-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresentation_Gayler_MidnightVSA_2023-06-15.html
1068 lines (962 loc) · 49.5 KB
/
presentation_Gayler_MidnightVSA_2023-06-15.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en"><head>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/clipboard/clipboard.min.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/quarto-html/tabby.min.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/quarto-html/popper.min.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.3.340">
<meta name="author" content="Ross W. Gayler">
<meta name="dcterms.date" content="2023-06-15">
<title>Thinking about Vector Symbolic Architectures</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
</style>
<link rel="stylesheet" href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/dist/theme/quarto.css" id="theme">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/reveal-chalkboard/font-awesome/css/all.css" rel="stylesheet">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/reveal-chalkboard/style.css" rel="stylesheet">
<link href="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
margin-bottom: 0.5rem;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
</head>
<body class="quarto-light">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Thinking about Vector Symbolic Architectures</h1>
<div class="quarto-title-authors">
<div class="quarto-title-author">
<div class="quarto-title-author-name">
<a href="www.rossgayler.com">Ross W. Gayler</a> <a href="https://orcid.org/0000-0003-4679-585X" class="quarto-title-author-orcid"> <img src=""></a>
</div>
<div class="quarto-title-author-email">
<a href="mailto:[email protected]">[email protected]</a>
</div>
<p class="quarto-title-affiliation">
Independent Researcher
</p>
</div>
</div>
<p class="date">2023-06-15</p>
</section>
<section>
<section id="introduction" class="title-slide slide level1 center">
<h1>Introduction</h1>
</section>
<section id="motivation" class="slide level2">
<h2>Motivation</h2>
<ul>
<li>How far would you get with knowing the definitions of the VSA operators and <em>nothing</em> else?
<ul>
<li>Like having axioms and no other maths knowledge</li>
</ul></li>
<li>Everyone has a web of auxiliary <em>beliefs</em> around VSA:
<ul>
<li>About VSA and relationships to other things they know</li>
<li>Used to reason about their VSA knowledge and its implications, so is central to applying and extending VSA</li>
</ul></li>
<li>The objective is that the auxiliary beliefs should be <em>productive</em> for applying and extending VSA</li>
</ul>
</section>
<section id="limitations" class="slide level2">
<h2>Limitations</h2>
<p>Auxiliary beliefs are:</p>
<ul>
<li>Not necessarily true</li>
<li>Not necessarily even true or false (e.g. metaphors)</li>
<li>Not necessarily coherent</li>
<li>Not stable over time. Think of them as evolving frameworks.</li>
<li>Likely to be idiosyncratic (If they were canonical they would be VSA theory)</li>
</ul>
<p>Think of them as gambles. You are betting that they will be more productive than alternatives you might entertain.</p>
</section>
<section id="disorganisation-of-the-talk" class="slide level2">
<h2>(dis)Organisation of the talk</h2>
<ul>
<li>I am talking about my conceptual framework
<ul>
<li><p>I have no idea what yours is, because we don’t discuss it</p></li>
<li><p>This may be painfully obvious to you. I apologise.</p></li>
</ul></li>
<li>Framework is densely connected web of interrelated points
<ul>
<li><p>No simple, logical, explanatory path through that web</p></li>
<li><p>Any path is necessarily a random-ish ramble. I apologise.</p></li>
</ul></li>
<li>Pick some apparently salient points, wander in their neighbourhoods, much hand waving</li>
</ul>
</section></section>
<section>
<section id="analogue-computer-wire-interpretation" class="title-slide slide level1 center">
<h1>Analogue computer wire interpretation</h1>
</section>
<section id="composite-label-and-magnitude" class="slide level2">
<h2>Composite label and magnitude</h2>
<p><strong>Q</strong>: What is a (hyper)vector? <strong>A</strong>: Direction + scalar magnitude</p>
<ul>
<li>Electric analogue computers represent values on wires. The voltage is the magnitude of the signal, the “meaning” of the signal is a label on the wire.</li>
