-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
296 lines (226 loc) · 23.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="">
<meta name="author" content="">
<title>Rafa Santana</title>
<!-- Bootstrap core CSS -->
<link href="vendor/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<!-- Custom fonts for this template -->
<link href="https://fonts.googleapis.com/css?family=Saira+Extra+Condensed:500,700" rel="stylesheet">
<link href="https://fonts.googleapis.com/css?family=Muli:400,400i,800,800i" rel="stylesheet">
<link href="vendor/fontawesome-free/css/all.min.css" rel="stylesheet">
<!-- Custom styles for this template -->
<link href="css/resume.min.css" rel="stylesheet">
</head>
<body id="page-top">
<nav class="navbar navbar-expand-lg navbar-dark bg-primary fixed-top" id="sideNav">
<a class="navbar-brand js-scroll-trigger" href="#page-top">
<span class="d-block d-lg-none">Rafa Santana</span>
<span class="d-none d-lg-block">
<img class="img-fluid img-profile rounded-circle mx-auto mb-2" src="img/rafa.jpg" alt="">
</span>
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav">
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#about">About</a>
</li>
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#current_work">Coastal work</a>
</li>
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#phd_work">Ocean modelling and data assimilation</a>
</li>
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#uoa_work">Polar science</a>
</li>
<!--
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#awards">Awards and Honours</a>
</li>
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#education">Education</a>
</li>
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#skills">Skills</a>
</li>
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#experience">Experience</a>
</li>
-->
</ul>
</div>
</nav>
<div class="container-fluid p-0">
<section class="resume-section p-3 p-lg-5 d-flex align-items-center" id="about">
<div class="w-100">
<h1 class="mb-0">Rafa
<span class="text-primary">Santana</span>
</h1>
<div class="subheading mb-5">Physical Oceanographer
<div> <a href=""></a></a>
<a href="[email protected]">[email protected]</a>
</div>
<div> <a href="For peer-reviewed publications:"></a>For peer-reviewed publications:</a>
</div>
<div itemscope itemtype="https://schema.org/Person"><a itemprop="sameAs" content="https://orcid.org/0000-0002-3502-0031" href="https://orcid.org/0000-0002-3502-0031" target="orcid.widget" rel="me noopener noreferrer" style="vertical-align:top;"><img src="https://orcid.org/sites/default/files/images/orcid_16x16.png" style="width:1em;margin-right:.5em;" alt="ORCID iD icon">0000-0002-3502-0031</a></div>
</div>
<p class="lead mb-5">I am a physical oceanographer with expertise in the dynamics of coastal, sub- and mesoscale ocean variability from Equatorial to Polar regions (e.g., Santana et al.,<a href="10.1007/s12237-017-0329-8">2018</a>, <a href="10.2112/jcoastres-d-17-00044.1">2019</a> and <a href="https://www.nature.com/articles/s41598-021-89222-3">2021</a>). My focus is to improve our understanding of ocean variability observations, numerical modelling, and data assimilation (EnOI and 4D-Var) (e.g., Santana et al.,<a href="https://link.springer.com/article/10.1007/s10236-019-01307-w">2020</a> and <a href="https://gmd.copernicus.org/articles/16/3675/2023/">2023</a>). I work at the <a href="https://niwa.co.nz">National Institute of Water and Atmospheric Research (NIWA)</a>, most specifically within the Coastal and Estuarine Group. At NIWA, my research targets at understanding past and future ocean conditions to increase society's resilience to extreme weather events. An example of my work is shown in the video below, where waves generated by a large storm hit the southeast coast of Aotearoa New Zealand. The waves were simulated using <a href="https://github.com/NOAA-EMC/WW3">Wave Watch 3</a> forced by NIWA's atmospheric forecasting models</a>.
<iframe width="1120" height="630" src="https://www.youtube.com/embed/uJeDBtVydys" title="Significant Wave Height in metres (Hsig) and winds (black arrows) during Tropical Cyclone Harold" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
<p class="mb-2"></p> <i>Maps of Significant Wave Height in metres (Hsig, rainbow shade and white arrows) between 26th and 30th of June 2021. White arrows indicate te magnitude and direction of the wave height.</i>
<!--
I hold MSc and BSc degrees in Physical Oceanography from the Federal University of Bahia, Brazil
</div>
</div>
</section>
<hr class="m-0">
<section class="resume-section p-3 p-lg-5 d-flex align-items-center" id="current_work">
<div class="w-100">
<h2 class="mb-5">Current work</h2>
-->
<!--
For youtube videos you need to click share on the video and choose option embed
-->
</section>
<!--
<hr class="m-0">
-->
<section class="resume-section p-3 p-lg-5 d-flex align-items-center" id="current_work">
<div class="w-100">
<div class="resume-item d-flex flex-column flex-md-row justify-content-between"> <!-- mb-2"-->
<div class="resume-content">
<h2 class="mb-5">Coastal Work</h2>
<p class="lead mb-5">Another example of my work is shown in the video below, where the impact of waves generated by the Tropical Cyclone Harold was studied using <a href="https://swanmodel.sourceforge.io/">SWAN</a> wave model forced by winds from the <a href="https://github.com/CyprienBosserelle/TCwindgen">Tropical Cyclone wind generator (TCwindgen)</a> and the <a href="https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5#:~:text=ERA5%20is%20the%20fifth%20generation,Service%20(C3S)%20at%20ECMWF.">European Reanalysis 5 (ERA5)</a>.
<iframe width="1120" height="630" src="https://www.youtube.com/embed/bz75iU36TAQ" title="Significant Wave Height in metres (Hsig) and winds (black arrows) during Tropical Cyclone Harold" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
<p class="mb-2"></p> <i>Left: maps of Significant Wave Height in metres (Hsig, rainbow shade and white arrows) and winds (black arrows) during Tropical Cyclone Harold. Right: timeseries at four different locations from the SWAN model forced by TCWindgen and ERA5.</i>
<p class="mb-2"></p> <b> More work coming soon ...</b>
<!--p class="mb-2"></p> <b> More coming soon ... <b-->
<p class="mb-2"></p> <b> Can't wait? Get in touch via email [email protected] or the platforms below: </b>
<div class="social-icons">
<a href="https://www.linkedin.com/in/rafael-santana-a4701ba5/">
<i class="fab fa-linkedin-in"></i>
</a>
<a href="https://github.com/rafacsantana">
<i class="fab fa-github"></i>
</a>
<a href="https://twitter.com/rafac_santana">
<i class="fab fa-twitter"></i>
</a>
<!--
<a href=""https://www.facebook.com/rafael.costa.santana9"">
<i class="fab fa-facebook-f"></i>
</a>
-->
</div>
</div>
</div>
</section>
</section>
<!--
<hr class="m-0">
-->
<section class="resume-section p-3 p-lg-5 d-flex align-items-center" id="phd_work">
<div class="w-100">
<h2 class="mb-5">east auckland current and cross shelf exchange</h2>
<p class="mb-2"></p> <b> A year in the life of the East Auckland Current (EAuC)</b>
<p class="mb-0"></p>In 2022, I graduated as a PhD in Marine Science and Mathematics at the <a href="https://www.otago.ac.nz/marinescience"> University of Otago</a> in conjunction with the <a href="https://niwa.co.nz">National Institute of Water and Atmospheric Research (NIWA)</a>. My PhD focuses on understanding drivers of variability in the East Auckland Current (EAuC) and its impact on the shelf-slope connectivity and carbon export. The first chapter of my thesis is summarised in the article "Mesoscale and wind‑driven intra‑annual variability in the East Auckland Current" freely available at <a href="https://www.nature.com/articles/s41598-021-89222-3">https://www.nature.com/articles/s41598-021-89222-3</a> . It tells about a year in the life of the EAuC. There, we study mesoscale eddies (ocean cylinders of aprox. 100 km diameter) that dominated the circulation for a total of 260 days and the EAuC which was present for 110 days. Winds played an import role by generating variability shorter than 30 days in the velocity and temperature. </p>
