-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
executable file
·76 lines (64 loc) · 2.76 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def mape_loss(pred, target, reduction='mean'):
# pred, target: [B, 1], torch tenspr
difference = (pred - target).abs()
scale = 1 / (target.abs() + 1e-2)
loss = difference * scale
if reduction == 'mean':
loss = loss.mean()
return loss
def huber_loss(pred, target, delta=0.1, reduction='mean'):
rel = (pred - target).abs()
sqr = 0.5 / delta * rel * rel
loss = torch.where(rel > delta, rel - 0.5 * delta, sqr)
if reduction == 'mean':
loss = loss.mean()
return loss
# ref: https://github.com/sunset1995/torch_efficient_distloss/blob/main/torch_efficient_distloss/eff_distloss.py
class EffDistLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, w, m, interval):
'''
Efficient O(N) realization of distortion loss.
There are B rays each with N sampled points.
w: Float tensor in shape [B,N]. Volume rendering weights of each point.
m: Float tensor in shape [B,N]. Midpoint distance to camera of each point.
interval: Scalar or float tensor in shape [B,N]. The query interval of each point.
'''
n_rays = np.prod(w.shape[:-1])
wm = (w * m)
w_cumsum = w.cumsum(dim=-1)
wm_cumsum = wm.cumsum(dim=-1)
w_total = w_cumsum[..., [-1]]
wm_total = wm_cumsum[..., [-1]]
w_prefix = torch.cat([torch.zeros_like(w_total), w_cumsum[..., :-1]], dim=-1)
wm_prefix = torch.cat([torch.zeros_like(wm_total), wm_cumsum[..., :-1]], dim=-1)
loss_uni = (1/3) * interval * w.pow(2)
loss_bi = 2 * w * (m * w_prefix - wm_prefix)
if torch.is_tensor(interval):
ctx.save_for_backward(w, m, wm, w_prefix, w_total, wm_prefix, wm_total, interval)
ctx.interval = None
else:
ctx.save_for_backward(w, m, wm, w_prefix, w_total, wm_prefix, wm_total)
ctx.interval = interval
ctx.n_rays = n_rays
return (loss_bi.sum() + loss_uni.sum()) / n_rays
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_back):
interval = ctx.interval
n_rays = ctx.n_rays
if interval is None:
w, m, wm, w_prefix, w_total, wm_prefix, wm_total, interval = ctx.saved_tensors
else:
w, m, wm, w_prefix, w_total, wm_prefix, wm_total = ctx.saved_tensors
grad_uni = (1/3) * interval * 2 * w
w_suffix = w_total - (w_prefix + w)
wm_suffix = wm_total - (wm_prefix + wm)
grad_bi = 2 * (m * (w_prefix - w_suffix) + (wm_suffix - wm_prefix))
grad = grad_back * (grad_bi + grad_uni) / n_rays
return grad, None, None, None
eff_distloss = EffDistLoss.apply