<li>Interpret the vector magnitude as the signal magnitude.</li>
<li>Interpret the vector direction as the signal label.</li>
<li>Labels are composite - (de)composed by VSA operators</li>
<li>Labels (wires) can be created on the fly</li>
</ul>
<p>Think of VSA systems as analogue computers</p>
</section>
<section id="labels-can-encode-values" class="slide level2">
<h2>Labels can encode values</h2>
<p>Is it too limiting for values to be scalar magnitudes? What if I want structured values?</p>
<ul>
<li>Composite labels can encode values, e.g.<br>
<span class="math inline">\(colour \times red\)</span> or <span class="math inline">\(height \times encode(180)\)</span>
<ul>
<li>Interpret the label as a predicate</li>
<li>Interpret magnitude as truth value or degree of support</li>
</ul></li>
<li>To avoid -ve magnitude, put the sign in the label: <span class="math inline">\(-(a)\)</span>
<ul>
<li>Use unary additive and multiplicative inverse operators</li>
</ul></li>
<li>May need mechanism (e.g. RELU in cleanup) to enforce this</li>
</ul>
</section>
<section id="labels-can-encode-complicated-values" class="slide level2">
<h2>Labels can encode complicated values</h2>
<p><strong>Slogan</strong>: <u>Everything is just a vector</u></p>
<ul>
<li>In GOFAI data structures, slots/fields/keys are atomic symbols: <span class="math inline">\(colour\)</span>, <span class="math inline">\(height\)</span>, …</li>
<li>In VSA labels can be arbitrarily complicated, e.g.<br>
<span class="math inline">\(go\_to\_kitchen\_and\_look\_in\_fridge \times beer\)</span><br>
<span style="font-size: 60%">(where <span class="math inline">\(go\_to\_kitchen\_and\_look\_in\_fridge\)</span> represents an executable sensorimotor program)</span><br>
is equivalent to the agent’s degree of belief that there is beer in the refrigerator.</li>
</ul>
</section>
<section id="label-symmetries-and-equivalences" class="slide level2">
<h2>Label symmetries and equivalences</h2>
<p><strong>Slogan</strong>: <u>Every vector is just a value</u></p>
<ul>
<li>VSA “sees” the vector value, not the sequence of operations
<ul>
<li>Different sequences of operations can be equivalent, e.g.
<ul>
<li><span class="math inline">\(a + b = b + a\)</span> (if bundling is commutative)</li>
<li>Circular convolution binding of <span class="math inline">\(d\)</span>-dimensional vectors is equal to the bundle of <span class="math inline">\(d\)</span>-many Hadamard bindings of permutations of the arguments</li>
</ul></li>
</ul></li>
<li>“noise” can make unequal values effectively equal, e.g.<br>
<span class="math inline">\(a + b + \cdots + y \approx a + b + \cdots + z\)</span> (bundling capacity)</li>
</ul>
</section>
<section id="occams-hypervectors" class="slide level2">
<h2>Occam’s hypervectors</h2>
<ul>
<li>Start with the atomic vectors in their vector space</li>
<li>Repeatedly apply the operators to generate expressions of increasing length</li>
<li>Crowding of result vectors increases with expression length</li>
<li>Every sufficiently long expression will be approximately equal to some shorter expression</li>
<li>Implies a form of Occam’s Razor: The system treats any value as effectively arising from the simplest expression that approximately generates that value.</li>
</ul>
</section></section>
<section>
<section id="similarities" class="title-slide slide level1 center">
<h1>Similarities</h1>
</section>
<section id="angular-similarity-and-distance" class="slide level2">
<h2>Angular similarity and distance</h2>
<ul>
<li>Similarity is central to reasoning about VSA</li>
<li>Angle between vectors (equivalent to dot product) is appropriate because it respects the arguments as vectors
<ul>
<li><p>Vectors are defined with respect to an origin</p></li>
<li><p>Distances between points are invariant to translation</p></li>
<li><p>Angle between vectors to the same points are not invariant to translation of the origin</p></li>
</ul></li>
<li>Distance and angle can be equivalent if points constrained to a fixed origin, e.g. Hamming distance for binary vectors</li>
</ul>
</section>
<section id="a-view-from-the-north-pole" class="slide level2">
<h2>A view from the north pole</h2>
<ul>
<li>Imagine the hypervector representing the state of a VSA system is the north pole and you are standing there</li>
<li>Look at the locations of random hypervectors. They are almost all very near the equator (quasiorthogonality)</li>
