-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathLorenzConstLinQuadraticNVARtimedelayReturnMap-RK23.py
227 lines (179 loc) · 7.62 KB
/
LorenzConstLinQuadraticNVARtimedelayReturnMap-RK23.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 20 13:17:10 2021
NVAR with time delays. Don't be efficient for now.
@author: Dan
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
import scipy.signal
import scipy.interpolate
import matplotlib.patches
##
## Parameters
##
# how far in to Lorenz solution to start
start=5.
# units of time to train for
traintime=10.
# ridge parameter for regression
ridge_param = 2.5e-6
# run a trial with the given warmup time, and write a return map plot
# to the file in plotname
def find_err(warmup, plotname=None, lettera='a', letterb='b'):
##
## More Parameters
##
# time step
dt=0.025
# units of time to test for
testtime=1000.
# total time to run for
maxtime = warmup+traintime+testtime
# Lyapunov time of the Lorenz system
lyaptime=1.104
# discrete-time versions of the times defined above
warmup_pts=round(warmup/dt)
traintime_pts=round(traintime/dt)
warmtrain_pts=warmup_pts+traintime_pts
testtime_pts=round(testtime/dt)
maxtime_pts=round(maxtime/dt)
lyaptime_pts=round(lyaptime/dt)
# input dimension
d = 3
# number of time delay taps
k = 2
# size of the linear part of the feature vector
dlin = k*d
# size of the nonlinear part of the feature vector
dnonlin = int(dlin*(dlin+1)/2)
# total size of the feature vector: constant + linear + nonlinear
dtot = 1 + dlin + dnonlin
# t values for whole evaluation time
# (need maxtime_pts + 1 to ensure a step of dt)
t_eval=np.linspace(0,maxtime,maxtime_pts+1) # need the +1 here to have a step of dt
##
## Lorenz '63
##
sigma = 10
beta = 8 / 3
rho = 28
def lorenz(t, y):
dy0 = sigma * (y[1] - y[0])
dy1 = y[0] * (rho - y[2]) - y[1]
dy2 = y[0] * y[1] - beta * y[2]
# since lorenz is 3-dimensional, dy/dt should be an array of 3 values
return [dy0, dy1, dy2]
# I integrated out to t=50 to find points on the attractor, then use these as the initial conditions
lorenz_soln = solve_ivp(lorenz, (0, maxtime), [17.67715816276679, 12.931379185960404, 43.91404334248268] , t_eval=t_eval, method='RK23')
# total variance of the Lorenz solution
total_var=np.var(lorenz_soln.y[0:d,:])
# calculate mean, min, and max for all three components of Lorenz solution
lorenz_stats=np.zeros((3,3))
for i in range(3):
lorenz_stats[0,i]=np.mean(lorenz_soln.y[i,warmtrain_pts:maxtime_pts])
lorenz_stats[1,i]=np.min(lorenz_soln.y[i,warmtrain_pts:maxtime_pts])
lorenz_stats[2,i]=np.max(lorenz_soln.y[i,warmtrain_pts:maxtime_pts])
##
## NVAR
##
# create an array to hold the linear part of the feature vector
x = np.zeros((dlin,maxtime_pts))
# fill in the linear part of the feature vector for all times
for delay in range(k):
for j in range(delay,maxtime_pts):
x[d*delay:d*(delay+1),j]=lorenz_soln.y[:,j-delay]
# create an array to hold the full feature vector for training time
# (use ones so the constant term is already 1)
out_train = np.ones((dtot,traintime_pts))
# copy over the linear part (shift over by one to account for constant)
out_train[1:dlin+1,:]=x[:,warmup_pts-1:warmtrain_pts-1]
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
out_train[dlin+1+cnt]=x[row,warmup_pts-1:warmtrain_pts-1]*x[column,warmup_pts-1:warmtrain_pts-1]
cnt += 1
# ridge regression: train W_out to map out_train to Lorenz[t] - Lorenz[t - 1]
W_out = (x[0:d,warmup_pts:warmtrain_pts]-x[0:d,warmup_pts-1:warmtrain_pts-1]) @ out_train[:,:].T @ np.linalg.pinv(out_train[:,:] @ out_train[:,:].T + ridge_param*np.identity(dtot))
