forked from 0-gb/image-batch-PCA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCA.py
226 lines (178 loc) · 9.84 KB
/
PCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from datetime import datetime
from random import randint
import os
import os.path
from os import path
import cv2
from matplotlib import pyplot as plt
from sklearn.decomposition import IncrementalPCA
import numpy as np
import pickle
import tkinter as tk
from tkinter import messagebox
import errno
def get_image(index, input_array, dim_1=28, dim_2=28):
return input_array[index].reshape(dim_1, dim_2)
def remove_suffix(input_string, suffix):
if suffix and input_string.endswith(suffix):
return input_string[:-len(suffix)]
return input_string
def get_image_shape(img_list):
img = cv2.imread(img_list[0], 0)
return img.shape[0], img.shape[1]
class App(tk.Frame):
def __init__(self, master=None, **kw):
self.parameters = {}
tk.Frame.__init__(self, master=master, **kw)
tk.Label(self, text="Input folder (images)", anchor="w", width=30).grid(row=0, column=0)
self.question1 = tk.Entry(self)
self.question1.grid(row=0, column=1)
tk.Label(self, text="Image file endings (.*)", anchor="w", width=30).grid(row=1, column=0)
self.question2 = tk.Entry(self)
self.question2.grid(row=1, column=1)
tk.Label(self, text="Output folder for model", anchor="w", width=30).grid(row=2, column=0)
self.question3 = tk.Entry(self)
self.question3.grid(row=2, column=1)
tk.Label(self, text="Number of components", anchor="w", width=30).grid(row=3, column=0)
self.question4 = tk.Entry(self)
self.question4.grid(row=3, column=1)
tk.Label(self, text=" ").grid(row=4, column=0)
tk.Label(self, text="Press button to start", anchor="w", width=30).grid(row=5, column=0)
tk.Button(self, text="Perform the PCA", bg='#54FA9B', command=self.read_input_and_run_pca).grid(row=5, column=1)
def read_input_and_run_pca(self):
self.parameters['input_folder'] = self.question1.get()
self.parameters['file_ending'] = self.question2.get()
self.parameters['output_folder'] = self.question3.get()
self.parameters['PCA_count'] = self.question4.get()
run_checks_and_pca(self.parameters)
def check_all_image_dimensions(dimensions, img_list):
shape_list = [cv2.imread(img, 0).shape for img in img_list]
return all([el[0] == dimensions[0] and el[1] == dimensions[1] for el in shape_list])
def input_checks(checked_input, checked_image_list, dimensions):
if not path.exists(checked_input["input_folder"]):
messagebox.showerror("Error ", f'Input file "{checked_input["input_folder"]}" not found ')
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), "filename")
try:
int(checked_input['PCA_count'])
except ValueError:
messagebox.showerror("Error ", f'Please provide valid input for PCA count')
raise ValueError("PCA count must be integer")
try:
os.makedirs(checked_input["output_folder"], exist_ok=True)
except:
messagebox.showerror("Error ", 'Could not create file. Please check permissions and/or path.')
raise ValueError("Path invalid or user lacking permission.")
if (len(checked_image_list)) * 3 <= int(checked_input['PCA_count']):
messagebox.showerror("Error", 'Number of PCA components too large for chosen images.\n'
f'Max number of components is 3 X number of images({len(checked_image_list)}).')
raise ValueError("PCA count must not be greater than count of data point entries.")
if not check_all_image_dimensions(dimensions, checked_image_list):
messagebox.showerror("Error", 'Images are of different sizes')
raise ValueError("PCA count must not be greater than count of data point entries.")
