-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchapter-1.py
285 lines (242 loc) · 9.34 KB
/
chapter-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#Code from book ::- Joshi P. - OpenCV with Python By Example_ Build real-world computer vision applications and develop cool demos using OpenCV for Python.pdf
#Creating the conda environment and installing libraries
'''
conda create -n cameo python=2.7 anaconda
conda activate cameo
conda install -c conda-forge opencv=2.4
conda deactivate
'''
import cv2
import os
path='C:/Users/HP/Desktop/Image'
images_files=os.listdir(path)
#####################################
# #
# Loading and saving an image ######
#####################################
'''
img = cv2.imread(path+'/'+images_files[0])
cv2.imshow('Input image', img)
#print(type(img))
#<class 'numpy.ndarray'>
cv2.waitKey()
'''
'''
import cv2
gray_img = cv2.imread(path+'/'+images_files[0], cv2.IMREAD_GRAYSCALE)
cv2.imshow('Grayscale', gray_img)
cv2.imwrite(path+'/'+'output.jpg', gray_img)
cv2.waitKey()
'''
#####################################
# #
# Converting between color spaces ######
#####################################
'''
import cv2
color_spaces_flags= print [x for x in dir(cv2) if x.startswith('COLOR_')]
'''
'''
import cv2
img = cv2.imread(path+'/'+images_files[0])
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
cv2.imshow('Y channel', yuv_img[:, :, 0])
cv2.imshow('U channel', yuv_img[:, :, 1])
cv2.imshow('V channel', yuv_img[:, :, 2])
cv2.imshow('H channel', hsv_img[:, :, 0])
cv2.imshow('S channel', hsv_img[:, :, 1])
cv2.imshow('V channel', hsv_img[:, :, 2])
cv2.imshow('Grayscale image', gray_img)
cv2.imshow('HSV image', hsv_img)
cv2.waitKey()
'''
#####################################
# #
# Image translation ######
#####################################
'''
import cv2
import numpy as np
img = cv2.imread(path+'/'+images_files[0])
num_rows, num_cols = img.shape[:2]
translation_matrix = np.float32([ [1,0,70], [0,1,110] ])
img_translation = cv2.warpAffine(img, translation_matrix, (num_cols,num_rows))
cv2.imshow('Translation', img_translation)
cv2.waitKey()
'''
######################################################
# #
# To move the image in the middle of a bigger image frame ######
######################################################
'''
import cv2
import numpy as np
img = cv2.imread(path+'/'+images_files[0])
num_rows, num_cols = img.shape[:2]
translation_matrix = np.float32([ [1,0,70], [0,1,110] ])
img_translation = cv2.warpAffine(img, translation_matrix, (num_cols + 70,num_rows + 110))
translation_matrix = np.float32([ [1,0,-30], [0,1,-50] ])
img_translation = cv2.warpAffine(img_translation, translation_matrix,(num_cols + 70 + 30, num_rows + 110 + 50))
cv2.imshow('Translation', img_translation)
cv2.waitKey()
'''
#####################################
# #
# Image Rotation ######
#####################################
'''
import cv2
import numpy as np
img = cv2.imread(path+'/'+images_files[0])
num_rows, num_cols = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((num_cols/2, num_rows/2), 30, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (num_cols, num_rows))
cv2.imshow('Rotation', img_rotation)
cv2.waitKey()
'''
#####################################
# #
# rotation while preventing cropping ######
#####################################
'''
import cv2
import numpy as np
img = cv2.imread(path+'/'+images_files[0])
num_rows, num_cols = img.shape[:2]
translation_matrix = np.float32([ [1,0,int(0.5*num_cols)],[0,1,int(0.5*num_rows)] ])
rotation_matrix = cv2.getRotationMatrix2D((num_cols, num_rows), 30,1)
img_translation = cv2.warpAffine(img, translation_matrix,(2*num_cols, 2*num_rows))
img_rotation = cv2.warpAffine(img_translation, rotation_matrix,(2*num_cols, 2*num_rows))
cv2.imshow('Rotation', img_rotation)
cv2.waitKey()
'''
#####################################
# #
# Image Scaling ######
#####################################
'''
img_scaled = cv2.resize(img,None,fx=1.2, fy=1.2, interpolation =cv2.INTER_LINEAR)
cv2.imshow('Scaling - Linear Interpolation', img_scaled)
