diff --git a/src/vegas.jl b/src/vegas.jl index 2d4a525..9bf4017 100644 --- a/src/vegas.jl +++ b/src/vegas.jl @@ -92,7 +92,9 @@ function vegas(func, for dim = 1:ndim delx[:,dim] .= ((ub[dim] - lb[dim]) / nbins) end - + + + # Initialize all cumulative variables # for integral and sd estimation nevals = 0 @@ -102,26 +104,35 @@ function vegas(func, sigma_squares = Float64[] iter = 1 + ymat = zeros(ndim, ncalls) + xmat = similar(ymat) + + from_y_to_i(y) = floor(Int,nbins*y) + 1 + delta(y) = y*nbins + 1 - from_y_to_i(y) + from_y_to_x(y,dim) = x[from_y_to_i(y),dim] + delx[from_y_to_i(y),dim]*delta(y) + J(y,dim) = nbins*delx[from_y_to_i(y),dim] + + imat = map(from_y_to_i, ymat) + Js = zeros(eltype(ymat), size(ymat, 2)) + Jsf = copy(Js) while iter <= maxiter # Sample `ncalls` points from this grid # Uniform sampling in `y` space - ymat = QuasiMonteCarlo.sample(ncalls, zeros(ndim), ones(ndim), Uniform()) + rand!(ymat) #QuasiMonteCarlo.sample(ncalls, zeros(ndim), ones(ndim), Uniform()) + - from_y_to_i(y) = floor(Int,nbins*y) + 1 - delta(y) = y*nbins + 1 - from_y_to_i(y) - from_y_to_x(y,dim) = x[from_y_to_i(y),dim] + delx[from_y_to_i(y),dim]*delta(y) - J(y,dim) = nbins*delx[from_y_to_i(y),dim] - xmat = similar(ymat) for dim = 1:ndim - xmat[dim,:] .= map(y -> from_y_to_x(y, dim), ymat[dim,:]) + for j in 1:ncalls + xmat[dim,j] = from_y_to_x(ymat[dim,j], dim) + end end - Js = zeros(eltype(ymat), size(ymat, 2)) for i = 1:size(ymat,2) Js[i] = prod(J(ymat[dim, i],dim) for dim = 1:ndim) end - imat = map(from_y_to_i, ymat) + + imat .= from_y_to_i.(ymat) # Estimate integral. # Get all fevals in one shot @@ -131,10 +142,10 @@ function vegas(func, else fevals = map(func, eachcol(xmat)) end - Jsf = Js .* fevals + Jsf .= Js .* fevals integral_mc = sum(Jsf) / ncalls - variance_mc = (sum(Jsf.^2)/ncalls - integral_mc^2) / (ncalls - 1) + eps() + variance_mc = (sum(x-> x^2, Jsf)/ncalls - integral_mc^2) / (ncalls - 1) + eps() nevals += ncalls push!(integrals, integral_mc) @@ -145,7 +156,9 @@ function vegas(func, d = calculate_d(Jsf, imat, nbins, alpha) # Update grid to make d equal in all intervals - x, delx = update_grid(x, delx, d) + xnew, delxnew = update_grid(x, delx, d) + x .= xnew + delx .= delxnew # Calculate integral and s.d upto this point Itot = sum(integrals ./ sigma_squares) / sum(1 ./ sigma_squares) @@ -271,3 +284,4 @@ function sample_from_adaptive_grid(res, ncalls) end map(x -> tuple(x...), eachcol(xmat)) end +