<li>Similarity is defined on pairs of vectors. Consider pairs related by transforms available to the system
<ul>
<li><p>Pairs within the equatorial belt (the vast majority) have no impact on similarity relative to pole (current state)</p></li>
<li><p>Angular similarity can’t be only driver of system dynamics</p></li>
</ul></li>
</ul>
</section>
<section id="edit-distance-for-bindingpermutation" class="slide level2">
<h2>Edit distance for binding/permutation</h2>
<ul>
<li>Angular similarity is essentially about transforms within a hemi(hyper)sphere</li>
<li>Angular similarity is driven by bundling</li>
<li>Binding and permutation are equatorial belt transforms</li>
<li>Something like an edit distance might be useful for selecting between equatorial transforms
<ul>
<li><p>Every destination is only one transform away if we allow arbitrary binding and permutation</p></li>
<li><p>Restrict to available permutations and <a href="https://en.wikipedia.org/wiki/Currying">curried</a> bindings</p></li>
</ul></li>
</ul>
</section></section>
<section>
<section id="estimating-latent-reality" class="title-slide slide level1 center">
<h1>Estimating latent reality</h1>
</section>
<section id="latent-reality-and-hypervectors" class="slide level2">
<h2>Latent reality and hypervectors</h2>
<ul>
<li>We concentrate on the observable hypervectors</li>
<li>Change our focus to unobservable reality
<ul>
<li>Inspired by being an applied statistician</li>
<li>Much of statistics is about inferring the state of an unobservable reality from observable measurements</li>
</ul></li>
<li>Hypervectors as observable realisations of measurements of unobservable (latent) reality
<ul>
<li>Try to explain the role of randomness in VSA</li>
</ul></li>
</ul>
</section>
<section id="elements-as-random-measurements" class="slide level2">
<h2>Elements as random measurements</h2>
<ul>
<li>No direct access to reality (mediated by measurements)</li>
<li>Imagine looking at an object
<ul>
<li>Random whether an atom reflects a photon to your eye</li>
<li>Random whether a photoreceptor is in the path</li>
</ul></li>
<li>Ultradimensional vector of potential measurements
<ul>
<li>Hypervector is a random sample of them: <span class="math inline">\(\phi_i(x)\)</span>
<ul>
<li><span class="math inline">\(\phi_i\)</span> is a function from reality <span class="math inline">\(x\)</span> to VSA base field</li>
</ul></li>
<li>Want to infer the reality despite randomness of sample</li>
</ul></li>
</ul>
</section>
<section id="properties-of-random-measurements" class="slide level2">
<h2>Properties of random measurements</h2>
<ul>
<li>VSA doesn’t “know” <span class="math inline">\(\phi_i\)</span> (knows the value, not the function)</li>
<li>Want measurements to be individually and collectively informative about <span class="math inline">\(x\)</span> (reality)
<ul>
<li><p>Need to depend on properties of <span class="math inline">\(x\)</span> we want to capture</p></li>
<li><p>Need to be independent conditional on <span class="math inline">\(x\)</span> (hash of <span class="math inline">\(x\)</span>)</p></li>
</ul></li>
<li>Information is carried by covariation of <span class="math inline">\(\phi_i(x)\)</span> induced by variation in <span class="math inline">\(x\)</span></li>
<li>No measurement is privileged (implies robustness, distributed representation, and unordered representation)</li>
</ul>
</section>
<section id="measurements-as-constraints" class="slide level2">
<h2>Measurements as constraints</h2>
<p>Imagine the VSA base field is binary:</p>
<ul>
<li>Each specific <span class="math inline">\(\phi_i(x)\)</span> is consistent with a set of half the possible latent realities</li>
<li>A set of hypervector elements specifies the intersection of those sets
<ul>
<li>Each element narrows the set of consistent realities</li>
</ul></li>
</ul>
<p>Interpret hypervector as specifying a set of indistinguishable realities rather than being a representation of a single reality</p>
</section>
<section id="possible-implicationsextensions" class="slide level2">
<h2>Possible implications/extensions</h2>
<ul>
<li>More feasible search over reality because of the inexactness due to indistinguishability?</li>
<li>Only need sufficient dimensionality to make the distinctions we need
