-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy path99-24-model_building.Rmd
212 lines (160 loc) · 5.58 KB
/
99-24-model_building.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Model building {-}
**Learning objectives:**
- Build a **linear model** to explain trends in data.
- Examine the **residuals** of a model to identify remaining trends in data.
- Perform **feature engineering** to explain trends in data.
- Recognize some resources to **learn more about modeling.**
## EDA vs Prediction
**Reminder:** This book focuses on exploratory data analysis, not prediction.
![](images/data-science-explore.png)
## Build a Linear Model
```{r 99-24-setup, include = FALSE}
# By this point these are probably already libraried, but I want to be sure.
library(tidyverse)
library(modelr)
library(nycflights13)
library(lubridate)
```
```{r 99-24-lm}
diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(log_price = log2(price), log_carat = log2(carat))
mod_diamond <- lm(log_price ~ log_carat, data = diamonds2)
grid <- diamonds2 %>%
data_grid(carat = seq_range(carat, 20)) %>%
mutate(log_carat = log2(carat)) %>%
add_predictions(mod_diamond, "log_price") %>%
mutate(price = 2 ^ log_price)
ggplot(diamonds2) +
aes(carat, price) +
geom_hex(bins = 50) +
geom_line(data = grid, color = "red", linewidth = 1)
```
## Examine Residuals
```{r 99-24-residuals}
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond, "log_resid")
ggplot(diamonds2) +
aes(log_carat, log_resid) +
geom_hex(bins = 50)
```
```{r 99-24-residuals-plots}
base_plot <- ggplot(diamonds2) +
aes(y = log_resid) +
geom_boxplot()
base_plot +
aes(cut)
base_plot +
aes(color)
base_plot +
aes(clarity)
```
## Another Diamonds Model
```{r 99-24-lm2}
mod_diamond2 <- lm(
log_price ~ log_carat + color + cut + clarity,
data = diamonds2
)
plot_mod2 <- function(parameter) {
grid <- diamonds2 %>%
data_grid({{parameter}}, .model = mod_diamond2) %>%
add_predictions(mod_diamond2)
ggplot(grid) +
aes(x = {{parameter}}, y = pred) +
geom_point()
}
plot_mod2(cut)
plot_mod2(color)
plot_mod2(clarity)
```
```{r 99-24-diamond-leftovers}
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond2, "log_resid2")
ggplot(diamonds2) +
aes(log_carat, log_resid2) +
geom_hex(bins = 50)
```
## Feature Engineering
```{r 99-24-flights}
daily <- flights %>%
mutate(date = make_date(year, month, day)) %>%
group_by(date) %>%
summarise(n = n())
ggplot(daily) +
aes(date, n) +
geom_line()
```
Feature engineering = using data to create new features to use in models
```{r 99-24-wday}
daily <- daily %>%
mutate(wday = wday(date, label = TRUE, week_start = 1))
ggplot(daily) +
aes(wday, n) +
geom_boxplot()
```
```{r 99-24-wday-mod}
mod <- lm(n ~ wday, data = daily)
grid <- daily %>%
data_grid(wday) %>%
add_predictions(mod, "n")
ggplot(daily) +
aes(wday, n) +
geom_boxplot() +
geom_point(data = grid, colour = "red", size = 4)
```
```{r 99-24-wday-residuals}
daily <- daily %>%
add_residuals(mod)
base_plot <- ggplot(daily) +
aes(date, resid) +
geom_ref_line(h = 0) +
geom_line()
base_plot
base_plot +
aes(color = wday)
base_plot +
geom_smooth(se = FALSE, span = 0.20)
```
```{r 99-24-wday-low}
daily %>%
filter(resid < -100) %>%
pull(date, wday)
```
```{r 99-24-seasonal}
term <- function(date) {
cut(date,
breaks = ymd(20130101, 20130605, 20130825, 20140101),
labels = c("spring", "summer", "fall")
)
}
daily <- daily %>%
mutate(term = term(date))
mod2 <- MASS::rlm(n ~ wday * term, data = daily)
daily %>%
add_residuals(mod2, "resid") %>%
ggplot() +
aes(date, resid) +
geom_hline(yintercept = 0, linewidth = 2, colour = "white") +
geom_line()
```
## Learning More
- An Introduction to Statistical Learning (with Applications in R) ([statlearning.com](https://www.statlearning.com/) / #book_club-islr): Statistical explanations of various machine learning methods, with explanations of how to apply them in R. A good introduction to all of the types of models and why they work (or don't work) the way they do.
- Tidy Modeling with R ([tmwr.org](https://www.tmwr.org/) / #book_club-tmwr): An opinionated introduction to using the tidymodels family of packages to build predictive models. Very hands-on and useful, but I think I might want to read it again after ISLR.
- Feature Engineering and Selection: A Practical Approach for Predictive Models ([feat.engineering](http://www.feat.engineering/) / #book_club-feat_eng): Techniques for manipulating data to get better results out of models.
- Applied Predictive Modeling ([github.com/topepo/tidy-apm](https://github.com/topepo/tidy-apm) / #project-tidy_apm): There isn't a free online version of this book yet, but it's at least theoretically in the works. This was published about 10 years ago by the leader of the tidymodels team, and he has started to update it to tidymodels code. I'd recommend *not* reading this one until/unless he takes that project back up (very possibly with the help of the DSLC community).
## Meeting Videos
### Cohort 5
`r knitr::include_url("https://www.youtube.com/embed/jZmSbkkJIzQ")`
<details>
<summary>Meeting chat log</summary>
```
00:18:47 Njoki Njuki Lucy: yes
00:56:00 Ryan Metcalf: @Sandra, here is a LARGE section to answer your question. I’m banking that Federica will provide a more specific code snippet….https://ggplot2-book.org/scales-guides.html#scales-guides
00:56:09 Federica Gazzelloni: https://ggplot2.tidyverse.org/reference/guide_colourbar.html
00:57:03 Federica Gazzelloni: ggplot()+geom_…()+guides()
00:58:35 Federica Gazzelloni: guides(color=guide_colourbar())
```
</details>
### Cohort 6
`r knitr::include_url("https://www.youtube.com/embed/FXR0WWyqDf8")`
`r knitr::include_url("https://www.youtube.com/embed/jMXyhgS4AVg")`