-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathconvert_to_onnx.py
42 lines (36 loc) · 1.3 KB
/
convert_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from model import CNN
def main():
wake_words = ["hey", "fourth", "brain"]
num_labels = len(wake_words) + 1 # oov
num_maps1 = 48
num_maps2 = 64
num_hidden_input = 768
hidden_size = 128
batch_size = 1
# get available device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load model
pytorch_model = CNN(num_labels, num_maps1, num_maps2, num_hidden_input, hidden_size)
pytorch_model.load_state_dict(
torch.load("trained_models/model_hey_fourth_brain_with_noise.pt", map_location=device)
)
# put in eval mode
pytorch_model.eval()
# define the input size
input_size = (1, 40, 61)
# generate dummy data
dummy_input = torch.rand(batch_size, *input_size).type(torch.FloatTensor).to(device=device)
# generate onnx file
torch.onnx.export(
pytorch_model,
dummy_input,
"trained_models/onnx_model.onnx",
export_params=True, # store the trained parameter weights inside the model file
verbose=True,
input_names=["input"], # the model's input names
output_names=["output"], # the model's output names
dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}, # variable length axes
)
if __name__ == "__main__":
main()