: xr.DataArray, scale: float, offset: float) -> bool:
+ """
+ Determine if given dataset is a '360' dataset or not.
+
+ Parameters
+ ----------
+ lon_var : xr.DataArray
+ The lon variable from the xarray Dataset
+ scale : float
+ Used to remove scale and offset for easier calculation
+ offset : float
+ Used to remove scale and offset for easier calculation
+
+ Returns
+ -------
+ bool
+ True if dataset is 360, False if not. Defaults to False.
+ """
+ valid_min = lon_var.attrs.get('valid_min', None)
+
+ if valid_min is None or valid_min > 0:
+ var_min = remove_scale_offset(np.amin(lon_var.values), scale, offset)
+ var_max = remove_scale_offset(np.amax(lon_var.values), scale, offset)
+
+ if var_min < 0:
+ return False
+ if var_max > 180:
+ return True
+
+ if valid_min == 0:
+ return True
+ if valid_min < 0:
+ return False
+
+ return False
+
+
+
+
+[docs]
+def get_spatial_bounds(dataset: xr.Dataset, lat_var_names: str, lon_var_names: str) -> Union[np.ndarray, None]:
+ """
+ Get the spatial bounds for this dataset. These values are masked
+ and scaled.
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ Dataset to retrieve spatial bounds for
+ lat_var_names : str
+ Name of the lat variable
+ lon_var_names : str
+ Name of the lon variable
+
+ Returns
+ -------
+ np.array
+ [[lon min, lon max], [lat min, lat max]]
+ """
+
+ lat_var_name = lat_var_names[0] if len(lat_var_names) == 1 else [
+ lat_name for lat_name in lat_var_names if lat_name in dataset.data_vars.keys()
+ ][0]
+ lon_var_name = lon_var_names[0] if len(lon_var_names) == 1 else [
+ lon_name for lon_name in lon_var_names if lon_name in dataset.data_vars.keys()
+ ][0]
+
+ # Get scale from coordinate variable metadata attributes
+ lat_scale = dataset[lat_var_name].attrs.get('scale_factor', 1.0)
+ lon_scale = dataset[lon_var_name].attrs.get('scale_factor', 1.0)
+ lat_offset = dataset[lat_var_name].attrs.get('add_offset', 0.0)
+ lon_offset = dataset[lon_var_name].attrs.get('add_offset', 0.0)
+ lon_valid_min = dataset[lon_var_name].attrs.get('valid_min', None)
+ lat_fill_value = dataset[lat_var_name].attrs.get('_FillValue', None)
+ lon_fill_value = dataset[lon_var_name].attrs.get('_FillValue', None)
+
+ # Apply mask and scale to min/max coordinate variables to get
+ # spatial bounds
+
+ # Remove fill value. Might cause errors when getting min and max
+ lats = dataset[lat_var_name].values.flatten()
+ lons = dataset[lon_var_name].values.flatten()
+
+ if lat_fill_value:
+ lats = list(filter(lambda a: not a == lat_fill_value, lats))
+ if lon_fill_value:
+ lons = list(filter(lambda a: not a == lon_fill_value, lons))
+
+ if len(lats) == 0 or len(lons) == 0:
+ return None
+
+ min_lat = remove_scale_offset(np.nanmin(lats), lat_scale, lat_offset)
+ max_lat = remove_scale_offset(np.nanmax(lats), lat_scale, lat_offset)
+ min_lon = remove_scale_offset(np.nanmin(lons), lon_scale, lon_offset)
+ max_lon = remove_scale_offset(np.nanmax(lons), lon_scale, lon_offset)
+
+ min_lat = round(min_lat, 1)
+ max_lat = round(max_lat, 1)
+ min_lon = round(min_lon, 1)
+ max_lon = round(max_lon, 1)
+
+ # Convert longitude to [-180,180] format
+ if lon_valid_min == 0 or 0 <= min_lon <= max_lon <= 360:
+ if min_lon > 180:
+ min_lon -= 360
+ if max_lon > 180:
+ max_lon -= 360
+ if min_lon == max_lon:
+ min_lon = -180
+ max_lon = 180
+
+ return np.array([[min_lon, max_lon], [min_lat, max_lat]])
+
+
+
+
+[docs]
+def compute_time_variable_name(dataset: xr.Dataset, lat_var: xr.Variable, total_time_vars: list) -> str:
+ """
+ Try to determine the name of the 'time' variable. This is done as
+ follows:
+
+ - The variable name contains 'time'
+ - The variable dimensions match the dimensions of the given lat var
+ - The variable that hasn't already been found
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ xarray dataset to find time variable from
+ lat_var : xr.Variable
+ Lat variable for this dataset
+
+ Returns
+ -------
+ str
+ The name of the variable
+
+ Raises
+ ------
+ ValueError
+ If the time variable could not be determined
+ """
+
+ time_vars = find_matching_coords(dataset, ['time'])
+ if time_vars:
+ # There should only be one time var match (this is called once
+ # per lat var)
+ return time_vars[0]
+
+ # Filter variables with 'time' in the name to avoid extra work
+ time_vars = list(filter(lambda var_name: 'time' in var_name, dataset.sizes.keys()))
+
+ for var_name in time_vars:
+ if var_name not in total_time_vars and "time" in var_name and dataset[var_name].squeeze().dims == lat_var.squeeze().dims:
+ return var_name
+
+ # first check if any variables are named 'time'
+ for var_name in list(dataset.data_vars.keys()):
+ var_name_time = var_name.strip(GROUP_DELIM).split(GROUP_DELIM)[-1]
+ if len(dataset[var_name].squeeze().dims) == 0:
+ continue
+ if var_name not in total_time_vars and ('time' == var_name_time.lower() or 'timeMidScan' == var_name_time) and dataset[var_name].squeeze().dims[0] in lat_var.squeeze().dims:
+ return var_name
+
+ time_units_pattern = re.compile(r"(days|d|hours|hr|h|minutes|min|m|seconds|sec|s) since \d{4}-\d{2}-\d{2}( \d{2}:\d{2}:\d{2})?")
+ # Check variables for common time variable indicators
+ for var_name, var in dataset.variables.items():
+ # pylint: disable=too-many-boolean-expressions
+ if ((('standard_name' in var.attrs and var.attrs['standard_name'] == 'time') or
+ ('axis' in var.attrs and var.attrs['axis'] == 'T') or
+ ('units' in var.attrs and time_units_pattern.match(var.attrs['units'])))) and var_name not in total_time_vars:
+ return var_name
+
+ # then check if any variables have 'time' in the string if the above loop doesn't return anything
+ for var_name in list(dataset.data_vars.keys()):
+ var_name_time = var_name.strip(GROUP_DELIM).split(GROUP_DELIM)[-1]
+ if len(dataset[var_name].squeeze().dims) == 0:
+ continue
+ if var_name not in total_time_vars and 'time' in var_name_time.lower() and dataset[var_name].squeeze().dims[0] in lat_var.squeeze().dims:
+ return var_name
+
+ # OB.DAAC data does not have a time variable. Returning the following field of a composite time value to avoid exceptions.
+ if '__scan_line_attributes__day' in dataset.data_vars:
+ return '__scan_line_attributes__day'
+
+ raise ValueError('Unable to determine time variable')
+
+
+
+
+[docs]
+def compute_utc_name(dataset: xr.Dataset) -> Union[str, None]:
+ """
+ Get the name of the utc variable if it is there to determine origine time
+ """
+ for var_name in list(dataset.data_vars.keys()):
+ if 'utc' in var_name.lower() and 'time' in var_name.lower():
+ return var_name
+
+ return None
+
+
+
+
+[docs]
+def translate_longitude(geometry):
+ """
+ Translates the longitude values of a Shapely geometry from the range [-180, 180) to [0, 360).
+
+ Parameters
+ ----------
+ geometry : shapely.geometry.base.BaseGeometry
+ The input shape geometry to be translated
+
+ Returns
+ -------
+ geometry
+ The translated shape geometry
+ """
+
+ def translate_point(point):
+ # Translate the point's x-coordinate (longitude) by adding 360
+ return Point((point.x + 360) % 360, point.y)
+
+ def translate_polygon(polygon):
+ def translate_coordinates(coords):
+ if len(coords[0]) == 2:
+ return [((x + 360) % 360, y) for x, y in coords]
+ if len(coords[0]) == 3:
+ return [((x + 360) % 360, y, z) for x, y, z in coords]
+ return coords
+
+ exterior = translate_coordinates(polygon.exterior.coords)
+
+ interiors = [
+ translate_coordinates(ring.coords)
+ for ring in polygon.interiors
+ ]
+
+ return Polygon(exterior, interiors)
+
+ if isinstance(geometry, (Point, Polygon)): # pylint: disable=no-else-return
+ return translate_point(geometry) if isinstance(geometry, Point) else translate_polygon(geometry)
+ elif isinstance(geometry, MultiPolygon):
+ # Translate each polygon in the MultiPolygon
+ translated_polygons = [translate_longitude(subgeometry) for subgeometry in geometry.geoms]
+ return MultiPolygon(translated_polygons)
+ else:
+ # Handle other geometry types as needed
+ return geometry
+
+
+
+
+[docs]
+def get_time_epoch_var(dataset: xr.Dataset, time_var_name: str) -> str:
+ """
+ Get the name of the epoch time var. This is only needed in the case
+ where there is a single time var (of size 1) that contains the time
+ epoch used by the actual time var.
