forked from microsoft/robustdg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainSimplerUNet.py
100 lines (64 loc) · 2.45 KB
/
trainSimplerUNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import argparse
import logging
import sys
from pathlib import Path
import numpy as np
import glob
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb
from torch import optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
from unet.evaluate import evaluate
from segmentation_experiments.data_loading import SegmentationDataSet
from segmentation_experiments import data_loading
from utils.dice_score import dice_loss
from unet import UNet
from unet import simpleUNet
# In[3]:
from importlib import reload
reload(data_loading)
reload(simpleUNet)
# In[4]:
#simplicity bias with texture
# train_sets = glob.glob('data/syntheticSegmentation/simple_train_dom1_*')
# val_set_name = glob.glob('data/syntheticSegmentation/simple_balanced_*')[0]
#simplicity bias with colours
train_sets = glob.glob('data/syntheticSegmentation/color_train_dom1_*')
val_set_name = glob.glob('data/syntheticSegmentation/color_balanced_*')[0]
for train_set_name in train_sets[2:]:
train_set = data_loading.SegmentationDataSet(train_set_name)
val_set = data_loading.SegmentationDataSet(val_set_name)
batch_size = 32
dataloaders = {
'train': DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0),
'val': DataLoader(val_set, batch_size=batch_size, shuffle=True, num_workers=0)
}
# In[5]:
#check outputs from dataloader
inputs, masks = next(iter(dataloaders['train']))
print(inputs.shape, masks.shape)
# In[6]:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = simpleUNet.UNet(in_channels=3,n_class=2)
model = model.to(device)
# check keras-like model summary using torchsummary
from torchsummary import summary
summary(model, input_size=(3, 256, 256))
# In[ ]:
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
from unet import training_loop
reload(training_loop)
optimizer_ft = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.1)
model_name = os.path.basename(train_set_name)[:-len('.npz')]
model, loss_values = training_loop.train_model(model, optimizer_ft, exp_lr_scheduler, dataloaders, model_name, num_epochs=85)
np.save('checkpoints/' + model_name + '_Metrics.npz', loss_values)