forked from state-spaces/mamba
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_generation_mamba_simple.py
92 lines (80 loc) · 3.22 KB
/
benchmark_generation_mamba_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright (c) 2023, Tri Dao, Albert Gu.
import argparse
import time
import json
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
parser = argparse.ArgumentParser(description="Generation benchmarking")
parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m")
parser.add_argument("--prompt", type=str, default=None)
parser.add_argument("--promptlen", type=int, default=100)
parser.add_argument("--genlen", type=int, default=100)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--topk", type=int, default=1)
parser.add_argument("--topp", type=float, default=1.0)
parser.add_argument("--minp", type=float, default=0.0)
parser.add_argument("--repetition-penalty", type=float, default=1.0)
parser.add_argument("--batch", type=int, default=1)
args = parser.parse_args()
repeats = 3
device = "cuda"
dtype = torch.float16
print(f"Loading model {args.model_name}")
is_mamba = args.model_name.startswith("state-spaces/mamba") or args.model_name.startswith("state-spaces/transformerpp")
if is_mamba:
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype)
else:
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
model = AutoModelForCausalLM.from_pretrained(args.model_name, device_map={"": device}, torch_dtype=dtype)
model.eval()
print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
torch.random.manual_seed(0)
if args.prompt is None:
input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda")
attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda")
else:
tokens = tokenizer(args.prompt, return_tensors="pt")
input_ids = tokens.input_ids.to(device=device)
attn_mask = tokens.attention_mask.to(device=device)
max_length = input_ids.shape[1] + args.genlen
if is_mamba:
fn = lambda: model.generate(
input_ids=input_ids,
max_length=max_length,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=False,
temperature=args.temperature,
top_k=args.topk,
top_p=args.topp,
min_p=args.minp,
repetition_penalty=args.repetition_penalty,
)
else:
fn = lambda: model.generate(
input_ids=input_ids,
attention_mask=attn_mask,
max_length=max_length,
return_dict_in_generate=True,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=args.temperature,
top_k=args.topk,
top_p=args.topp,
repetition_penalty=args.repetition_penalty,
)
out = fn()
if args.prompt is not None:
print(tokenizer.batch_decode(out.sequences.tolist()))
torch.cuda.synchronize()
start = time.time()
for _ in range(repeats):
fn()
torch.cuda.synchronize()
print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}")
print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms")