-
Notifications
You must be signed in to change notification settings - Fork 127
/
Copy pathutils.py
94 lines (81 loc) · 3.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import numpy as np
import os
import uuid
from options import MANIFOLD_DIR
import glob
def manifold_upsample(mesh, save_path, Mesh, num_faces=2000, res=3000, simplify=True):
# export before upsample
fname = os.path.join(save_path, 'recon_{}.obj'.format(len(mesh.faces)))
mesh.export(fname)
temp_file = os.path.join(save_path, random_file_name('obj'))
opts = ' ' + str(res) if res is not None else ''
manifold_script_path = os.path.join(MANIFOLD_DIR, 'manifold')
if not os.path.exists(manifold_script_path):
raise FileNotFoundError(f'{manifold_script_path} not found')
cmd = "{} {} {}".format(manifold_script_path, fname, temp_file + opts)
os.system(cmd)
if simplify:
cmd = "{} -i {} -o {} -f {}".format(os.path.join(MANIFOLD_DIR, 'simplify'), temp_file,
temp_file, num_faces)
os.system(cmd)
m_out = Mesh(temp_file, hold_history=True, device=mesh.device)
fname = os.path.join(save_path, 'recon_{}_after.obj'.format(len(m_out.faces)))
m_out.export(fname)
[os.remove(_) for _ in list(glob.glob(os.path.splitext(temp_file)[0] + '*'))]
return m_out
def read_pts(pts_file):
'''
:param pts_file: file path of a plain text list of points
such that a particular line has 6 float values: x, y, z, nx, ny, nz
which is typical for (plaintext) .ply or .xyz
:return: xyz, normals
'''
xyz, normals = [], []
with open(pts_file, 'r') as f:
# line = f.readline()
spt = f.read().split('\n')
# while line:
for line in spt:
parts = line.strip().split(' ')
try:
x = np.array(parts, dtype=np.float32)
xyz.append(x[:3])
normals.append(x[3:])
except:
pass
return np.array(xyz, dtype=np.float32), np.array(normals, dtype=np.float32)
def load_obj(file):
vs, faces = [], []
f = open(file)
for line in f:
line = line.strip()
splitted_line = line.split()
if not splitted_line:
continue
elif splitted_line[0] == 'v':
vs.append([float(v) for v in splitted_line[1:4]])
elif splitted_line[0] == 'f':
face_vertex_ids = [int(c.split('/')[0]) for c in splitted_line[1:]]
assert len(face_vertex_ids) == 3
face_vertex_ids = [(ind - 1) if (ind >= 0) else (len(vs) + ind)
for ind in face_vertex_ids]
faces.append(face_vertex_ids)
f.close()
vs = np.asarray(vs)
faces = np.asarray(faces, dtype=int)
assert np.logical_and(faces >= 0, faces < len(vs)).all()
return vs, faces
def export(file, vs, faces, vn=None, color=None):
with open(file, 'w+') as f:
for vi, v in enumerate(vs):
if color is None:
f.write("v %f %f %f\n" % (v[0], v[1], v[2]))
else:
f.write("v %f %f %f %f %f %f\n" % (v[0], v[1], v[2], color[vi][0], color[vi][1], color[vi][2]))
if vn is not None:
f.write("vn %f %f %f\n" % (vn[vi, 0], vn[vi, 1], vn[vi, 2]))
for face in faces:
f.write("f %d %d %d\n" % (face[0] + 1, face[1] + 1, face[2] + 1))
def random_file_name(ext, prefix='temp'):
return f'{prefix}{uuid.uuid4()}.{ext}'