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ Dataset that contains time var
+ time_var_name : str
+ The name of the actual time var (with matching dims to the
+ coord vars)
+
+ Returns
+ -------
+ str
+ The name of the epoch time variable
+ """
+ time_var = dataset[time_var_name]
+
+ if 'comment' in time_var.attrs:
+ epoch_var_name = time_var.attrs['comment'].split('plus')[0].strip()
+ elif 'time' in dataset.variables.keys() and time_var_name != 'time':
+ epoch_var_name = 'time'
+ elif any('time' in s for s in list(dataset.variables.keys())) and time_var_name != 'time':
+ for i in list(dataset.variables.keys()):
+ group_list = i.split(GROUP_DELIM)
+ if group_list[-1] == 'time':
+ epoch_var_name = i
+ break
+ return epoch_var_name
+ else:
+ raise ValueError('Unable to determine time variables')
+
+ return epoch_var_name
+
+
+
+
+[docs]
+def is_time_mjd(dataset: xr.Dataset, time_var_name: str) -> bool:
+ """
+ Check to see if the time format is a time delta from a modified julian date.
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ Dataset that contains time var
+ time_var_name : str
+ The name of the actual time var (with matching dims to the
+ coord vars)
+
+ Returns
+ -------
+ boolean
+ is time delta format in modified julian date
+ """
+ time_var = dataset[time_var_name]
+ if 'comment' in time_var.attrs:
+ if 'Modified Julian Day' in time_var.attrs['comment']:
+ return True
+ return False
+
+
+
+
+[docs]
+def translate_timestamp(str_timestamp: str) -> datetime.datetime:
+ """
+ Translate timestamp to datetime object
+
+ Parameters
+ ----------
+ str_timestamp : str
+ Timestamp string. ISO or RFC
+
+ Returns
+ -------
+ datetime
+ Constructed Datetime object
+ """
+ allowed_ts_formats = [
+ '%Y-%m-%dT%H:%M:%SZ',
+ '%Y-%m-%dT%H:%M:%S%Z',
+ '%Y-%m-%dT%H:%M:%S.%fZ',
+ '%Y-%m-%dT%H:%M:%S.%f%Z',
+ '%Y-%m-%d %H:%M:%S',
+ ]
+
+ for timestamp_format in allowed_ts_formats:
+ try:
+ return datetime.datetime.strptime(str_timestamp, timestamp_format)
+ except ValueError:
+ pass
+ return datetime.datetime.fromisoformat(str_timestamp)
+
+
+
+
+[docs]
+def datetime_from_mjd(dataset: xr.Dataset, time_var_name: str) -> Union[datetime.datetime, None]:
+ """
+ Translate the modified julian date from the long name in the time attribute.
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ Dataset that contains time var
+ time_var_name : str
+ The name of the actual time var (with matching dims to the
+ coord vars)
+
+ Returns
+ -------
+ datetime
+ the datetime of the modified julian date
+ """
+
+ time_var = dataset[time_var_name]
+ if 'long_name' in time_var.attrs:
+ mdj_string = time_var.attrs['long_name']
+ mjd = mdj_string[mdj_string.find("(") + 1:mdj_string.find(")")].split("= ")[1]
+ try:
+ mjd_float = float(mjd)
+ except ValueError:
+ return None
+ mjd_datetime = julian.from_jd(mjd_float, fmt='mjd')
+ return mjd_datetime
+
+ return None
+
+
+
+
+[docs]
+def build_temporal_cond(min_time: str, max_time: str, dataset: xr.Dataset, time_var_name: str
+ ) -> Union[np.ndarray, bool]:
+ """
+ Build the temporal condition used in the xarray 'where' call which
+ drops data not in the given bounds. If the data in the time var is
+ of type 'datetime', assume this is a normal case where the time var
+ uses the epoch from the 'units' metadata attribute to get epoch. If
+ the data in the time var is of type 'timedelta', the epoch var is
+ needed to calculate the datetime.
+
+ Parameters
+ ----------
+ min_time : str
+ ISO timestamp representing the lower temporal bound
+ max_time : str
+ ISO timestamp representing the upper temporal bound
+ dataset : xr.Dataset
+ Dataset to build the condition off of
+ time_var_name : str
+ Name of the time variable
+
+ Returns
+ -------
+ np.array or boolean
+ If temporally subsetted, returns a boolean ND-array the shape
+ of which matches the dimensions of the coordinate vars. 'True'
+ is essentially a noop.
+ """
+
+ def build_cond(str_timestamp, compare):
+ timestamp = translate_timestamp(str_timestamp)
+ if np.issubdtype(dataset[time_var_name].dtype, np.dtype(np.datetime64)):
+ timestamp = pd.to_datetime(timestamp)
+ if np.issubdtype(dataset[time_var_name].dtype, np.dtype(np.timedelta64)):
+ if is_time_mjd(dataset, time_var_name):
+ mjd_datetime = datetime_from_mjd(dataset, time_var_name)
+ if mjd_datetime is None:
+ raise ValueError('Unable to get datetime from dataset to calculate time delta')
+
+ # timedelta between timestamp and mjd
+ timestamp = np.datetime64(timestamp) - np.datetime64(mjd_datetime)
+ else:
+ epoch_time_var_name = get_time_epoch_var(dataset, time_var_name)
+ epoch_datetime = dataset[epoch_time_var_name].values[0]
+ timestamp = np.datetime64(timestamp) - epoch_datetime
+
+ time_data = dataset[time_var_name]
+ if getattr(time_data, 'long_name', None) == "reference time of sst file":
+ timedelta_seconds = dataset['sst_dtime'].astype('timedelta64[s]')
+ time_data = time_data + timedelta_seconds
+
+ return compare(time_data, timestamp)
+
+ temporal_conds = []
+ if min_time:
+ comparison_op = operator.ge
+ temporal_conds.append(build_cond(min_time, comparison_op))
+ if max_time:
+ comparison_op = operator.le
+ temporal_conds.append(build_cond(max_time, comparison_op))
+ temporal_cond = True
+ if min_time or max_time:
+ temporal_cond = functools.reduce(lambda cond_a, cond_b: cond_a & cond_b, temporal_conds)
+ return temporal_cond
+
+
+
+
+[docs]
+def get_base_group_names(lats: List[str]) -> Tuple[List[str], List[Union[int, str]]]: # pylint: disable=too-many-branches
+ """Latitude groups may be at different depths. This function gets the level
+ number that makes each latitude group unique from the other latitude names"""
+ unique_groups = []
+ group_list = [lat.strip(GROUP_DELIM).split(GROUP_DELIM) for lat in lats]
+
+ # make all lists of group levels the same length
+ group_list = list(zip(*zip_longest(*group_list, fillvalue='')))
+
+ # put the groups in the same levels in the same list
+ group_list_transpose = np.array(group_list).T.tolist()
+
+ diff_count = ['' for _ in range(len(group_list))]
+ group_count = 0
+ # loop through each group level
+ for my_list in group_list_transpose:
+ for i in range(len(my_list)): # pylint: disable=consider-using-enumerate
+ count = 0
+ for j in range(len(my_list)): # pylint: disable=consider-using-enumerate
+ # go through each lat name and compare the level names
+ if my_list[i] == my_list[j] and not isinstance(diff_count[j], int):
+ count += 1
+ # if the lat names is equivalent to only itself then insert the level number
+ if count == 1:
+ if isinstance(diff_count[i], int):
+ continue
+ if 'lat' in my_list[i].lower(): # if we get to the end of the list, go to the previous level
+ diff_count[i] = group_count - 1
+ continue
+
+ diff_count[i] = group_count
+
+ group_count += 1
+
+ # go back and re-put together the unique groups
+ for lat in enumerate(lats):
+ unique_groups.append(f'{GROUP_DELIM}{GROUP_DELIM.join(lat[1].strip(GROUP_DELIM).split(GROUP_DELIM)[:(diff_count[lat[0]]+1)])}')
+ return unique_groups, diff_count
+
+
+
+
+[docs]
+def subset_with_bbox(dataset: xr.Dataset, # pylint: disable=too-many-branches
+ lat_var_names: list,
+ lon_var_names: list,
+ time_var_names: list,
+ variables: Optional[List[str]] = None,
+ bbox: np.ndarray = None,
+ cut: bool = True,
+ min_time: str = None,
+ max_time: str = None) -> np.ndarray:
+ """
+ Subset an xarray Dataset using a spatial bounding box.
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ Dataset to subset
+ lat_var_names : list
+ Name of the latitude variables in the given dataset
+ lon_var_names : list
+ Name of the longitude variables in the given dataset
+ time_var_names : list
+ Name of the time variables in the given dataset
+ variables : list[str]
+ List of variables to include in the result
+ bbox : np.array
+ Spatial bounding box to subset Dataset with.
+ cut : bool
+ True if scanline should be cut.
