-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdk_monads.dk
101 lines (82 loc) · 2.07 KB
/
dk_monads.dk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
(; Warning: Non-linear, check with dkcheck -nl ;)
#NAME dk_monads.
(; Monadic operators ;)
def return :
M : (cc.uT -> cc.uT) ->
A : cc.uT ->
cc.eT A -> cc.eT (M A).
def bind :
M : (cc.uT -> cc.uT) ->
A : cc.uT ->
B : cc.uT ->
cc.eT (M A) -> (cc.eT A -> cc.eT (M B)) -> cc.eT (M B).
def seq :
M : (cc.uT -> cc.uT) ->
A : cc.uT ->
B : cc.uT ->
cc.eT (M A) ->
cc.eT (M B) ->
cc.eT (M B)
:=
M : (cc.uT -> cc.uT) =>
A : cc.uT =>
B : cc.uT =>
ma : cc.eT (M A) =>
mb : cc.eT (M B) =>
bind M A B ma (a : cc.eT A => mb).
def comp :
M : (cc.uT -> cc.uT) ->
A : cc.uT ->
B : cc.uT ->
C : cc.uT ->
(cc.eT A -> cc.eT (M B)) ->
(cc.eT B -> cc.eT (M C)) ->
cc.eT A ->
cc.eT (M C)
:=
M : (cc.uT -> cc.uT) =>
A : cc.uT =>
B : cc.uT =>
C : cc.uT =>
f : (cc.eT A -> cc.eT (M B)) =>
g : (cc.eT B -> cc.eT (M C)) =>
x : cc.eT A =>
bind M B C (f x) g.
(; monadic laws ;)
[A,f,a,M]
bind M A _ (return M A a) f --> f a.
[M,A,m] bind M A A m (return M A) --> m.
[M,A,B,C,f,g,m]
bind M B C (bind M A B m f) g
-->
bind M A C m (comp M A B C f g).
(; option type ;)
option : cc.uT -> cc.uT.
None : A : cc.uT -> cc.eT (option A).
Some : A : cc.uT -> cc.eT A -> cc.eT (option A).
(; the option monad ;)
[] return option --> Some.
[B]
bind option _ B (None _) _ --> None B
[A,f,a]
bind option A _ (Some A a) f --> f a.
(; list type ;)
list : cc.uT -> cc.uT.
List : cc.uT -> Type.
[A] cc.eT (list A) --> List A.
Nil : A : cc.uT -> cc.eT (list A).
Cons : A : cc.uT -> cc.eT A -> cc.eT (list A) -> cc.eT (list A).
def append : A : cc.uT -> cc.eT (list A) -> cc.eT (list A) -> cc.eT (list A).
[l]
append _ (Nil _) l --> l
[A,a,l1,l2]
append A (Cons _ a l1) l2 --> Cons A a (append A l1 l2)
(; Let's add a third rule to get append l Nil = l ;)
[A,l]
append A l (Nil _) --> l.
(; the list monad ;)
[] return list --> A : cc.uT => a : cc.eT A => Cons A a (Nil A).
[B]
bind list _ B (Nil _) _ --> Nil B
[A,a,l,B,f]
bind list A B (Cons _ a l) f --> append B (f a) (bind list A B l f).