def perform_pca_for_images(pca_count, img_list, dimensions):
incremental_pca = IncrementalPCA(n_components=pca_count)
checked_images = []
last_chunk = int(len(img_list) / pca_count) - 1
for i in range(0, last_chunk):
x_temp = [item.reshape(dimensions[0] * dimensions[1])
for sublist in
[np.split(cv2.cvtColor(cv2.imread(fig_name), cv2.COLOR_BGR2RGB), 3, axis=2)
for fig_name in img_list[i * pca_count: (i + 1) * pca_count]]
for item in sublist]
checked_images.extend(range(i * pca_count, (i + 1) * pca_count))
print(f'Started PCA for chunk {i} of {last_chunk} at: {datetime.now().strftime("%H:%M:%S")}')
incremental_pca.partial_fit(x_temp)
print(f'Finished PCA for chunk {i} of {last_chunk} at: {datetime.now().strftime("%H:%M:%S")}')
print()
checked_images.extend(range(last_chunk * pca_count, len(img_list)))
x_remaining = [item.reshape(dimensions[0] * dimensions[1])
for sublist in
[np.split(cv2.cvtColor(cv2.imread(fig_name), cv2.COLOR_BGR2RGB), 3, axis=2)
for fig_name in img_list[last_chunk * pca_count: len(img_list)]]
for item in sublist]
print(f'Started PCA for final and largest chunk at: {datetime.now().strftime("%H:%M:%S")}')
incremental_pca.partial_fit(x_remaining)
print(f'Finished PCA learning at: {datetime.now().strftime("%H:%M:%S")}')
print()
return incremental_pca
def apply_pca(i_pca, img_list, dimensions, pca_count):
print(f'Starting PCA transform at: {datetime.now().strftime("%H:%M:%S")}')
transformed_images = []
last_chunk = int(len(img_list) / pca_count) - 1
for i in range(0, last_chunk):
x_temp = [item.reshape(dimensions[0] * dimensions[1])
for sublist in
[np.split(cv2.cvtColor(cv2.imread(fig_name), cv2.COLOR_BGR2RGB), 3, axis=2)
for fig_name in
img_list[i * pca_count: (i + 1) * pca_count]]
for item in sublist]
transformed_images.extend(i_pca.transform(x_temp))
x_remaining = [item.reshape(dimensions[0] * dimensions[1])
for sublist in
[np.split(cv2.cvtColor(cv2.imread(fig_name), cv2.COLOR_BGR2RGB), 3, axis=2)
for fig_name in img_list[last_chunk * pca_count: len(img_list)]]
for item in sublist]
transformed_images.extend(i_pca.transform(x_remaining))
print(f'PCA transform finished at: {datetime.now().strftime("%H:%M:%S")}')
print()
return transformed_images
def save_image_components(transformed_images, full_path, image_names):
pca_data_file = open(full_path, "w")
for image_index in range(int(len(transformed_images) / 3)):
image_data = transformed_images[image_index * 3:image_index * 3 + 3]
for colour_PCA_data in image_data:
pca_data_file.write(image_names[image_index].split("\\")[-1] + " $:$ [" +
", ".join(map(str, colour_PCA_data)) + "]\n")
pca_data_file.close()
def get_reconstructed_data(pca_data_filename, model_filename):
principal_components = []
with open(pca_data_filename) as f:
for line in f:
pca_colour_data = [float(pca_element.strip(" ,]\n")) for pca_element in line.split("[")[1].split(" ")]
principal_components.append(pca_colour_data)
pca_transformation = pickle.load(open(model_filename, 'rb'))
return principal_components, pca_transformation
def reconstruct_image(test_image_index, pca_data, pca_model, dimensions):
returned_image = pca_model.inverse_transform(pca_data[test_image_index * 3:test_image_index * 3 + 3])
returned_image[returned_image < 0] = 0
returned_image[returned_image > 255] = 255
return np.dstack((returned_image[0].reshape(dimensions[0], dimensions[1]),
returned_image[1].reshape(dimensions[0], dimensions[1]),
returned_image[2].reshape(dimensions[0], dimensions[1]))).astype(np.uint8)
def compare_pca_to_original(test_image_index, img_list, model_filename, pca_data_filename, dimensions):
plt.show()
original_test_image = cv2.cvtColor(cv2.imread(img_list[test_image_index]), cv2.COLOR_BGR2RGB)
plt.figure(1)
plt.imshow(original_test_image)
pca_data, pca_model = get_reconstructed_data(pca_data_filename, model_filename)
reconstructed_test_image = reconstruct_image(test_image_index, pca_data, pca_model, dimensions)
plt.figure(2)
plt.imshow(reconstructed_test_image)
def run_checks_and_pca(input_from_gui):
# read the relevant image data
img_list = [input_from_gui["input_folder"] + '\\' + f
for f in os.listdir(input_from_gui["input_folder"]) if f.endswith(input_from_gui["file_ending"])]
dim1, dim2 = get_image_shape(img_list)
# check the data
input_checks(input_from_gui, img_list, [dim1, dim2])
# develop PCA
i_pca = perform_pca_for_images(int(input_from_gui['PCA_count']), img_list, [dim1, dim2])
# apply PCA
transformed_images = apply_pca(i_pca, img_list, [dim1, dim2], int(input_from_gui['PCA_count']))
# save model
backslash = "\\"
model_filename = input_from_gui["output_folder"] + backslash + "PCA_model.sav"
pickle.dump(i_pca, open(model_filename, 'wb'))
print(f'PCA model saved to {input_from_gui["output_folder"] + backslash + "PCA_model.sav"}')
# save images
pca_data_filename = input_from_gui["output_folder"] + "\\PCA_data.txt"
save_image_components(transformed_images, pca_data_filename, img_list)
print(f'PCA image data saved to {input_from_gui["output_folder"] + backslash + "PCA_data.txt"}')
# review reconstructed images
test_image_index = randint(0, len(img_list) - 1)
compare_pca_to_original(test_image_index, img_list, model_filename, pca_data_filename, [dim1, dim2])
plt.show()
if __name__ == "__main__":
root = tk.Tk()
App(root).grid()
root.mainloop()