+ min_time : str
+ ISO timestamp of min temporal bound
+ max_time : str
+ ISO timestamp of max temporal bound
+ TODO: add docstring and type hint for `variables` parameter.
+
+ Returns
+ -------
+ np.array
+ Spatial bounds of Dataset after subset operation
+ TODO - fix this docstring type and the type hint to match code (currently returning a list[xr.Dataset])
+ """
+ lon_bounds, lat_bounds = convert_bbox(bbox, dataset, lat_var_names[0], lon_var_names[0])
+ # condition should be 'or' instead of 'and' when bbox lon_min > lon_max
+ oper = operator.and_
+
+ if lon_bounds[0] > lon_bounds[1]:
+ oper = operator.or_
+
+ # get unique group names for latitude coordinates
+ diff_count = [-1]
+ if len(lat_var_names) > 1:
+ unique_groups, diff_count = get_base_group_names(lat_var_names)
+ else:
+ unique_groups = [f'{GROUP_DELIM}{GROUP_DELIM.join(x.strip(GROUP_DELIM).split(GROUP_DELIM)[:-1])}' for x in lat_var_names]
+
+ datasets = []
+ total_list = [] # don't include repeated variables
+ for lat_var_name, lon_var_name, time_var_name, diffs in zip( # pylint: disable=too-many-nested-blocks
+ lat_var_names, lon_var_names, time_var_names, diff_count
+ ):
+ if GROUP_DELIM in lat_var_name:
+ lat_var_prefix = GROUP_DELIM.join(lat_var_name.strip(GROUP_DELIM).split(GROUP_DELIM)[:(diffs+1)])
+
+ if diffs == -1: # if the lat name is in the root group: take only the root group vars
+ group_vars = list(dataset.data_vars.keys())
+ # include the coordinate variables if user asks for
+ group_vars.extend([
+ var for var in list(dataset.coords.keys())
+ if var in variables and var not in group_vars
+ ])
+ else:
+ group_vars = [
+ var for var in dataset.data_vars.keys()
+ if GROUP_DELIM.join(var.strip(GROUP_DELIM).split(GROUP_DELIM)[:(diffs+1)]) == lat_var_prefix
+ ]
+ # include variables that aren't in a latitude group
+ if variables:
+ group_vars.extend([
+ var for var in dataset.variables.keys()
+ if (var in variables and
+ var not in group_vars and
+ var not in total_list and
+ not var.startswith(tuple(unique_groups))
+ )
+ ])
+ else:
+ group_vars.extend([
+ var for var in dataset.data_vars.keys()
+ if (var not in group_vars and
+ var not in total_list and
+ not var.startswith(tuple(unique_groups))
+ )
+ ])
+
+ # group dimensions do not get carried over if unused by data variables (MLS nTotalTimes var)
+ # get all dimensions from data variables
+ dim_list = []
+ for var in group_vars:
+ dim_list.extend(list(list(dataset[var].dims)))
+ # get all group dimensions
+ group_dims = [
+ dim for dim in list(dataset.coords.keys())
+ if GROUP_DELIM.join(dim.strip(GROUP_DELIM).split(GROUP_DELIM)[:(diffs+1)]) == lat_var_prefix
+ ]
+ # include any group dimensions that aren't accounted for in variable dimensions
+ var_included = list(set(group_dims) - set(dim_list))
+ group_vars.extend(var_included)
+
+ else:
+ group_vars = list(dataset.keys())
+
+ group_dataset = dataset[group_vars]
+
+ # Calculate temporal conditions
+ temporal_cond = build_temporal_cond(min_time, max_time, group_dataset, time_var_name)
+
+ group_dataset = xre.where(
+ group_dataset,
+ oper(
+ (group_dataset[lon_var_name] >= lon_bounds[0]),
+ (group_dataset[lon_var_name] <= lon_bounds[1])
+ ) &
+ (group_dataset[lat_var_name] >= lat_bounds[0]) &
+ (group_dataset[lat_var_name] <= lat_bounds[1]) &
+ temporal_cond,
+ cut
+ )
+
+ datasets.append(group_dataset)
+ total_list.extend(group_vars)
+ if diffs == -1:
+ return datasets
+ dim_cleaned_datasets = dc.recreate_pixcore_dimensions(datasets)
+ return dim_cleaned_datasets
+
+
+
+
+[docs]
+def subset_with_shapefile(dataset: xr.Dataset,
+ lat_var_name: str,
+ lon_var_name: str,
+ shapefile: str,
+ cut: bool,
+ chunks) -> np.ndarray:
+ """
+ Subset an xarray Dataset using a shapefile
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ Dataset to subset
+ lat_var_name : str
+ Name of the latitude variable in the given dataset
+ lon_var_name : str
+ Name of the longitude variable in the given dataset
+ shapefile : str
+ Absolute path to the shapefile used to subset the given dataset
+ cut : bool
+ True if scanline should be cut.
+ TODO: add docstring and type hint for `chunks` parameter.
+
+ Returns
+ -------
+ np.array
+ Spatial bounds of Dataset after shapefile subset operation
+ TODO - fix this docstring type and the type hint to match code (currently returning a xr.Dataset)
+ """
+ shapefile_df = gpd.read_file(shapefile)
+
+ lat_scale = dataset[lat_var_name].attrs.get('scale_factor', 1.0)
+ lon_scale = dataset[lon_var_name].attrs.get('scale_factor', 1.0)
+ lat_offset = dataset[lat_var_name].attrs.get('add_offset', 0.0)
+ lon_offset = dataset[lon_var_name].attrs.get('add_offset', 0.0)
+
+ # If data is '360', convert shapefile to '360' as well. There is an
+ # assumption that the shapefile is -180,180.
+ if is_360(dataset[lon_var_name], lon_scale, lon_offset):
+ # Transform
+ shapefile_df.geometry = shapefile_df['geometry'].apply(translate_longitude)
+
+ # Mask and scale shapefile
+ def scale(lon, lat, extra=None): # pylint: disable=unused-argument
+ lon = tuple(map(functools.partial(apply_scale_offset, lon_scale, lon_offset), lon))
+ lat = tuple(map(functools.partial(apply_scale_offset, lat_scale, lat_offset), lat))
+ return lon, lat
+
+ geometries = [transform(scale, geometry) for geometry in shapefile_df.geometry]
+ shapefile_df.geometry = geometries
+
+ def in_shape(lon, lat):
+ point = Point(lon, lat)
+ point_in_shapefile = shapefile_df.contains(point)
+ return point_in_shapefile.array[0]
+
+ dask = "forbidden"
+ if chunks:
+ dask = "allowed"
+
+ in_shape_vec = np.vectorize(in_shape)
+ boolean_mask = xr.apply_ufunc(in_shape_vec, dataset[lon_var_name], dataset[lat_var_name], dask=dask)
+ return xre.where(dataset, boolean_mask, cut)
+
+
+
+
+[docs]
+def get_coordinate_variable_names(dataset: xr.Dataset,
+ lat_var_names: list = None,
+ lon_var_names: list = None,
+ time_var_names: list = None):
+ """
+ Retrieve coordinate variables for this dataset. If coordinate
+ variables are provided, use those, Otherwise, attempt to determine
+ coordinate variables manually.
+
+ Parameters
+ ----------
+ dataset : xr.Dataset
+ xarray Dataset used to compute coordinate variables manually.
+ Only used if lat, lon, or time vars are not provided.
+ lat_var_names : list
+ List of latitude coordinate variables.
+ lon_var_names : list
+ List of longitude coordinate variables.
+ time_var_names : list
+ List of time coordinate variables.
+
+ Returns
+ -------
+ TODO: add return type docstring and type hint.
+ """
+
+ if not lat_var_names or not lon_var_names:
+ lat_var_names, lon_var_names = compute_coordinate_variable_names(dataset)
+ if not time_var_names:
+ time_var_names = []
+ for lat_var_name in lat_var_names:
+ time_var_names.append(compute_time_variable_name(dataset,
+ dataset[lat_var_name],
+ time_var_names))
+
+ time_var_names.append(compute_utc_name(dataset))
+ time_var_names = [x for x in time_var_names if x is not None] # remove Nones and any duplicates
+
+ return lat_var_names, lon_var_names, time_var_names
+
+
+
+
+[docs]
+def open_as_nc_dataset(filepath: str) -> Tuple[nc.Dataset, bool]:
+ """Open netcdf file, and flatten groups if they exist."""
+ hdf_type = None
+ # Open dataset with netCDF4 first, so we can get group info
+ try:
+ nc_dataset = nc.Dataset(filepath, mode='r')
+ has_groups = bool(nc_dataset.groups)
+ # If dataset has groups, transform to work with xarray
+ if has_groups:
+ nc_dataset = transform_grouped_dataset(nc_dataset, filepath)
+
+ except OSError:
+ nc_dataset, has_groups, hdf_type = h5file_transform(filepath)
+
+ nc_dataset = dc.remove_duplicate_dims(nc_dataset)
+
+ return nc_dataset, has_groups, hdf_type
+
+
+
+
+[docs]
+def override_decode_cf_datetime() -> None:
+ """
+ WARNING !!! REMOVE AT EARLIEST XARRAY FIX, this is a override to xarray override_decode_cf_datetime function.
