forked from yueyuzhao/gyrophone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_svm_classifier.m
132 lines (109 loc) · 4.64 KB
/
test_svm_classifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
function correct_rate = test_svm_classifier(label_ind)
% Train an SVM classifier with the reduced TIDIGITS set
TRAIN_DIR = 'temp/train';
TEST_DIR = 'temp/test';
LABEL_IND = label_ind;
USE_PCA = false;
NUM_OF_COEFFS = 5;
[train_obj, train_features] = get_files_and_mfcc_features(TRAIN_DIR, LABEL_IND, '*.wav');
[test_obj, test_features] = get_files_and_mfcc_features(TEST_DIR, LABEL_IND, '*.wav');
% Remove NaNs from cells
%test_features.mfcc_delta.Std = remove_nans_from_cell(test_features.mfcc_delta.Std);
%test_features.mfcc_delta.Mean = remove_nans_from_cell(test_features.mfcc_delta.Mean);
train = [train_features.mfcc.Mean' train_features.mfcc.Std' train_features.mfcc_delta.Mean' train_features.mfcc_delta.Std' ...
train_features.centroid.Mean' train_features.centroid.Std' ...
train_features.rms.Mean' train_features.rms.Std'];
train_labels = get(train_obj, 'Label')';
test = [test_features.mfcc.Mean' test_features.mfcc.Std' test_features.mfcc_delta.Mean' test_features.mfcc_delta.Std' ...
test_features.centroid.Mean' test_features.centroid.Std' ...
test_features.rms.Mean' test_features.rms.Std'];
test_labels = get(test_obj, 'Label')';
% prewhiten requires having drtoolbox added to Matlab path.
% Prewhitening basically gets rid of correlated features, or features with low
% variance.
train = prewhiten(train);
test = prewhiten(test);
% save features train train_labels test test_labels;
% load features;
if USE_PCA
[~, train_pcvec] = pca(train);
train_pcvec = train_pcvec(1:NUM_OF_COEFFS, :);
train = train * train_pcvec';
test = test * train_pcvec';
end
% s = svmtrain(train, train_labels);
% c = svmclassify(s, test);
c = multisvm(train, train_labels, test, 'tolkkt', 1e-2, 'kktviolationlevel', 0.1);
u = unique(train_labels);
display(['Number of unique labels: ' num2str(length(u))]);
correct = strcmp(c, test_labels);
confusionmat(test_labels, c)
classperf(test_labels, c)
svm_correct_rate = sum(correct)/length(correct);
display(svm_correct_rate);
% classify using GMM
NUM_OF_GAUSSIANS = 10;
NUM_OF_ITERATIONS = 20;
[mu_train, sigma_train, c_train] = ...
GMM.gmm_training(train', train_labels, NUM_OF_GAUSSIANS, ...
NUM_OF_ITERATIONS);
c = GMM.gmm_classification(test', mu_train, sigma_train, c_train);
correct = strcmp(c, test_labels);
gmm_correct_rate = sum(correct)/length(correct);
confusionmat(test_labels, u(c))
classperf(test_labels, u(c))
display(gmm_correct_rate);
% classify using K-NN
K = 3; % number of neighbors to use
c = knnclassify(test, train, train_labels, K);
correct = strcmp(c, test_labels);
knn_correct_rate = sum(correct)/length(correct);
confusionmat(test_labels, c)
classperf(test_labels, c)
display(knn_correct_rate);
% classify using MIR
result = mirclassify(train_obj, {train_features.mfcc.Mean, train_features.mfcc.Std, train_features.centroid.Mean, train_features.centroid.Std}, ...
test_obj, {test_features.mfcc.Mean, test_features.mfcc.Std, test_features.centroid.Mean, test_features.centroid.Std});
mir_correct_rate = get(result, 'Correct');
display(mir_correct_rate);
correct_rate = [svm_correct_rate, gmm_correct_rate, knn_correct_rate, ...
mir_correct_rate];
end
function without_nans = remove_nans_from_cell(c)
without_nans = c;
len = length(c{1});
without_nans(cellfun(@(x) all(isnan(x)), without_nans)) = mat2cell(zeros(len, 1));
without_nans = cell2mat(without_nans);
end
function [svm_struct, groups] = train_svm(features, labels)
groups = unique(labels);
num_of_groups = length(groups);
% num_of_samples = length(labels);
svm_struct = cell(num_of_groups);
for i = 1:num_of_groups
for j = 1:num_of_groups
i_features = features(cell2mat(labels) == groups{i}, :);
if (j < i)
j_features = features(cell2mat(labels) == groups{j}, :);
else
j_features = features(cell2mat(labels) ~= groups{i}, :);
end;
ij_features = [i_features; j_features];
binary_labels = [ones(size(i_features,1), 1); zeros(size(j_features,1), 1)];
svm_struct{i,j} = svmtrain(ij_features, binary_labels);
end
end
end
function class = classify_svm(svm_struct, features, groups)
num_of_groups = length(svm_struct);
num_of_samples = size(features, 1);
labels = zeros(num_of_groups, num_of_groups, num_of_samples);
for i = 1:num_of_groups
for j = 1:num_of_groups
labels(i, j, :) = svmclassify(svm_struct{i, j}, features);
end
end
win_times = squeeze(sum(labels, 1));
[~, class] = max(win_times);
class = groups(class);
end