<ul>
<li>Optimisation of dimensionality</li>
<li>Dynamic dimensionality?</li>
</ul></li>
<li>Possibility of dynamic constraints
<ul>
<li>Effectively adding or removing measurements</li>
<li>Dynamically creating new measurements on the fly</li>
</ul></li>
</ul>
</section></section>
<section>
<section id="statistical-interpretation-of-algebraic-terms" class="title-slide slide level1 center">
<h1>Statistical interpretation of algebraic terms</h1>
</section>
<section id="statistical-data-structure" class="slide level2">
<h2>Statistical data structure</h2>
<ul>
<li>Standard statistical data structure is a matrix
<ul>
<li>Rows are cases/observations</li>
<li>Columns are variables/features (predictors and outcomes)</li>
</ul></li>
<li>Columns structurally orthogonal in data space (bases)</li>
<li>Features are often single columns (scalar values)</li>
<li>Features can be groups of columns (e.g. one-hot encoding)</li>
<li>Statistical modelling is about exploiting covariation of feature values induced by variation over cases (familiar?)</li>
</ul>
</section>
<section id="terms-as-rotated-features" class="slide level2">
<h2>Terms as rotated features</h2>
<ul>
<li>In statistical modelling, we could rotate the data space
<ul>
<li>Features are spread over columns</li>
<li>Works if rotated features are orthogonal in the data space</li>
</ul></li>
<li>VSA uses regression to extract predictions from hypervectors
<ul>
<li>Hypervectors often expressible as sum of algebraic terms</li>
<li>Algebraic terms are often orthogonal (rotated features)
<ul>
<li>Simple terms represent main effects</li>
<li>Bindings represent interactions</li>
</ul></li>
</ul></li>
</ul>
</section>
<section id="possible-implications" class="slide level2">
<h2>Possible implications</h2>
<ul>
<li>Operation of VSA regression/classification systems can be understood/analysed with respect to terms in hypervector
<ul>
<li>E.g. Integer Echo State Network builds standard sequence representation (Interpretable as set of lagged inputs)</li>
</ul></li>
<li>Representations can be designed to achieve objectives
<ul>
<li>What features needed for standard regression?</li>
<li>Create algebraic terms that implement those features
<ul>
<li>E.g. Epileptic Seizure Challenge needed interactions of time-series features with time of day (bindings)</li>
</ul></li>
</ul></li>
</ul>
</section></section>
<section>
<section id="indices-and-permutation" class="title-slide slide level1 center">
<h1>Indices and permutation</h1>
</section>
<section id="element-indices-as-unique-labels" class="slide level2">
<h2>Element indices as unique labels</h2>
<ul>
<li>Computer people tend to think of vector indices as consecutive integers: <span class="math inline">\(a_i\)</span> where <span class="math inline">\(i = 1, 2, \ldots\)</span>
<ul>
<li>This imposes more structure than necessary</li>
</ul></li>
<li>Indices only need to be unique : <span class="math inline">\(i = sad, bee, hot, \ldots\)</span></li>
<li>Indices do <em>not</em> need to be ordered
<ul>
<li>Ordering convenient for 2D electronic implementation</li>
<li>Ordering is an imposition for 3D neural implementation</li>
</ul></li>
<li>Hypervector is a set of key-value pairs where the values are from the VSA base field (sound familiar?)</li>
</ul>
</section>
<section id="permutation-and-operators" class="slide level2">
<h2>Permutation and operators</h2>
<ul>
<li>It doesn’t make sense to talk of permuting an isolated hypervector (interpreted as set of key-value pairs) because it’s unordered</li>
<li>Makes sense to talk of permutation:
<ul>
<li>relative to another vector,</li>
<li>when they are being combined by an operator,</li>
<li>because it’s about tracking which elements are combined <span class="math display">\[\{a_{a1}, a_{a2}, \ldots\} + \rho\{b_{b1}, b_{b2}, \ldots\} = \{x_{a1.b2}, x_{a2.b3}, \ldots\}\]</span></li>
</ul></li>
</ul>
</section>
<section id="possible-implications-1" class="slide level2">
<h2>Possible implications</h2>
<ul>
<li>What makes a tensor product a tensor product is the pattern of combination of the elements of the arguments and the availability of that pattern to guide tensor operations (e.g. tensor contraction)</li>
<li>Key-value pairs (hypervector elements) can be represented and operated on as VSA hypervectors</li>
<li>Is it possible to self-embed?