+ xarray has problems decoding time units with format `seconds since 2000-1-1 0:0:0 0`, this solves by testing
+ the unit to see if its parsable, if it is use original function, if not format unit into a parsable format.
+
+ https://github.com/pydata/xarray/issues/7210
+ """
+
+ orig_decode_cf_datetime = xarray.coding.times.decode_cf_datetime
+
+ def decode_cf_datetime(num_dates, units, calendar=None, use_cftime=None):
+ try:
+ parser.parse(units.split('since')[-1])
+ return orig_decode_cf_datetime(num_dates, units, calendar, use_cftime)
+ except dateutil.parser.ParserError:
+ reference_time = cftime.num2date(0, units, calendar)
+ units = f"{units.split('since')[0]} since {reference_time}"
+ return orig_decode_cf_datetime(num_dates, units, calendar, use_cftime)
+
+ xarray.coding.times.decode_cf_datetime = decode_cf_datetime
+
+
+
+
+[docs]
+def test_access_sst_dtime_values(datafile):
+ """
+ Test accessing values of 'sst_dtime' variable in a NetCDF file.
+
+ Parameters
+ ----------
+ datafile (str): Path to the NetCDF file.
+
+ Returns
+ -------
+ access_successful (bool): True if 'sst_dtime' values are accessible, False otherwise.
+ """
+
+ nc_dataset, _, _ = open_as_nc_dataset(datafile)
+ args = {
+ 'decode_coords': False,
+ 'mask_and_scale': True,
+ 'decode_times': True
+ }
+ try:
+ with xr.open_dataset(
+ xr.backends.NetCDF4DataStore(nc_dataset),
+ **args
+ ) as dataset:
+ # pylint: disable=pointless-statement
+ for var_name in dataset.variables:
+ dataset[var_name].values
+ except (TypeError, ValueError, KeyError):
+ return False
+ return True
+
+
+
+
+[docs]
+def subset(file_to_subset: str, bbox: np.ndarray, output_file: str,
+ variables: Union[List[str], str, None] = (),
+ # pylint: disable=too-many-branches, disable=too-many-statements
+ cut: bool = True, shapefile: str = None, min_time: str = None, max_time: str = None,
+ origin_source: str = None,
+ lat_var_names: List[str] = (), lon_var_names: List[str] = (), time_var_names: List[str] = ()
+ ) -> Union[np.ndarray, None]:
+ """
+ Subset a given NetCDF file given a bounding box
+
+ Parameters
+ ----------
+ file_to_subset : string
+ The location of the file which will be subset
+ bbox : np.ndarray
+ The chosen bounding box. This is a tuple of tuples formatted
+ as such: ((west, east), (south, north)). The assumption is that
+ the valid range is ((-180, 180), (-90, 90)). This will be
+ transformed as appropriate if the actual longitude range is
+ 0-360.
+ output_file : string
+ The file path for the output of the subsetting operation.
+ variables : list, str, optional
+ List of variables to include in the resulting data file.
+ NOTE: This will remove ALL variables which are not included
+ in this list, including coordinate variables!
+ cut : boolean
+ True if the scanline should be cut, False if the scanline should
+ not be cut. Defaults to True.
+ shapefile : str
+ Name of local shapefile used to subset given file.
+ min_time : str
+ ISO timestamp representing the lower bound of the temporal
+ subset to be performed. If this value is not provided, the
+ granule will not be subset temporally on the lower bound.
+ max_time : str
+ ISO timestamp representing the upper bound of the temporal
+ subset to be performed. If this value is not provided, the
+ granule will not be subset temporally on the upper bound.
+ origin_source : str
+ Original location or filename of data to be used in "derived from"
+ history element.
+ lat_var_names : list
+ List of variables that represent the latitude coordinate
+ variables for this granule. This list will only contain more
+ than one value in the case where there are multiple groups and
+ different coordinate variables for each group.
+ lon_var_names : list
+ List of variables that represent the longitude coordinate
+ variables for this granule. This list will only contain more
+ than one value in the case where there are multiple groups and
+ different coordinate variables for each group.
+ time_var_names : list
+ List of variables that represent the time coordinate
+ variables for this granule. This list will only contain more
+ than one value in the case where there are multiple groups and
+ different coordinate variables for each group.
+ """
+ file_extension = os.path.splitext(file_to_subset)[1]
+ nc_dataset, has_groups, hdf_type = open_as_nc_dataset(file_to_subset)
+
+ override_decode_cf_datetime()
+
+ if has_groups:
+ # Make sure all variables start with '/'
+ if variables:
+ variables = ['/' + var if not var.startswith('/') else var for var in variables]
+ lat_var_names = ['/' + var if not var.startswith('/') else var for var in lat_var_names]
+ lon_var_names = ['/' + var if not var.startswith('/') else var for var in lon_var_names]
+ time_var_names = ['/' + var if not var.startswith('/') else var for var in time_var_names]
+ # Replace all '/' with GROUP_DELIM
+ if variables:
+ variables = [var.replace('/', GROUP_DELIM) for var in variables]
+ lat_var_names = [var.replace('/', GROUP_DELIM) for var in lat_var_names]
+ lon_var_names = [var.replace('/', GROUP_DELIM) for var in lon_var_names]
+ time_var_names = [var.replace('/', GROUP_DELIM) for var in time_var_names]
+
+ if '.HDF5' == file_extension:
+ # GPM files will have a ScanTime group
+ if 'ScanTime' in [var.split('__')[-2] for var in list(nc_dataset.variables.keys())]:
+ gc.change_var_dims(nc_dataset, variables)
+ hdf_type = 'GPM'
+ args = {
+ 'decode_coords': False,
+ 'mask_and_scale': False,
+ 'decode_times': False
+ }
+ # clean up time variable in SNDR before decode_times
+ # SNDR.AQUA files have ascending node time blank
+ if any('__asc_node_tai93' in i for i in list(nc_dataset.variables)):
+ asc_time_var = nc_dataset.variables['__asc_node_tai93']
+ if not asc_time_var[:] > 0:
+ del nc_dataset.variables['__asc_node_tai93']
+
+ if min_time or max_time:
+ args['decode_times'] = True
+ float_dtypes = ['float64', 'float32']
+ fill_value_f8 = nc.default_fillvals.get('f8')
+
+ for time_variable in (v for v in nc_dataset.variables.keys() if 'time' in v):
+ time_var = nc_dataset[time_variable]
+
+ if (getattr(time_var, '_FillValue', None) == fill_value_f8 and time_var.dtype in float_dtypes) or \
+ (getattr(time_var, 'long_name', None) == "reference time of sst file"):
+ args['mask_and_scale'] = True
+ if getattr(time_var, 'long_name', None) == "reference time of sst file":
+ args['mask_and_scale'] = test_access_sst_dtime_values(file_to_subset)
+ break
+
+ if hdf_type == 'GPM':
+ args['decode_times'] = False
+
+ with xr.open_dataset(
+ xr.backends.NetCDF4DataStore(nc_dataset),
+ **args
+ ) as dataset:
+
+ original_dataset = dataset
+
+ lat_var_names, lon_var_names, time_var_names = get_coordinate_variable_names(
+ dataset=dataset,
+ lat_var_names=lat_var_names,
+ lon_var_names=lon_var_names,
+ time_var_names=time_var_names
+ )
+
+ start_date = None
+ if hdf_type and (min_time or max_time):
+ dataset, start_date = tc.convert_to_datetime(dataset, time_var_names, hdf_type)
+
+ chunks = calculate_chunks(dataset)
+ if chunks:
+ dataset = dataset.chunk(chunks)
+ if variables:
+ # Drop variables that aren't explicitly requested, except lat_var_name and
+ # lon_var_name which are needed for subsetting
+ variables_upper = [variable.upper() for variable in variables]
+ vars_to_drop = [
+ var_name for var_name, var in dataset.data_vars.items()
+ if var_name.upper() not in variables_upper
+ and var_name not in lat_var_names
+ and var_name not in lon_var_names
+ and var_name not in time_var_names
+ ]
+
+ dataset = dataset.drop_vars(vars_to_drop)
+ if shapefile:
+ datasets = [
+ subset_with_shapefile(dataset, lat_var_names[0], lon_var_names[0], shapefile, cut, chunks)
+ ]
+ elif bbox is not None:
+ datasets = subset_with_bbox(
+ dataset=dataset,
+ lat_var_names=lat_var_names,
+ lon_var_names=lon_var_names,
+ time_var_names=time_var_names,
+ variables=variables,
+ bbox=bbox,
+ cut=cut,
+ min_time=min_time,
+ max_time=max_time
+ )
+ else:
+ raise ValueError('Either bbox or shapefile must be provided')
+
+ spatial_bounds = []
+
+ for dataset in datasets:
+ set_version_history(dataset, cut, bbox, shapefile)
+ set_json_history(dataset, cut, file_to_subset, bbox, shapefile, origin_source)
+ if has_groups:
+ spatial_bounds.append(get_spatial_bounds(
+ dataset=dataset,
+ lat_var_names=lat_var_names,
+ lon_var_names=lon_var_names
+ ))
+ else:
+ for var in dataset.data_vars:
+ if dataset[var].dtype == 'S1' and isinstance(dataset[var].attrs.get('_FillValue'), bytes):
+ dataset[var].attrs['_FillValue'] = dataset[var].attrs['_FillValue'].decode('UTF-8')
+
+ var_encoding = {
+ "zlib": True,
+ "complevel": 5,
+ "_FillValue": original_dataset[var].encoding.get('_FillValue')
+ }
+
+ data_var = dataset[var].copy()
+ data_var.load().to_netcdf(output_file, 'a', encoding={var: var_encoding})
+ del data_var
+
+ with nc.Dataset(output_file, 'a') as dataset_attr:
+ dataset_attr.setncatts(dataset.attrs)
+
+ if has_groups:
+ recombine_grouped_datasets(datasets, output_file, start_date, time_var_names)
+ # Check if the spatial bounds are all 'None'. This means the
+ # subset result is empty.