img_scaled =cv2.resize(img,None,fx=1.2, fy=1.2, interpolation = cv2.INTER_CUBIC)
cv2.imshow('Scaling - Cubic Interpolation', img_scaled)
img_scaled =cv2.resize(img,(450, 400), interpolation = cv2.INTER_AREA)
cv2.imshow('Scaling - Skewed Size', img_scaled)
cv2.waitKey()
'''
#####################################
# #
# Affine Transformations ######
#####################################
'''
import cv2
import numpy as np
img = cv2.imread(path+'/'+images_files[0])
rows, cols = img.shape[:2]
#To get the mirror image
#src_points = np.float32([[0,0], [cols-1,0], [0,rows-1]])
#dst_points = np.float32([[cols-1,0], [0,0], [cols-1,rows-1]])
src_points = np.float32([[0,0], [cols-1,0], [0,rows-1]])
dst_points = np.float32([[0,0], [int(0.6*(cols-1)),0], [int(0.4*(cols-1)),rows-1]])
affine_matrix = cv2.getAffineTransform(src_points, dst_points)
img_output = cv2.warpAffine(img, affine_matrix, (cols,rows))
cv2.imshow('Input', img)
cv2.imshow('Output', img_output)
cv2.waitKey()
'''
#####################################
# #
# Projective Transformations ######
#####################################
'''
import cv2
import numpy as np
img = cv2.imread(path+'/'+images_files[0])
rows, cols = img.shape[:2]
src_points = np.float32([[0,0], [cols-1,0], [0,rows-1], [cols-1,rows-1]])
dst_points = np.float32([[0,0], [cols-1,0], [int(0.33*cols),rows-1],[int(0.66*cols),rows-1]])
#src_points = np.float32([[0,0], [0,rows-1], [cols/2,0], [cols/2,rows-1]])
#dst_points = np.float32([[0,100], [0,rows-101], [cols/2,0], [cols/2,rows-1]])
projective_matrix = cv2.getPerspectiveTransform(src_points, dst_points)
img_output = cv2.warpPerspective(img, projective_matrix, (cols,rows))
cv2.imshow('Input', img)
cv2.imshow('Output', img_output)
cv2.waitKey()
'''
#####################################
# #
# Image Warping ######
#####################################
'''
import cv2
import numpy as np
import math
img = cv2.imread(path+'/'+images_files[0], cv2.IMREAD_GRAYSCALE)
rows, cols = img.shape
#####################
# Vertical wave
img_output = np.zeros(img.shape, dtype=img.dtype)
for i in range(rows):
for j in range(cols):
offset_x = int(25.0 * math.sin(2 * 3.14 * i / 180))
offset_y = 0
if j+offset_x < rows:
img_output[i,j] = img[i,(j+offset_x)%cols]
else:
img_output[i,j] = 0
cv2.imshow('Input', img)
cv2.imshow('Vertical wave', img_output)
#####################
# Horizontal wave
img_output = np.zeros(img.shape, dtype=img.dtype)
for i in range(rows):
for j in range(cols):
offset_x = 0
offset_y = int(4.0 * math.sin(2 * 3.14 * j / 150))
if i+offset_y < rows:
img_output[i,j] = img[(i+offset_y)%rows,j]
else:
img_output[i,j] = 0
cv2.imshow('Horizontal wave', img_output)
#####################
# Both horizontal and vertical
img_output = np.zeros(img.shape, dtype=img.dtype)
for i in range(rows):
for j in range(cols):
offset_x = int(20.0 * math.sin(2 * 3.14 * i / 150))
offset_y = int(20.0 * math.cos(2 * 3.14 * j / 150))
if i+offset_y < rows and j+offset_x < cols:
img_output[i,j] = img[(i+offset_y)%rows,(j+offset_x)%cols]
else:
img_output[i,j] = 0
cv2.imshow('Multidirectional wave', img_output)
#####################
# Concave effect
img_output = np.zeros(img.shape, dtype=img.dtype)
for i in range(rows):
for j in range(cols):
offset_x = int(128.0 * math.sin(2 * 3.14 * i / (2*cols)))
offset_y = 0
if j+offset_x < cols:
img_output[i,j] = img[i,(j+offset_x)%cols]
else:
img_output[i,j] = 0
cv2.imshow('Concave', img_output)
cv2.waitKey()
'''
img = cv2.imread('C:/Users/HP/Downloads/opencv-computer_vision/images/flask-crud.jpg', cv2.IMREAD_UNCHANGED)
print('Original Dimensions : ',img.shape)
#scale_percent = 20 # percent of original size
#width = int(img.shape[1] * scale_percent / 100)
#height = int(img.shape[0] * scale_percent / 100)
width=480
height=300
dim = (width, height)
# resize image
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
print('Resized Dimensions : ',resized.shape)
cv2.imshow("Resized image", resized)
cv2.imwrite('C:/Users/HP/Downloads/opencv-computer_vision/images/flask-crud-resized.jpg', resized)
cv2.waitKey(0)
cv2.destroyAllWindows()