<ul>
<li>Implement tensor product operations with VSA?</li>
<li>Have dynamic elements (add/remove elements)?</li>
</ul></li>
</ul>
</section></section>
<section id="archival-links" class="title-slide slide level1 center">
<h1>Archival links</h1>
<p>This presentation has been archived on <a href="https://zenodo.org/">Zenodo</a>:</p>
<p><a href="https://doi.org/10.5281/zenodo.8076677"><img data-src="https://zenodo.org/badge/DOI/10.5281/zenodo.8076677.svg" alt="DOI"></a> Video recording</p>
<p><a href="https://doi.org/10.5281/zenodo.8076707"><img data-src="https://zenodo.org/badge/DOI/10.5281/zenodo.8076707.svg" alt="DOI"></a> Slides (PDF)</p>
<p><a href="https://doi.org/10.5281/zenodo.8076736"><img data-src="https://zenodo.org/badge/DOI/10.5281/zenodo.8076736.svg" alt="DOI"></a> Source code of slides</p>
<div class="quarto-figure quarto-figure-left">
<figure>
<p><img data-src="assets/cc_by.png"></p>
<figcaption>All licensed under a <a href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a></figcaption>
</figure>
</div>
<div class="footer footer-default">
<p>Midnight Sun Workshop on Vector Symbolic Architectures, June 15-16, 2023, Luleå, Sweden</p>
</div>
</section>
</div>
</div>
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/reveal-chalkboard/plugin.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/quarto-support/support.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/notes/notes.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/search/search.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/zoom/zoom.js"></script>
<script src="presentation_Gayler_MidnightVSA_2023-06-15_files/libs/revealjs/plugin/math/math.js"></script>
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
<script>
// Full list of configuration options available at:
// https://revealjs.com/config/
Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': false,
'smaller': false,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.toggleChalkboard(event)\"><kbd>b</kbd> Toggle Chalkboard</a></li>\n<li class=\"slide-tool-item\" data-item=\"5\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.toggleNotesCanvas(event)\"><kbd>c</kbd> Toggle Notes Canvas</a></li>\n<li class=\"slide-tool-item\" data-item=\"6\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.downloadDrawings(event)\"><kbd>d</kbd> Download Drawings</a></li>\n<li class=\"slide-tool-item\" data-item=\"7\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true,"numbers":true},
'chalkboard': {"buttons":true},
'smaller': false,
// Display controls in the bottom right corner
controls: false,
// Help the user learn the controls by providing hints, for example by
// bouncing the down arrow when they first encounter a vertical slide
controlsTutorial: false,
// Determines where controls appear, "edges" or "bottom-right"
controlsLayout: 'edges',
// Visibility rule for backwards navigation arrows; "faded", "hidden"
// or "visible"
controlsBackArrows: 'faded',
// Display a presentation progress bar
progress: true,
// Display the page number of the current slide
slideNumber: 'h.v',
// 'all', 'print', or 'speaker'
showSlideNumber: 'all',
// Add the current slide number to the URL hash so that reloading the
// page/copying the URL will return you to the same slide
hash: true,
// Start with 1 for the hash rather than 0
hashOneBasedIndex: false,
// Flags if we should monitor the hash and change slides accordingly
respondToHashChanges: true,
// Push each slide change to the browser history
history: true,
// Enable keyboard shortcuts for navigation
keyboard: true,
// Enable the slide overview mode
overview: true,
// Disables the default reveal.js slide layout (scaling and centering)
