-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.py
24 lines (18 loc) · 993 Bytes
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import os
from datetime import datetime
from google.cloud import storage
from google.cloud.storage import Bucket
from torch.utils.tensorboard import SummaryWriter
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.expanduser("~/.gs/hebbian-meta-learning.json")
revision = os.environ.get("REVISION") or "%s" % datetime.now()
message = os.environ.get('MESSAGE')
tensorboard_dir = "gs://hebbian-meta-learning/tensorboard" if os.environ.get("REVISION") else "/tmp/tensorboard"
client = storage.Client()
flush_secs = 10
def get_writers(name):
train_writer = SummaryWriter(tensorboard_dir + '/%s/%s/train/%s' % (name, revision, message), flush_secs=flush_secs)
test_writer = SummaryWriter(tensorboard_dir + '/%s/%s/test/%s' % (name, revision, message), flush_secs=flush_secs)
return train_writer, test_writer
def upload_results(fname):
bucket: Bucket = client.bucket("hebbian-meta-learning")
bucket.blob("results/%s/%s" % (revision, fname)).upload_from_filename(fname)