<p><a href="https://www.nature.com/articles/s41598-021-89222-3">
<img width="1300" src="fig_maps.png" alt="" />
</a></p>
<p class="mb-2"></p> <i>Maps of Sea Surface Temperature (SST) spatial anomaly (coloured shade) (mean value in black), geostrophic (black arrows) and daily averaged in situ velocities (coloured arrows as in Fig. 1a) on (a) 11/5/2015, (b) 7/7/2015, (c) 26/8/2015, (d) 2/11/2015, (e) 6/1/2016, and (f) 18/4/2016 showing the mesoscale structures A1, C1, EAuC, A1, A2/C2, and C2, respectively.</i>
<p class="mb-0"></p></p>
<p class="mb-2"></p> <b> Modelling the East Auckland Current </b>
<p class="mb-0"></p>Surface and localised in situ observations are not enough to understand the full dynamics in the region. That's why we use numerical models that can provide daily 3D pictures of the oceans. In the figure below, we compare results from a model and observations from satellites and moored instruments. We can see that the model does a good job simulating the temperature structure. However, mesoscale eddy variability is not well represented. </p>
<img src="map-ssh-2015-2016-2.gif" alt="Left: Map of Sea Surface Height (AVISO = black countors; Model = shade), geostrophic currents (AVISO = blue arrows; Model = black arrows), and in situ velocities (red, cyan, blue and yellow arrows). Right: Cross-section of temperature (In situ = coloured contours; Model = shade). The cross-section location is shown by the grey line on the map." />
<p class="mb-2"></p> <i>Figure caption: Left - Map of Sea Surface Height (SSH) (AVISO = black countors; Model = shade), geostrophic currents (AVISO = blue arrows; Model = black arrows), and in situ velocities (red, cyan, blue and yellow arrows). Right - Cross-section of temperature (In situ = coloured contours; Model = shade). The cross-section location is shown by the grey line on the map. </i>
<p class="mb-2"></p> <b> Data assimilation is needed </b>
<p class="mb-0"></p> Mesoscale eddies are generated by instabilities which are unpredictable. Therefore, we need to incorporate satellite-derived and in situ data into the model to constrain its solution closer to observed values. This process is called data assimilation and aims to solve the equation below, which considers both model error and representativeness errors present in the observations (combined into <b>K</b>).</p>
<p><a href="https://en.wikipedia.org/wiki/Data_assimilation">
<img src="oceanpredict-ecmwf.jpg" alt="" />
</a></p>
<p class="mb-0"></p> <i> Figure source: Joint ECMWF/OceanPredict workshop on Advances in Ocean Data Assimilation. </i>
<p class="mb-0"></p></p>
<p class="mb-2"></p> <b> Data Assimilation in the East Auckland Current </b>
<p class="mb-0"></p>Remotely-sensed and in situ observations were assimilated into the model (ROMS) using 4D-VAR. Sea surface height (SSH) and temperature (SST) and mooring temperature, salinity, velocity from stations M3, M4, and M5 were assimilated. The setup and validation of these and other experiments are shown in <a href="https://gmd.copernicus.org/articles/16/3675/2023/">Santana et al., (2023) </a>. The video below shows that the simulation on the right (ASFUVTS-h or ASFUVTS-2days in Santana et al., 2023) better represents the mesoscale eddies in comparison to the freely evolving simulation on the left (Control-JRA55do). </p>
<!--
For youtube videos you need to click share on the video and choose option embed
-->
<iframe width="1120" height="630" src="https://www.youtube.com/embed/kitfzB9F5JM" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<p class="mb-2"></p> <i>Model comparison: freely evolving simulation (Control-JRA55d0 - left) model with data assimilation of SSH, SST, velocity, temperature and salinity from moorings (M3-M5). Variables compared are Sea Surface Height (AVISO = black countors; Model = shade), geostrophic currents (AVISO = blue arrows; Model = black arrows), and in situ velocities (red, cyan, blue and yellow arrows). </i>
<!--
<img src="map-ssh-2015-2016-2.gif" alt="Left: Map of Sea Surface Height (AVISO = black countors; Model = shade), geostrophic currents (AVISO = blue arrows; Model = black arrows), and in situ velocities (red, cyan, blue and yellow arrows). Right: Cross-section of temperature (In situ = coloured contours; Model = shade). The cross-section location is shown by the grey line on the map." />
<p class="mb-2"></p> <b>Figure caption: Left - Map of Sea Surface Height (AVISO = black countors; Model = shade), geostrophic currents (AVISO = blue arrows; Model = black arrows), and in situ velocities (red, cyan, blue and yellow arrows). Right - Cross-section of temperature (In situ = coloured contours; Model = shade). The cross-section location is shown by the grey line on the map. </b>
<p class="mb-0"></p></p>
-->
<p class="mb-0"></p></p>
<p class="mb-2"></p> <b> Eddy driven cross-shelf in the East Auckland Current system</b>
<p class="mb-0"></p>Cross-shelf flows are ten times smaller than along shelf currents. Processes that promote cross-shelf exchange play an important role in renovation shelf waters and exporting material to the deep ocean. Here we used an eddy tracking algorithm to track eddies formed on the continental shelf (coastal eddies) to see their impact on generating cross-shelf exchange. We see that some eddies travel offshore while trapping river tracers (example: organic carbon) and may deposit in the deep ocean (video below). </p>
<!--
For youtube videos you need to click share on the video and choose option embed
-->
<iframe width="1120" height="630" src="https://www.youtube.com/embed/hYxoMW2ErUo" title="NoDA map and cross-section of coastal eddies (blue tracks), river tracer (green shade) and currents" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
<p class="mb-2"></p> <i>Left: Map of river tracer (green shade) and coastal eddies' tracks (blue lines). Right: cross-section of river tracer (green shade) along the magenta line in the map. </i>
<p class="mb-2"></p> <b> Eddy-driven uplift on the continental shelfbreak</b>
<p class="mb-0"></p>A space-time plot shows that cold-core (cyclonic) eddies can uplift cold waters onto the shelf causing negative temperature anomalies of -1.5oC, which might bring nutrient-rich waters onto the shelf and increase producticvity. These eddies might also play an important role in cooling down the shelf break during marine heat events, especially for expected future warmer climates.</p>
<!--
<p><a href="https://www.nature.com/articles/s41598-021-89222-3">
-->
<img width="1300" src="c3fig14.png" alt="" />
<p class="mb-2"></p> <i> Space-time plot of 100-m high-pass filtered (90 days) temperature time-anomaly along the 200-m isobath from DA run. Tracks of coastal (black) and slope (blue) cyclones, and anticyclones (red) that encroach (solid lines) onto the shelfbreak (200-m isobath) or translated away (dotted lines) from that isobath are shown. Location of the sections and neighbouring regions are shown along the y-axis. The acronyms A1, C1, EAuC, A1, A2/C2, and C2 represent the presence of mesoscale structures studied in <a href="https://www.nature.com/articles/s41598-021-89222-3">Santana et al., (2021)</a> </i>
</div>
</section>
</section>
<!--
<hr class="m-0">
-->
<section class="resume-section p-3 p-lg-5 d-flex align-items-center" id="uoa_work">
<div class="w-100">
<h2 class="mb-5">Polar science</h2>
<p class="mb-0">I started to study polar regions as a research fellow at <a href="https://www.auckland.ac.nz/en/science/about-the-faculty/department-of-physics.html/">The University of Auckland</a>, where I worked on the Scale-Aware Sea Ice Project <a href="https://sasip-climate.github.io/">(SASIP)</a>. I targeted at understanding ocean-ice interactions around Antarctica using the sea-ice model <a href="https://tc.copernicus.org/articles/10/1055/2016/">neXtSIM</a>. An example of neXtSIM's application is shown in the video below (credit: <a href="https://www.nersc.no/">Nansen Environmental and Remote Sensing Center</a>).</p>
