-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathblinkDetect.py
278 lines (210 loc) · 8.63 KB
/
blinkDetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
"""
TODO:
- Improve face landmark detection. Probably caused due to lighting changes. Eliminate the effect of lightinh with minimal computation.
Solved by histogram equalization
- Stabilize face landmark points
- Gaze direction
"""
import dlib
import sys
import cv2
import time
import numpy as np
from scipy.spatial import distance as dist
from threading import Thread
import playsound
import queue
# from light_variability import adjust_gamma
FACE_DOWNSAMPLE_RATIO = 1.5
RESIZE_HEIGHT = 460
thresh = 0.3
modelPath = "models/shape_predictor_70_face_landmarks.dat"
sound_path = "alarm.wav"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(modelPath)
leftEyeIndex = [36, 37, 38, 39, 40, 41]
rightEyeIndex = [42, 43, 44, 45, 46, 47]
blinkCount = 0
drowsy = 0
state = 0
blinkTime = 0.15 #150ms
drowsyTime = 1.0 #1200ms
ALARM_ON = False
GAMMA = 1.5
threadStatusQ = queue.Queue()
invGamma = 1.0/GAMMA
table = np.array([((i / 255.0) ** invGamma) * 255 for i in range(0, 256)]).astype("uint8")
def gamma_correction(image):
return cv2.LUT(image, table)
def histogram_equalization(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return cv2.equalizeHist(gray)
def soundAlert(path, threadStatusQ):
while True:
if not threadStatusQ.empty():
FINISHED = threadStatusQ.get()
if FINISHED:
break
playsound.playsound(path)
def eye_aspect_ratio(eye):
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
C = dist.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
def checkEyeStatus(landmarks):
mask = np.zeros(frame.shape[:2], dtype = np.float32)
hullLeftEye = []
for i in range(0, len(leftEyeIndex)):
hullLeftEye.append((landmarks[leftEyeIndex[i]][0], landmarks[leftEyeIndex[i]][1]))
cv2.fillConvexPoly(mask, np.int32(hullLeftEye), 255)
hullRightEye = []
for i in range(0, len(rightEyeIndex)):
hullRightEye.append((landmarks[rightEyeIndex[i]][0], landmarks[rightEyeIndex[i]][1]))
cv2.fillConvexPoly(mask, np.int32(hullRightEye), 255)
# lenLeftEyeX = landmarks[leftEyeIndex[3]][0] - landmarks[leftEyeIndex[0]][0]
# lenLeftEyeY = landmarks[leftEyeIndex[3]][1] - landmarks[leftEyeIndex[0]][1]
# lenLeftEyeSquared = (lenLeftEyeX ** 2) + (lenLeftEyeY ** 2)
# eyeRegionCount = cv2.countNonZero(mask)
# normalizedCount = eyeRegionCount/np.float32(lenLeftEyeSquared)
#############################################################################
leftEAR = eye_aspect_ratio(hullLeftEye)
rightEAR = eye_aspect_ratio(hullRightEye)
ear = (leftEAR + rightEAR) / 2.0
#############################################################################
eyeStatus = 1 # 1 -> Open, 0 -> closed
if (ear < thresh):
eyeStatus = 0
return eyeStatus
def checkBlinkStatus(eyeStatus):
global state, blinkCount, drowsy
if(state >= 0 and state <= falseBlinkLimit):
if(eyeStatus):
state = 0
else:
state += 1
elif(state >= falseBlinkLimit and state < drowsyLimit):
if(eyeStatus):
blinkCount += 1
state = 0
else:
state += 1
else:
if(eyeStatus):
state = 0
drowsy = 1
blinkCount += 1
else:
drowsy = 1
def getLandmarks(im):
imSmall = cv2.resize(im, None,
fx = 1.0/FACE_DOWNSAMPLE_RATIO,
fy = 1.0/FACE_DOWNSAMPLE_RATIO,
interpolation = cv2.INTER_LINEAR)
rects = detector(imSmall, 0)
if len(rects) == 0:
return 0
newRect = dlib.rectangle(int(rects[0].left() * FACE_DOWNSAMPLE_RATIO),
int(rects[0].top() * FACE_DOWNSAMPLE_RATIO),
int(rects[0].right() * FACE_DOWNSAMPLE_RATIO),
int(rects[0].bottom() * FACE_DOWNSAMPLE_RATIO))
points = []
[points.append((p.x, p.y)) for p in predictor(im, newRect).parts()]
return points
capture = cv2.VideoCapture(0)
for i in range(10):
ret, frame = capture.read()
totalTime = 0.0
validFrames = 0
dummyFrames = 100
print("Caliberation in Progress!")