// so that you can use custom CSS layout
disableLayout: false,
// Vertical centering of slides
center: false,
// Enables touch navigation on devices with touch input
touch: true,
// Loop the presentation
loop: false,
// Change the presentation direction to be RTL
rtl: false,
// see https://revealjs.com/vertical-slides/#navigation-mode
navigationMode: 'linear',
// Randomizes the order of slides each time the presentation loads
shuffle: false,
// Turns fragments on and off globally
fragments: true,
// Flags whether to include the current fragment in the URL,
// so that reloading brings you to the same fragment position
fragmentInURL: false,
// Flags if the presentation is running in an embedded mode,
// i.e. contained within a limited portion of the screen
embedded: false,
// Flags if we should show a help overlay when the questionmark
// key is pressed
help: true,
// Flags if it should be possible to pause the presentation (blackout)
pause: true,
// Flags if speaker notes should be visible to all viewers
showNotes: false,
// Global override for autoplaying embedded media (null/true/false)
autoPlayMedia: null,
// Global override for preloading lazy-loaded iframes (null/true/false)
preloadIframes: null,
// Number of milliseconds between automatically proceeding to the
// next slide, disabled when set to 0, this value can be overwritten
// by using a data-autoslide attribute on your slides
autoSlide: 0,
// Stop auto-sliding after user input
autoSlideStoppable: true,
// Use this method for navigation when auto-sliding
autoSlideMethod: null,
// Specify the average time in seconds that you think you will spend
// presenting each slide. This is used to show a pacing timer in the
// speaker view
defaultTiming: null,
// Enable slide navigation via mouse wheel
mouseWheel: false,
// The display mode that will be used to show slides
display: 'block',
// Hide cursor if inactive
hideInactiveCursor: true,
// Time before the cursor is hidden (in ms)
hideCursorTime: 5000,
// Opens links in an iframe preview overlay
previewLinks: false,
// Transition style (none/fade/slide/convex/concave/zoom)
transition: 'none',
// Transition speed (default/fast/slow)
transitionSpeed: 'default',
// Transition style for full page slide backgrounds
// (none/fade/slide/convex/concave/zoom)
backgroundTransition: 'none',
// Number of slides away from the current that are visible
viewDistance: 3,
// Number of slides away from the current that are visible on mobile
// devices. It is advisable to set this to a lower number than
// viewDistance in order to save resources.
mobileViewDistance: 2,
// The "normal" size of the presentation, aspect ratio will be preserved
// when the presentation is scaled to fit different resolutions. Can be
// specified using percentage units.
width: 1050,
height: 700,
// Factor of the display size that should remain empty around the content
margin: 0.1,
math: {
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
config: 'TeX-AMS_HTML-full',
tex2jax: {
inlineMath: [['\\(','\\)']],
displayMath: [['\\[','\\]']],
balanceBraces: true,
processEscapes: false,
processRefs: true,
processEnvironments: true,
preview: 'TeX',
skipTags: ['script','noscript','style','textarea','pre','code'],
ignoreClass: 'tex2jax_ignore',
processClass: 'tex2jax_process'
},
},
// reveal.js plugins
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, RevealChalkboard, QuartoSupport,
RevealMath,
RevealNotes,
RevealSearch,
RevealZoom
]
});
</script>
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const tabsets = window.document.querySelectorAll(".panel-tabset-tabby")
tabsets.forEach(function(tabset) {
const tabby = new Tabby('#' + tabset.id);
});
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,