forked from yueyuzhao/gyrophone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_digit_identification.m
76 lines (62 loc) · 2.3 KB
/
test_digit_identification.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
function correct_rate = test_digit_identification
% Test speaker identification with TIDIGITS
USE_CACHE = false;
USE_GMM = false;
USE_DTW = true;
USE_MULTISVM = false;
USE_BINARYSVM = false;
if USE_CACHE
load('tidigits_features', 'features', 'labels');
else
% db = gendb('tidigits');
db = gendb('tidigits_gyro');
% Filter single digit entries
db = filterdb(db, 'digit', '[1-9OZ][AB]');
% db = filterdb(db, 'device', '0094e779d7d1841f');
db = filterdb(db, 'device', '00a697fa469633a5');
db = filterdb(db, 'type', 'MAN');
display('Feature extraction...');
[features, labels] = get_field_features_and_labels(db, 'digit');
% [features, labels] = get_speaker_features_and_labels(db, 'digit');
save('tidigits_features', 'features', 'labels');
end
% Choose train and test sets
cp = cvpartition(labels, 'holdout', 0.1);
train_labels = labels(cp.training);
test_labels = labels(cp.test);
if USE_GMM || USE_MULTISVM || USE_BINARYSVM
train_features = cell2mat(features(cp.training));
test_features = cell2mat(features(cp.test));
end
if USE_GMM
class = GMM.gmm_classification2(train_features, train_labels, test_features);
end
if USE_MULTISVM
class = multisvm(train_features', train_labels, test_features', ...
'tolkkt', 1e-2, 'kktviolationlevel', 0.1);
end
if USE_BINARYSVM
s = svmtrain(train_features', train_labels, ...
'tolkkt', 1e-2, 'kktviolationlevel', 0.1);
class = svmclassify(s, test_features');
end
if USE_DTW
train_features = features(cp.training);
test_features = features(cp.test);
class = zeros(size(test_labels));
display('Classifying...');
progressbar;
for i = 1:length(test_labels)
sample = test_features{i};
class(i) = dtw_classify_sample(sample, train_features, train_labels);
progressbar(i/length(test_labels));
end
end
if USE_BINARYSVM
u = unique(train_labels);
class = u(class);
end
correct = class == test_labels;
correct_rate = sum(correct)/length(correct);
display(correct_rate);
end