+ if any(bound is None for bound in spatial_bounds):
+ return None
+ return np.array([[
+ min(lon[0][0][0] for lon in zip(spatial_bounds)),
+ max(lon[0][0][1] for lon in zip(spatial_bounds))
+ ], [
+ min(lat[0][1][0] for lat in zip(spatial_bounds)),
+ max(lat[0][1][1] for lat in zip(spatial_bounds))
+ ]])
+
+ return get_spatial_bounds(
+ dataset=dataset,
+ lat_var_names=lat_var_names,
+ lon_var_names=lon_var_names
+ )
+
+
+# Copyright 2019, by the California Institute of Technology.
+# ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged.
+# Any commercial use must be negotiated with the Office of Technology
+# Transfer at the California Institute of Technology.
+#
+# This software may be subject to U.S. export control laws. By accepting
+# this software, the user agrees to comply with all applicable U.S. export
+# laws and regulations. User has the responsibility to obtain export
+# licenses, or other export authority as may be required before exporting
+# such information to foreign countries or providing access to foreign
+# persons.
+
+"""
+=================
+subset_harmony.py
+=================
+
+Implementation of harmony-service-lib that invokes the Level 2 subsetter.
+"""
+import argparse
+import os
+import subprocess
+import shutil
+from tempfile import mkdtemp
+import traceback
+from typing import List, Union
+
+import pystac
+from pystac import Asset
+
+import harmony_service_lib
+import numpy as np
+from harmony_service_lib import BaseHarmonyAdapter
+from harmony_service_lib.util import download, stage, generate_output_filename, bbox_to_geometry
+from harmony_service_lib.exceptions import HarmonyException
+
+from podaac.subsetter import subset
+from podaac.subsetter.subset import SERVICE_NAME
+
+DATA_DIRECTORY_ENV = "DATA_DIRECTORY"
+
+
+
+[docs]
+class L2SSException(HarmonyException):
+ """Base class for exceptions in the Harmony GDAL Adapter."""
+
+
+[docs]
+ def __init__(self, original_exception):
+ # Extract the last traceback entry (most recent call) for the error location
+ tb = traceback.extract_tb(original_exception.__traceback__)[-1]
+
+ # Get the error details: file, line, function, and message
+ filename = tb.filename
+ lineno = tb.lineno
+ funcname = tb.name
+ error_msg = str(original_exception)
+
+ # Format the error message to be more readable
+ readable_message = (f"Error in file '{filename}', line {lineno}, in function '{funcname}': "
+ f"{error_msg}")
+
+ super().__init__(readable_message, 'nasa/harmony-gdal-adapter')
+
+
+
+
+
+[docs]
+def podaac_to_harmony_bbox(bbox: np.ndarray) -> Union[np.ndarray, float]:
+ """
+ Convert PO.DAAC bbox ((west, east), (south, north))
+ to Harmony bbox (west, south, east, north)
+
+ Parameters
+ ----------
+ bbox : np.array
+ Podaac bbox
+
+ Returns
+ -------
+ array, int or float
+ Harmony bbox
+ TODO - fix this docstring type, type hint, and code to match (code currently returns a list)
+ """
+
+ return_box = [bbox.item(0), bbox.item(2), bbox.item(1), bbox.item(3)]
+ return return_box
+
+
+
+
+[docs]
+def harmony_to_podaac_bbox(bbox: list) -> np.ndarray:
+ """
+ Convert Harmony bbox (west, south, east, north)
+ to PO.DAAC bbox ((west, east), (south, north))
+
+ Parameters
+ ----------
+ bbox : list
+ Harmony bbox
+
+ Returns
+ -------
+ np.array
+ PO.DAAC bbox
+ """
+ return np.array(((bbox[0], bbox[2]),
+ (bbox[1], bbox[3])))
+
+
+
+
+[docs]
+class L2SubsetterService(BaseHarmonyAdapter):
+ """
+ See https://github.com/nasa/harmony-service-lib-py
+ for documentation and examples.
+ """
+
+
+[docs]
+ def __init__(self, message, catalog=None, config=None):
+ super().__init__(message, catalog, config)
+
+ self.data_dir = os.getenv(DATA_DIRECTORY_ENV, '/home/dockeruser/data')
+
+
+
+[docs]
+ def process_item(self, item: pystac.Item, source: harmony_service_lib.message.Source) -> pystac.Item:
+ """
+ Performs variable and bounding box subsetting on the input STAC Item's data, returning
+ an output STAC item
+
+ Parameters
+ ----------
+ item : pystac.Item
+ the item that should be subset
+ source : harmony.message.Source
+ the input source defining the variables, if any, to subset from the item
+
+ Returns
+ -------
+ pystac.Item
+ a STAC item describing the output of the subsetter
+ """
+ result = item.clone()
+ result.assets = {}
+
+ # Create a temporary dir for processing we may do
+ temp_dir = mkdtemp()
+ output_dir = self.data_dir
+ self.prepare_output_dir(output_dir)
+
+ try:
+ # Get the data file
+ asset = next(v for k, v in item.assets.items() if 'data' in (v.roles or []))
+ input_filename = download(asset.href,
+ temp_dir,
+ logger=self.logger,
+ access_token=self.message.accessToken,
+ cfg=self.config)
+
+ message = self.message
+
+ # Dictionary of keywords params that will be passed into
+ # the l2ss-py subset function
+ subset_params = {}
+
+ # Transform params to PO.DAAC subsetter arguments and invoke the subsetter
+ harmony_bbox = [-180, -90, 180, 90]
+
+ if message.subset and message.subset.bbox:
+ harmony_bbox = message.subset.bbox
+
+ if message.subset and message.subset.shape:
+ subset_params['shapefile'] = download(
+ message.subset.shape.href,
+ temp_dir,
+ logger=self.logger,
+ access_token=self.message.accessToken,
+ cfg=self.config
+ )
+
+ if message.temporal:
+ subset_params['min_time'] = message.temporal.start
+ subset_params['max_time'] = message.temporal.end
+
+ subset_params['bbox'] = harmony_to_podaac_bbox(harmony_bbox)
+
+ try:
+ subset_params['cut'] = message.extraArgs['cut']
+ except (KeyError, AttributeError, TypeError):
+ pass
+
+ if source.variables:
+ subset_params['variables'] = [variable.name for variable in source.process('variables')]
+
+ if source.coordinateVariables:
+ coordinate_variables = list(
+ filter(lambda var: var.type and var.subtype, source.coordinateVariables)
+ )
+
+ def filter_by_subtype(variables, subtype):
+ return list(map(lambda var: var.name, filter(
+ lambda var: var.subtype == subtype, variables
+ )))
+ subset_params['lat_var_names'] = filter_by_subtype(coordinate_variables, 'LATITUDE')
+ subset_params['lon_var_names'] = filter_by_subtype(coordinate_variables, 'LONGITUDE')
+ subset_params['time_var_names'] = filter_by_subtype(coordinate_variables, 'TIME')
+
+ subset_params['output_file'] = f'{output_dir}/{os.path.basename(input_filename)}'
+ subset_params['file_to_subset'] = input_filename
+ subset_params['origin_source'] = asset.href
+
+ self.logger.info('Calling l2ss-py subset with params %s', subset_params)
+ result_bbox = subset.subset(**subset_params)
+
+ # Stage the output file with a conventional filename
+ mime = 'application/x-netcdf4'
+ operations = {
+ "variable_subset": subset_params.get('variables'),
+ "is_subsetted": bool(result_bbox is not None)
+ }
+ staged_filename = generate_output_filename(asset.href, '.nc4', **operations)
+
+ url = stage(subset_params['output_file'],
+ staged_filename,
+ mime,
+ location=message.stagingLocation,
+ logger=self.logger,
+ cfg=self.config)
+
+ # Update the STAC record
+ asset = Asset(url, title=staged_filename, media_type=mime, roles=['data'])
+ result.assets['data'] = asset
+ if result_bbox is not None:
+ if message.subset:
+ message.subset.process('bbox')
+ bounding_box_array = np.array(podaac_to_harmony_bbox(result_bbox))
+ if not np.all(np.isnan(bounding_box_array)):
+ result.bbox = podaac_to_harmony_bbox(result_bbox)
+ result.geometry = bbox_to_geometry(result.bbox)
+
+ # Return the STAC record
+ return result
+ except Exception as ex:
+ raise L2SSException(ex) from ex
+ finally:
+ # Clean up any intermediate resources
+ shutil.rmtree(temp_dir)
+
+
+
+[docs]
+ def prepare_output_dir(self, output_dir: str) -> None:
+ """
+ Deletes (if present) and recreates the given output_dir, ensuring it exists
+ and is empty
+
+ Parameters
+ ----------
+ output_dir : string
+ the directory to delete and recreate
+ """
+ self.cmd('rm', '-rf', output_dir)
+ self.cmd('mkdir', '-p', output_dir)
+
+
+
+[docs]
+ def cmd(self, *args) -> List[str]:
+ """
+ Logs and then runs command.
+
+ Parameters
+ ----------
+ args Command and args to run
+
+ Returns
+ -------
+ Command output
+ """
+ self.logger.info("%s %s", args[0], " ".join(["'{}'".format(arg) for arg in args[1:]])) # pylint: disable=C0209
+ result_str = subprocess.check_output(args).decode("utf-8")
+ return result_str.split("\n")
+
+
+
+
+
+[docs]
+def main(config: harmony_service_lib.util.Config = None) -> None:
+ """Parse command line arguments and invoke the service to respond to
+ them.
+
+ Parameters
+ ----------
+ config : harmony.util.Config
+
+ Returns
+ -------
+ None
+ """
+ parser = argparse.ArgumentParser(prog=SERVICE_NAME,
+ description='Run the l2_subsetter service')
+ harmony_service_lib.setup_cli(parser)
+ args = parser.parse_args()
+ if harmony_service_lib.is_harmony_cli(args):
+ harmony_service_lib.run_cli(parser, args, L2SubsetterService, cfg=config)
+ else:
+ parser.error("Only --harmony CLIs are supported")
+
+
+
+if __name__ == "__main__":
+ main()
+
+# Copyright 2019, by the California Institute of Technology.
+# ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged.
+# Any commercial use must be negotiated with the Office of Technology
+# Transfer at the California Institute of Technology.
+#
+# This software may be subject to U.S. export control laws. By accepting
+# this software, the user agrees to comply with all applicable U.S. export
+# laws and regulations. User has the responsibility to obtain export
+# licenses, or other export authority as may be required before exporting
+# such information to foreign countries or providing access to foreign
+# persons.
+
+"""
+======================
+xarray_enhancements.py
+======================
+
+Functions which improve upon existing xarray functionality, optimized
+for this specific use-case.
+"""
+
+import logging
+from typing import Union
+
+import numpy as np
+import xarray as xr
+from podaac.subsetter import dimension_cleanup as dc
+
+
+
+[docs]
+def get_indexers_from_1d(cond: xr.Dataset) -> dict:
+ """
+ Get indexers from a dataset with 1 dimension.
+
+ Parameters
+ ----------
+ cond : xarray.Dataset
+ Contains the result of the initial lat lon condition.
+
+ Returns
+ -------
+ dict
+ Indexer dictionary for the provided condition.
+ """
+ cols = cond.values
+
+ if not cols.any():
+ logging.info("No data within the given bounding box.")
+
+ indexers = {
+ cond.dims[0]: np.where(cols)[0]
+ }
+ return indexers
+
+
+
+
+[docs]
+def get_indexers_from_nd(cond: xr.Dataset, cut: bool) -> dict:
+ """
+ Get indexers from a dataset with more than one dimension.
+
+ Parameters
+ ----------
+ cond : xarray.Dataset
+ Contains the result of the initial lat lon condition.
+ cut : bool
+ True if the scanline should be cut.
+
+ Returns
+ -------
+ dict
+ Indexer dictionary for the provided condition.
+ """
+ # check if the lat/lon coordinate numpy array has 2 or more dimensions
+ transpose = dim_grid = False
+ ndim = cond.values.squeeze().ndim
+
+ # Determine axes and flags
+ if ndim == 2:
+ x_axis, y_axis = 1, 0
+ else:
+ if 'xtrack' in cond.dims and 'atrack' in cond.dims:
+ x_axis, y_axis = cond.dims.index('xtrack'), cond.dims.index('atrack')
+ transpose = True
+ elif 'xdim_grid' in cond.dims and 'ydim_grid' in cond.dims:
+ x_axis, y_axis = cond.dims.index('xdim_grid'), cond.dims.index('ydim_grid')
+ dim_grid = x_axis == 1 and y_axis == 0
+ else:
+ x_axis, y_axis = 2, 1
+
+ # Compute rows and columns
+ squeezed_values = cond.values.squeeze()
+ rows = np.any(squeezed_values, axis=x_axis)
+ cols = np.any(squeezed_values, axis=y_axis) if cut else np.ones(len(squeezed_values[0]))
+
+ # Log information about subsetted area
+ if np.all(rows) and np.all(cols):
+ logging.info("Subsetted area equal to the original granule.")
+ if not np.any(rows) or not np.any(cols):
+ logging.info("No data within the given bounding box.")
+
+ # Determine dimensions and clean them up
+ cond_dims = list(cond.dims)
+ cond_shape = list(cond.shape)
+ cond_dims = [dim for dim, size in zip(cond_dims, cond_shape) if size > 1]
+
+ # Adjust for 3D data
+ if rows.ndim > 1:
+ if transpose:
+ rows, cols = rows.transpose()[0], cols.transpose()[0]
+ elif not dim_grid:
+ rows, cols = rows[0], cols[0]
+
+ # Generate indexers
+ indexers = {
+ cond_dims[y_axis]: np.where(rows)[0],
+ cond_dims[x_axis]: np.where(cols)[0]
+ }
+
+ return indexers
+
+
+
+
+[docs]
+def copy_empty_dataset(dataset: xr.Dataset) -> xr.Dataset:
+ """
+ Copy a dataset into a new, empty dataset. This dataset should:
+ * Contain the same structure as the input dataset (only include
+ requested variables, if variable subset)
+ * Contain the same global metadata as the input dataset
+ * Contain a history field which describes this subset operation.
+
+ Parameters
+ ----------
+ dataset: xarray.Dataset
+ The dataset to copy into a empty dataset.
+
+ Returns
+ -------
+ xarray.Dataset
+ The new dataset which has no data.
+ """
+ # Create a dict object where each key is a variable in the dataset and the value is an
+ # array initialized to the fill value for that variable or NaN if there is no fill value
+ # attribute for the variable
+
+ empty_data = {k: np.full(v.shape, dataset.variables[k].attrs.get('_FillValue', np.nan), dtype=v.dtype) for k, v in dataset.items()}
+
+ # Create a copy of the dataset filled with the empty data. Then select the first index along each
+ # dimension and return the result
+ return dataset.copy(data=empty_data).isel({dim: slice(0, 1, 1) for dim in dataset.dims})
+
+
+
+
+[docs]
+def cast_type(var: xr.DataArray, var_type: str) -> xr.DataArray:
+ """
+ Type cast a variable into a var type.
+
+ Parameters
+ ----------
+ var: xr.DataArray
+ The dataarray to be type casted.
+ var_type: string
+ New type the variable will be type casted to.
+ Returns
+ -------
+ xr.DataArray
+ The newly type casted variable.
+ """
+
+ return var.astype(var_type)
+
+
+
+
+[docs]
+def get_variables_with_indexers(dataset, indexers):
+ """
+ returns a list of variables with bounding box dimensions and variables that
+ don't have bounding box dimensions
+ """
+ index_list = list(indexers.keys())
+ subset_vars = []
+ no_subset_vars = []
+ for i in list(dataset.variables.keys()):
+ variable_dims = list(dataset[i].dims)
+ if any(item in index_list for item in variable_dims):
+ subset_vars.append(i)
+ else:
+ no_subset_vars.append(i)
+
+ return subset_vars, no_subset_vars
+
+
+
+
+[docs]
+def where(dataset: xr.Dataset, cond: Union[xr.Dataset, xr.DataArray], cut: bool) -> xr.Dataset:
+ """
+ Return a dataset which meets the given condition.
+
+ This is a modification of the existing xarray 'where' function.
+ https://github.com/pydata/xarray/blob/master/xarray/core/common.py#L999
+
+ Parameters
+ ----------
+ dataset : xarray.Dataset
+ The dataset to filter and return.
+ cond : DataArray or Dataset with boolean dtype
+ Locations at which to preserve this object's values.
+ cut : boolean
+ True if the scanline should be cut, False if the scanline should
+ not be cut.
+
+ Returns
+ -------
+ xarray.Dataset
+ The filtered Dataset
+
+ Notes
+ -----
+ The `cond` variable contains a boolean mask of valid data indices.
+ However in that mask, True represents valid data and False
+ represents invalid data.
+ """
+ if cond.values.ndim == 1:
+ indexers = get_indexers_from_1d(cond)
+ else:
+ indexers = get_indexers_from_nd(cond, cut)
+ # If any of the indexer dimensions are empty, return an empty dataset
+ if not all(len(value) > 0 for value in indexers.values()):
+ return copy_empty_dataset(dataset)
+
+ # This will be true if any variables in the dataset have a partial
+ # overlap with the coordinate dims. If so, the cond should be
+ # applied per-variable rather than to the entire dataset.