# apply W_out to the training feature vector to get the training output
x_predict = x[0:d,warmup_pts-1:warmtrain_pts-1] + W_out @ out_train[:,0:traintime_pts]
# calculate NRMSE between true Lorenz and training output
train_nrmse = np.sqrt(np.mean((x[0:d,warmup_pts:warmtrain_pts]-x_predict[:,:])**2)/total_var)
# create a place to store feature vectors for prediction
out_test = np.ones(dtot) # full feature vector
x_test = np.zeros((dlin,testtime_pts)) # linear part
# copy over initial linear feature vector
x_test[:,0] = x[:,warmtrain_pts-1]
# do prediction
for j in range(testtime_pts-1):
# copy linear part into whole feature vector
out_test[1:dlin+1]=x_test[:,j]
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
# shift by one for constant
out_test[dlin+1+cnt]=x_test[row,j]*x_test[column,j]
cnt += 1
# fill in the delay taps of the next state
x_test[d:dlin,j+1] = x_test[0:(dlin-d),j]
# do a prediction
x_test[0:d,j+1] = x_test[0:d,j] + W_out @ out_test[:]
# calculate NRMSE between true Lorenz and prediction for one Lyapunov time
test_nrmse = np.sqrt(np.mean((x[0:d,warmtrain_pts-1:warmtrain_pts+lyaptime_pts-1]-x_test[0:d,0:lyaptime_pts])**2)/total_var)
# if requested, make a return plot
if plotname:
# get predicted return map
rm = return_map_spline(x_test[2, :])
# get true return map
rm_cmp = return_map_spline(lorenz_soln.y[2,:testtime_pts])
# plot
fig, (ax1, ax2) = plt.subplots(1, 2, dpi=200, figsize=(6, 3))
# whole return map
ax1.scatter(rm_cmp[:, 0], rm_cmp[:, 1], marker='P', s=2, label='Lorenz63', color='blue', linewidths=0)
ax1.scatter(rm[:, 0], rm[:, 1], marker='X', s=2, label='NG-RC', color='red', linewidths=0)
ax1.set_xlim(30, 48)
ax1.set_ylim(30, 48)
ax1.set_xlabel('$M_i$')
ax1.set_ylabel('$M_{i+1}$')
# zoomed return map
ax2.scatter(rm_cmp[:, 0], rm_cmp[:, 1], marker='P', s=5, label='Lorenz63', color='blue', linewidths=0)
ax2.scatter(rm[:, 0], rm[:, 1], marker='X', s=5, label='NG-RC', color='red', linewidths=0)
xlim2 = (34.6, 35.5)
ylim2 = (35.7, 36.6)
ax2.set_xlim(*xlim2)
ax2.set_ylim(*ylim2)
ax2.set_xlabel('$M_i$')
ax2.set_ylabel('$M_{i+1}$')
# draw the zoomed rectangle on the whole
rect = matplotlib.patches.Rectangle((xlim2[0], ylim2[0]), xlim2[1] - xlim2[0], ylim2[1] - ylim2[0], linewidth=1, edgecolor='k', facecolor='none')
ax1.add_patch(rect)
# subplot labels
ax1.text(-0.1, 1.05, lettera + ')', transform=ax1.transAxes, fontsize=10, va='top', ha='right')
ax2.text(-0.25, 1.05, letterb + ')', transform=ax2.transAxes, fontsize=10, va='top', ha='right')
# write out
plt.tight_layout()
plt.savefig(plotname, dpi=600)
# use interpolating splines to find maxima of input signal, and return an array
# of (M_i, M_i+1) pairs
def return_map_spline(v):
spline = scipy.interpolate.InterpolatedUnivariateSpline(np.arange(len(v)), v, k=4)
spline_d = spline.derivative()
spline_dd = spline_d.derivative()
# when is the derivative of v zero?
extimes = spline_d.roots()
# discard times out of bound
extimes = extimes[extimes > 0]
extimes = extimes[extimes < len(v) - 1]
# select only local maxima
extimes = extimes[spline_dd(extimes) < 0]
# find values
ex = spline(extimes)
# construct return map
return np.stack([ex[:-1], ex[1:]], axis=-1)
find_err(start, plotname='lorenz-rmap.png')
find_err(start, plotname='lorenz-rmap.svg')
find_err(start, plotname='lorenz-rmap.eps')
find_err(start, plotname='lorenz-rmap.pdf')