<iframe width="1120" height="630" src="https://www.youtube.com/embed/cFfQsu6xWZ4" title="neXtSIM sea ice model simulation in Fram Strait" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<p class="mb-2"></p> <i>Sea ice concentration in Fram Strait simulated by the Lagrangian sea ice model neXtSIM. Credit: Nansen Environmental and Remote Sensing Center. </i>
<p class="mb-0"></p></p>
<p class="mb-2"></p> <b> Antarctic neXtSIM </b>
<p class="mb-0"></p>My collaborators and I have implemented an Antartic version of neXtSIM which has been thoroughly validated (Santana et al., in prep.). We compare two versions of neXtSIM in this study using a modified Viscous-Elastic-Plastic (mEVP - used in climate models) and a Brittle Bigham-Maxwell rheology (science of material deformation). In the the mEVP run, sea ice moves slowly and fails to represent observed mesoscale drift features (video below). The BBM run improves the representation of sea ice ice at any given day compared to the mEVP rheology, and is able to reproduce cyclonic features in sea ice drift forced by atmospheric events. This happens because the BBM run reproduces ice fractures more realistically (previous video) which facilitates the transport of sea ice.</p>
<!--
For youtube videos you need to click share on the video and choose option embed
-->
<iframe width="1120" height="630" src="https://www.youtube.com/embed/HTGyn8X32SI" title="Antarctic Sea Ice Drift (km/day) - Obs x EVP model x Brittle model" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
<!--
<iframe width="1120" height="630" src="https://www.youtube.com/embed/kitfzB9F5JM" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
-->
<p class="mb-2"></p> <i>Daily Antarctic sea ice drift (km/h) from satellite observations (let), the modified Viscous-Elastic-Plastic (mEVP - centre) run, and the Brittle Bigham-Maxwell (right) run.</i>
<p class="mb-2"></p> <i></i>
<p class="mb-2"></p> <i></i>
<p class="mb-0"></p>These cyclones also break sea ice more effectively in the brittle model (BBM run) which generates more leads (linear fractures in sea ice). During winter, more sea ice tends to form in the BBM run compared to the mEVP run (video below). During the melting season, these leads might generate faster melting as broken ice / smaller parcels of ice tend to melt fast compared to larger parcels. This might be better reproduced in coupled ice-ocean models which is the focus of future research.</p>
<!--
For youtube videos you need to click share on the video and choose option embed
-->
<iframe width="1120" height="630" src="https://www.youtube.com/embed/C-kFC9-jrV4" title="Antarctic Sea Surface Ice Growth (m/day) - EVP model x Brittle model" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
<p class="mb-2"></p> <i>3-hourly Antarctic sea ice growth (m/day) from the modified Viscous-Elastic-Plastic run (mEVP - left), and the Brittle Bigham-Maxwell run (BBM - right).</i>
<p class="mb-2"></p> <i></i>
<p class="mb-2"></p> <i></i>
<!--
<img src="map-ssh-2015-2016-2.gif" alt="Left: Map of Sea Surface Height (AVISO = black countors; Model = shade), geostrophic currents (AVISO = blue arrows; Model = black arrows), and in situ velocities (red, cyan, blue and yellow arrows). Right: Cross-section of temperature (In situ = coloured contours; Model = shade). The cross-section location is shown by the grey line on the map." />
<p class="mb-2"></p> <b>Figure caption: Left - Map of Sea Surface Height (AVISO = black countors; Model = shade), geostrophic currents (AVISO = blue arrows; Model = black arrows), and in situ velocities (red, cyan, blue and yellow arrows). Right - Cross-section of temperature (In situ = coloured contours; Model = shade). The cross-section location is shown by the grey line on the map. </b>
<p class="mb-0"></p></p>
-->
</div>
</section>
</section>
</div>
<!-- Bootstrap core JavaScript -->
<script src="vendor/jquery/jquery.min.js"></script>
<script src="vendor/bootstrap/js/bootstrap.bundle.min.js"></script>
<!-- Plugin JavaScript -->
<script src="vendor/jquery-easing/jquery.easing.min.js"></script>
<!-- Custom scripts for this template -->
<script src="js/resume.min.js"></script>
</body>
</html>