+ partial_dim_in_in_vars = np.any(
+ [len(set(indexers.keys()).intersection(var.dims)) > 0 and len(
+ indexers.keys() - var.dims) > 0 for _, var in dataset.variables.items()]
+ )
+
+ indexed_cond = cond.isel(**indexers)
+ indexed_ds = dataset.isel(**indexers)
+ subset_vars, non_subset_vars = get_variables_with_indexers(dataset, indexers)
+
+ # dataset with variables that need to be subsetted
+ new_dataset_sub = indexed_ds[subset_vars].where(indexed_cond)
+ # data with variables that shouldn't be subsetted
+ new_dataset_non_sub = indexed_ds[non_subset_vars]
+
+ # merge the datasets
+ new_dataset = xr.merge([new_dataset_non_sub, new_dataset_sub])
+
+ # Cast all variables to their original type
+ for variable_name, variable in new_dataset.data_vars.items():
+ original_type = indexed_ds[variable_name].dtype
+ new_type = variable.dtype
+ indexed_var = indexed_ds[variable_name]
+
+ if partial_dim_in_in_vars and (indexers.keys() - dataset[variable_name].dims) and set(
+ indexers.keys()).intersection(dataset[variable_name].dims):
+
+ missing_dim = (indexers.keys() - dataset[variable_name].dims).pop() # Assume only 1
+ var_indexers = {
+ dim_name: dim_value for dim_name, dim_value in indexers.items()
+ if dim_name in dataset[variable_name].dims
+ }
+
+ var_cond = cond.any(axis=cond.dims.index(missing_dim)).isel(**var_indexers)
+ indexed_var = dataset[variable_name].isel(**var_indexers)
+ new_dataset[variable_name] = indexed_var.where(var_cond)
+ variable = new_dataset[variable_name]
+ elif partial_dim_in_in_vars and (indexers.keys() - dataset[variable_name].dims) and set(
+ indexers.keys()).intersection(new_dataset[variable_name].dims):
+ new_dataset[variable_name] = indexed_var
+
+ new_dataset[variable_name].attrs = indexed_var.attrs
+ variable.attrs = indexed_var.attrs
+ # Check if variable has no _FillValue. If so, use original data
+ if '_FillValue' not in variable.attrs or len(indexed_var.shape) == 0:
+
+ if original_type != new_type:
+ new_dataset[variable_name] = xr.apply_ufunc(cast_type, variable,
+ str(original_type), dask='allowed',
+ keep_attrs=True)
+
+ # Replace nans with values from original dataset. If the
+ # variable has more than one dimension, copy the entire
+ # variable over, otherwise use a NaN mask to copy over the
+ # relevant values.
+ new_dataset[variable_name] = indexed_var
+
+ new_dataset[variable_name].attrs = indexed_var.attrs
+ variable.attrs = indexed_var.attrs
+ new_dataset[variable_name].encoding['_FillValue'] = None
+ variable.encoding['_FillValue'] = None
+
+ else:
+ # Manually replace nans with FillValue
+ # If variable represents time, cast _FillValue to datetime
+ fill_value = new_dataset[variable_name].attrs.get('_FillValue')
+ if np.issubdtype(new_dataset[variable_name].dtype, np.dtype(np.datetime64)):
+ fill_value = np.datetime64('nat')
+ if np.issubdtype(new_dataset[variable_name].dtype, np.dtype(np.timedelta64)):
+ fill_value = np.timedelta64('nat')
+ new_dataset[variable_name] = new_dataset[variable_name].fillna(fill_value)
+ if original_type != new_type:
+ new_dataset[variable_name] = xr.apply_ufunc(cast_type, new_dataset[variable_name],
+ str(original_type), dask='allowed',
+ keep_attrs=True)
+
+ dc.sync_dims_inplace(dataset, new_dataset)
+ return new_dataset
+
+
' + + '' + + _("Hide Search Matches") + + "
" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/2.13.0rc1/genindex.html b/2.13.0rc1/genindex.html new file mode 100644 index 00000000..ade512d4 --- /dev/null +++ b/2.13.0rc1/genindex.html @@ -0,0 +1,376 @@ + + + + + + + ++ |
+ |
+ |
+ |
+ |
+ | + |
+ |
+ | + |
|
+ + |
+ |
+ | + |
|
+
|
+
+ | + |
+ | + |
+ | + |
+ |
Functions related to subsetting a NetCDF file.
+Apply scale and offset to the given value
+Build the temporal condition used in the xarray ‘where’ call which +drops data not in the given bounds. If the data in the time var is +of type ‘datetime’, assume this is a normal case where the time var +uses the epoch from the ‘units’ metadata attribute to get epoch. If +the data in the time var is of type ‘timedelta’, the epoch var is +needed to calculate the datetime.
+min_time (str) – ISO timestamp representing the lower temporal bound
max_time (str) – ISO timestamp representing the upper temporal bound
dataset (xr.Dataset) – Dataset to build the condition off of
time_var_name (str) – Name of the time variable
If temporally subsetted, returns a boolean ND-array the shape +of which matches the dimensions of the coordinate vars. ‘True’ +is essentially a noop.
+np.array or boolean
+For the given dataset, calculate if the size on any dimension is +worth chunking. Any dimension larger than 4000 will be chunked. This +is done to ensure that the variable can fit in memory.
+dataset (xarray.Dataset) – The dataset to calculate chunks for.
+The chunk dictionary, where the key is the dimension and the +value is 4000 or 500 depending on how many dimensions.
+dict
+Given a dataset, determine the coordinate variable from a list +of options
+dataset (xr.Dataset) – The dataset to find the coordinate variables for
+Tuple of strings (or list of strings), where the first element is the lat coordinate +name and the second element is the lon coordinate name
+tuple, str
+Try to determine the name of the ‘time’ variable. This is done as +follows:
+The variable name contains ‘time’
The variable dimensions match the dimensions of the given lat var
The variable that hasn’t already been found
dataset (xr.Dataset) – xarray dataset to find time variable from
lat_var (xr.Variable) – Lat variable for this dataset
The name of the variable
+str
+ValueError – If the time variable could not be determined
+Get the name of the utc variable if it is there to determine origine time
+This function will return a converted bbox which matches the range +of the given input file. This will convert both the latitude and +longitude range. For example, an input dataset can have a valid +longitude range of -180 –> 180 or of 0 –> 360.
+bbox (np.array) – The bounding box
dataset (xarray.Dataset) – The dataset which is being subset.
lat_var_name (str) – Name of the lat variable in the given dataset
lon_var_name (str) – Name of the lon variable in the given dataset
bbox – The new bbox which matches latitude and longitude ranges of the +input file.
+np.array
+Notes
+Assumption that the provided bounding box is always between +-180 –> 180 for longitude and -90, 90 for latitude.
+This function will return a converted bound, which matches the +range of the given input file.
+bound (np.array) – 1-dimensional 2-element numpy array which represent the lower +and upper bounding box on this coordinate, respectively.
coord_max (integer) – The max value which is possible given this coordinate. For +example, the max for longitude is 360.
coord_var (xarray.DataArray) – The xarray variable for some coordinate.
1-dimensional 2-element number array which represents the lower +and upper bounding box on this coordinate and has been converted +based on the valid bounds coordinate range of the dataset.
+np.array
+Notes
+Assumption that 0 is always on the prime meridian/equator.
+Translate the modified julian date from the long name in the time attribute.
+dataset (xr.Dataset) – Dataset that contains time var
time_var_name (str) – The name of the actual time var (with matching dims to the +coord vars)
the datetime of the modified julian date
+datetime
+As a backup for finding a coordinate var, look at the ‘coordinates’ +metadata attribute of all data vars in the granule. Return any +coordinate vars that have name matches with the provided +‘match_list’
+dataset (xr.Dataset) – Dataset to search data variable coordinate metadata attribute
match_list (list (str)) – List of possible matches to search for. For example, +[‘lat’, ‘latitude’] would search for variables in the +‘coordinates’ metadata attribute containing either ‘lat’ +or ‘latitude’
List of matching coordinate variables names
+list (str)
+Latitude groups may be at different depths. This function gets the level +number that makes each latitude group unique from the other latitude names
+Retrieve coordinate variables for this dataset. If coordinate +variables are provided, use those, Otherwise, attempt to determine +coordinate variables manually.
+dataset (xr.Dataset) – xarray Dataset used to compute coordinate variables manually. +Only used if lat, lon, or time vars are not provided.
lat_var_names (list) – List of latitude coordinate variables.
lon_var_names (list) – List of longitude coordinate variables.
time_var_names (list) – List of time coordinate variables.
TODO
+add return type docstring and type hint.
+Get the spatial bounds for this dataset. These values are masked +and scaled.
+dataset (xr.Dataset) – Dataset to retrieve spatial bounds for
lat_var_names (str) – Name of the lat variable
lon_var_names (str) – Name of the lon variable
[[lon min, lon max], [lat min, lat max]]
+np.array
+Get the name of the epoch time var. This is only needed in the case +where there is a single time var (of size 1) that contains the time +epoch used by the actual time var.