while(validFrames < dummyFrames):
validFrames += 1
t = time.time()
ret, frame = capture.read()
height, width = frame.shape[:2]
IMAGE_RESIZE = np.float32(height)/RESIZE_HEIGHT
frame = cv2.resize(frame, None,
fx = 1/IMAGE_RESIZE,
fy = 1/IMAGE_RESIZE,
interpolation = cv2.INTER_LINEAR)
# adjusted = gamma_correction(frame)
adjusted = histogram_equalization(frame)
landmarks = getLandmarks(adjusted)
timeLandmarks = time.time() - t
if landmarks == 0:
validFrames -= 1
cv2.putText(frame, "Unable to detect face, Please check proper lighting", (10, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
cv2.putText(frame, "or decrease FACE_DOWNSAMPLE_RATIO", (10, 50), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
cv2.imshow("Blink Detection Demo", frame)
if cv2.waitKey(1) & 0xFF == 27:
sys.exit()
else:
totalTime += timeLandmarks
# cv2.putText(frame, "Caliberation in Progress", (200, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
# cv2.imshow("Blink Detection Demo", frame)
# if cv2.waitKey(1) & 0xFF == 27:
# sys.exit()
print("Caliberation Complete!")
spf = totalTime/dummyFrames
print("Current SPF (seconds per frame) is {:.2f} ms".format(spf * 1000))
drowsyLimit = drowsyTime/spf
falseBlinkLimit = blinkTime/spf
print("drowsy limit: {}, false blink limit: {}".format(drowsyLimit, falseBlinkLimit))
if __name__ == "__main__":
vid_writer = cv2.VideoWriter('output-low-light-2.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 15, (frame.shape[1],frame.shape[0]))
while(1):
try:
t = time.time()
ret, frame = capture.read()
height, width = frame.shape[:2]
IMAGE_RESIZE = np.float32(height)/RESIZE_HEIGHT
frame = cv2.resize(frame, None,
fx = 1/IMAGE_RESIZE,
fy = 1/IMAGE_RESIZE,
interpolation = cv2.INTER_LINEAR)
# adjusted = gamma_correction(frame)
adjusted = histogram_equalization(frame)
landmarks = getLandmarks(adjusted)
if landmarks == 0:
validFrames -= 1
cv2.putText(frame, "Unable to detect face, Please check proper lighting", (10, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
cv2.putText(frame, "or decrease FACE_DOWNSAMPLE_RATIO", (10, 50), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
cv2.imshow("Blink Detection Demo", frame)
if cv2.waitKey(1) & 0xFF == 27:
break
continue
eyeStatus = checkEyeStatus(landmarks)
checkBlinkStatus(eyeStatus)
for i in range(0, len(leftEyeIndex)):
cv2.circle(frame, (landmarks[leftEyeIndex[i]][0], landmarks[leftEyeIndex[i]][1]), 1, (0, 0, 255), -1, lineType=cv2.LINE_AA)
for i in range(0, len(rightEyeIndex)):
cv2.circle(frame, (landmarks[rightEyeIndex[i]][0], landmarks[rightEyeIndex[i]][1]), 1, (0, 0, 255), -1, lineType=cv2.LINE_AA)
if drowsy:
cv2.putText(frame, "! ! ! DROWSINESS ALERT ! ! !", (70, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)
if not ALARM_ON:
ALARM_ON = True
threadStatusQ.put(not ALARM_ON)
thread = Thread(target=soundAlert, args=(sound_path, threadStatusQ,))
thread.setDaemon(True)
thread.start()
else:
cv2.putText(frame, "Blinks : {}".format(blinkCount), (460, 80), cv2.FONT_HERSHEY_COMPLEX, 0.8, (0,0,255), 2, cv2.LINE_AA)
# (0, 400)
ALARM_ON = False
cv2.imshow("Blink Detection Demo", frame)
vid_writer.write(frame)
k = cv2.waitKey(1)
if k == ord('r'):
state = 0
drowsy = 0
ALARM_ON = False
threadStatusQ.put(not ALARM_ON)
elif k == 27:
break
# print("Time taken", time.time() - t)
except Exception as e:
print(e)
capture.release()
vid_writer.release()
cv2.destroyAllWindows()