+dataset (xr.Dataset) – Dataset that contains time var
time_var_name (str) – The name of the actual time var (with matching dims to the +coord vars)
The name of the epoch time variable
+str
+Determine if given dataset is a ‘360’ dataset or not.
+lon_var (xr.DataArray) – The lon variable from the xarray Dataset
scale (float) – Used to remove scale and offset for easier calculation
offset (float) – Used to remove scale and offset for easier calculation
True if dataset is 360, False if not. Defaults to False.
+bool
+Check to see if the time format is a time delta from a modified julian date.
+dataset (xr.Dataset) – Dataset that contains time var
time_var_name (str) – The name of the actual time var (with matching dims to the +coord vars)
is time delta format in modified julian date
+boolean
+Open netcdf file, and flatten groups if they exist.
+WARNING !!! REMOVE AT EARLIEST XARRAY FIX, this is a override to xarray override_decode_cf_datetime function. +xarray has problems decoding time units with format seconds since 2000-1-1 0:0:0 0, this solves by testing +the unit to see if its parsable, if it is use original function, if not format unit into a parsable format.
+ +Remove scale and offset from the given value
+Set the ‘json_history’ metadata header of the granule to reflect the +current version of the subsetter, as well as the parameters used +to call the subsetter. This will append an json array to the json_history of +the following format:
+dataset (xarray.Dataset) – The dataset to change the header of
cut (boolean) – True to cut the scanline
file_to_subset (string) – The filepath of the file which was used to subset
bbox (np.ndarray) – The requested bounding box
shapefile (str) – Name of the shapefile to include in the version history
TODO (add docstring and type hint for origin_source parameter.)
Set the ‘history’ metadata header of the granule to reflect the +current version of the subsetter, as well as the parameters used +to call the subsetter. This will append a line to the history of +the following format:
+TIMESTAMP podaac.subsetter VERSION (PARAMS)
+dataset (xarray.Dataset) – The dataset to change the header of
cut (boolean) – True to cut the scanline
bbox (np.ndarray) – The requested bounding box
shapefile (str) – Name of the shapefile to include in the version history
Subset a given NetCDF file given a bounding box
+file_to_subset (string) – The location of the file which will be subset
bbox (np.ndarray) – The chosen bounding box. This is a tuple of tuples formatted +as such: ((west, east), (south, north)). The assumption is that +the valid range is ((-180, 180), (-90, 90)). This will be +transformed as appropriate if the actual longitude range is +0-360.
output_file (string) – The file path for the output of the subsetting operation.
variables (list, str, optional) – List of variables to include in the resulting data file. +NOTE: This will remove ALL variables which are not included +in this list, including coordinate variables!
cut (boolean) – True if the scanline should be cut, False if the scanline should +not be cut. Defaults to True.
shapefile (str) – Name of local shapefile used to subset given file.
min_time (str) – ISO timestamp representing the lower bound of the temporal +subset to be performed. If this value is not provided, the +granule will not be subset temporally on the lower bound.
max_time (str) – ISO timestamp representing the upper bound of the temporal +subset to be performed. If this value is not provided, the +granule will not be subset temporally on the upper bound.
origin_source (str) – Original location or filename of data to be used in “derived from” +history element.
lat_var_names (list) – List of variables that represent the latitude coordinate +variables for this granule. This list will only contain more +than one value in the case where there are multiple groups and +different coordinate variables for each group.
lon_var_names (list) – List of variables that represent the longitude coordinate +variables for this granule. This list will only contain more +than one value in the case where there are multiple groups and +different coordinate variables for each group.
time_var_names (list) – List of variables that represent the time coordinate +variables for this granule. This list will only contain more +than one value in the case where there are multiple groups and +different coordinate variables for each group.
Subset an xarray Dataset using a spatial bounding box.
+dataset (xr.Dataset) – Dataset to subset
lat_var_names (list) – Name of the latitude variables in the given dataset
lon_var_names (list) – Name of the longitude variables in the given dataset
time_var_names (list) – Name of the time variables in the given dataset
variables (list[str]) – List of variables to include in the result
bbox (np.array) – Spatial bounding box to subset Dataset with.
cut (bool) – True if scanline should be cut.
min_time (str) – ISO timestamp of min temporal bound
max_time (str) – ISO timestamp of max temporal bound
TODO (add docstring and type hint for variables parameter.)
np.array – Spatial bounds of Dataset after subset operation
TODO - fix this docstring type and the type hint to match code (currently returning a list[xr.Dataset])
Subset an xarray Dataset using a shapefile
+dataset (xr.Dataset) – Dataset to subset
lat_var_name (str) – Name of the latitude variable in the given dataset
lon_var_name (str) – Name of the longitude variable in the given dataset
shapefile (str) – Absolute path to the shapefile used to subset the given dataset
cut (bool) – True if scanline should be cut.
TODO (add docstring and type hint for chunks parameter.)
np.array – Spatial bounds of Dataset after shapefile subset operation
TODO - fix this docstring type and the type hint to match code (currently returning a xr.Dataset)
Test accessing values of ‘sst_dtime’ variable in a NetCDF file.
+(str) (datafile)
+access_successful (bool)
+True if ‘sst_dtime’ values are accessible, False otherwise.
+Translates the longitude values of a Shapely geometry from the range [-180, 180) to [0, 360).
+geometry (shapely.geometry.base.BaseGeometry) – The input shape geometry to be translated
+The translated shape geometry
+geometry
+Translate timestamp to datetime object
+str_timestamp (str) – Timestamp string. ISO or RFC
+Constructed Datetime object
+datetime
+Implementation of harmony-service-lib that invokes the Level 2 subsetter.
+Base class for exceptions in the Harmony GDAL Adapter.
+ + +See https://github.com/nasa/harmony-service-lib-py +for documentation and examples.
+Constructs the adapter
+message (harmony_service_lib.Message) – The Harmony input which needs acting upon
catalog (pystac.Catalog) – A STAC catalog containing the files on which to act
config (harmony_service_lib.util.Config) – The configuration values for this runtime environment.
Logs and then runs command.
+run (args Command and args to)
+Command output
+Deletes (if present) and recreates the given output_dir, ensuring it exists +and is empty
+output_dir (string) – the directory to delete and recreate
+Performs variable and bounding box subsetting on the input STAC Item’s data, returning +an output STAC item
+item (pystac.Item) – the item that should be subset
source (harmony.message.Source) – the input source defining the variables, if any, to subset from the item
a STAC item describing the output of the subsetter
+pystac.Item
+Convert Harmony bbox (west, south, east, north) +to PO.DAAC bbox ((west, east), (south, north))
+bbox (list) – Harmony bbox
+PO.DAAC bbox
+np.array
+Parse command line arguments and invoke the service to respond to +them.
+config (harmony.util.Config)
+None
+Convert PO.DAAC bbox ((west, east), (south, north)) +to Harmony bbox (west, south, east, north)
+bbox (np.array) – Podaac bbox
+array, int or float – Harmony bbox
TODO - fix this docstring type, type hint, and code to match (code currently returns a list)
run_subsetter.py
+This script runs L2SS-Py on the given granule.
+ + +Parse args for this script.
+input_file, output_file, bbox, variables, min_time, max_time
+tuple
+Parse arguments and run subsetter on the specified input file
+Functions which improve upon existing xarray functionality, optimized +for this specific use-case.
+Type cast a variable into a var type.
+var (xr.DataArray) – The dataarray to be type casted.
var_type (string) – New type the variable will be type casted to.
The newly type casted variable.
+xr.DataArray
+Contain the same structure as the input dataset (only include +requested variables, if variable subset)
Contain the same global metadata as the input dataset
Contain a history field which describes this subset operation.
dataset (xarray.Dataset) – The dataset to copy into a empty dataset.
+The new dataset which has no data.
+xarray.Dataset
+Get indexers from a dataset with 1 dimension.
+cond (xarray.Dataset) – Contains the result of the initial lat lon condition.
+Indexer dictionary for the provided condition.
+dict
+Get indexers from a dataset with more than one dimension.
+cond (xarray.Dataset) – Contains the result of the initial lat lon condition.
cut (bool) – True if the scanline should be cut.
Indexer dictionary for the provided condition.
+dict
+returns a list of variables with bounding box dimensions and variables that +don’t have bounding box dimensions
+Return a dataset which meets the given condition.
+This is a modification of the existing xarray ‘where’ function. +https://github.com/pydata/xarray/blob/master/xarray/core/common.py#L999
+dataset (xarray.Dataset) – The dataset to filter and return.
cond (DataArray or Dataset with boolean dtype) – Locations at which to preserve this object’s values.
cut (boolean) – True if the scanline should be cut, False if the scanline should +not be cut.
The filtered Dataset
+xarray.Dataset
+Notes
+The cond variable contains a boolean mask of valid data indices. +However in that mask, True represents valid data and False +represents invalid data.
++ p | ||
+ |
+ podaac | + |
+ |
+ podaac.subsetter.run_subsetter | + |
+ |
+ podaac.subsetter.subset | + |
+ |
+ podaac.subsetter.subset_harmony | + |
+ |
+ podaac.subsetter.xarray_enhancements | + |