-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptions.py
207 lines (178 loc) · 5.75 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import tyro
from dataclasses import dataclass
from typing import Tuple, Literal, Dict, Optional
@dataclass
class Options:
# The seed used during inference
seed: Optional[int] = None
# dataset config
is_crop: Optional[bool] = True
is_fix_views: bool = False
# True for text prompts
txt_or_image: Optional[bool] = False
text_prompt: Optional[str] = 'a cute owl'
infer_render_size: int = 256
# True for mvdream False for zero123plus
mvdream_or_zero123: Optional[bool] = True
rar_data: bool = True
# Unet image input size
input_size: int = 512
# Unet definition
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024)
down_attention: Tuple[bool, ...] = (False, False, False, True, True, True)
mid_attention: bool = True
up_channels: Tuple[int, ...] = (1024, 1024, 512, 256)
up_attention: Tuple[bool, ...] = (True, True, True, False)
# Unet output size, dependent on the input_size and U-Net structure!
splat_size: int = 64
# render size
output_size: Optional[int] = 128
# for tensorsdf
density_n_comp: int = 8
app_n_comp: int = 32
shadingMode: Literal['MLP_Fea']='MLP_Fea' #'MLP_Fea'
view_pe: int = 2
fea_pe: int = 2
pos_pe: int = 6
# points number sampled per ray
n_sample: int = 64
volume_mode: Literal['TRF_Mesh','TRF_SDF'] = 'TRF_SDF'
# for LRM_Net
camera_embed_dim: int=1024
transformer_dim: int=1024
transformer_layers: int=16
transformer_heads: int=16
triplane_low_res: int=32
triplane_high_res: int=64
encoder_type: str ='dinov2'
encoder_model_name: str = 'dinov2_vitb14_reg'
encoder_feat_dim: int = 768 #768
encoder_freeze: bool = False
# training
over_fit: Optional[bool] = False
### dataset
# data mode (only support s3 now)
data_mode: Literal['s5','s6'] = 's5'
data_path: str = 'train_data'
data_debug_list: str = 'dataset_debug/gobj_merged_debug.json'
# TODO Please replace with your training data list
data_list_path: str = 'gobjs_selected.json'
# fovy of the dataset
fovy: float = 39.6
# camera near plane
znear: float = 0.5
# camera far plane
zfar: float = 2.5
# number of all views (input + output)
num_views: int = 12
# number of views
num_input_views: int = 4
# camera radius
cam_radius: float = 1.5 # to better use [-1, 1]^3 space
# num workers
num_workers: int = 8 #8
### training
# workspace
workspace: str = './workspace_test'
# resume
resume: Optional[str] = None
ckpt_nerf: Optional[str] = None
# batch size (per-GPU)
batch_size: int = 8
# gradient accumulation
gradient_accumulation_steps: Optional[int] = 1
# training epochs
num_epochs: Optional[int] = 50
# lpips loss weight
lambda_lpips: float = 1.0
# gradient clip
gradient_clip: float = 1.0
# mixed precision
mixed_precision: str = 'bf16'
# learning rate
lr: Optional[float] = 4e-4
lr_scheduler: str = 'OneCycleLR'
warmup_real_iters: int = 3000
# augmentation prob for grid distortion
prob_grid_distortion: float = 0.5
# augmentation prob for camera jitter
prob_cam_jitter: float = 0.5
### testing
# test image path
test_path: Optional[str] = None
### misc
# nvdiffrast backend setting
force_cuda_rast: bool = False
# all the default settings
config_defaults: Dict[str, Options] = {}
config_doc: Dict[str, str] = {}
config_doc['ldm'] = 'the default settings for LDM'
config_defaults['ldm'] = Options()
config_doc['tiny_trf_trans_mesh'] = 'tiny model for ablation'
config_defaults['tiny_trf_trans_mesh'] = Options(
input_size=512,
down_channels=(32, 64, 128, 256, 512),
down_attention=(False, False, False, False, True),
up_channels=(512, 256, 128),
up_attention=(True, False, False, False),
volume_mode='TRF_Mesh',
splat_size=64,
output_size=512,
data_mode='s6',
batch_size=1, #8
num_views=8,
gradient_accumulation_steps=1, #2
mixed_precision='no',
)
config_doc['tiny_trf_trans_sdf'] = 'tiny model for ablation'
config_defaults['tiny_trf_trans_sdf'] = Options(
input_size=512,
down_channels=(32, 64, 128, 256, 512),
down_attention=(False, False, False, False, True),
up_channels=(512, 256, 128),
up_attention=(True, False, False, False),
volume_mode='TRF_SDF',
splat_size=64,
output_size=62, #crop patch
data_mode='s5',
batch_size=4, #8
num_views=8,
gradient_accumulation_steps=1, #2
mixed_precision='bf16',
)
config_doc['tiny_trf_trans_sdf_123plus'] = 'tiny model for ablation'
config_defaults['tiny_trf_trans_sdf_123plus'] = Options(
input_size=512,
down_channels=(32, 64, 128, 256, 512),
down_attention=(False, False, False, False, True),
up_channels=(512, 256, 128),
up_attention=(True, False, False, False),
volume_mode='TRF_SDF',
mvdream_or_zero123 = False,
splat_size=64,
output_size=64, #crop patch
data_mode='s5',
batch_size=3, #8
num_views=10,
num_input_views=6,
gradient_accumulation_steps=1, #2
mixed_precision='bf16',
)
config_doc['tiny_trf_trans_sdf_nocrop'] = 'tiny model for ablation'
config_defaults['tiny_trf_trans_sdf_nocrop'] = Options(
input_size=512,
down_channels=(32, 64, 128, 256, 512),
down_attention=(False, False, False, False, True),
up_channels=(512, 256, 128),
up_attention=(True, False, False, False),
volume_mode='TRF_SDF',
splat_size=64,
output_size=62, #crop patch
data_mode='s5',
batch_size=4, #8
is_crop=False,
num_views=8,
gradient_accumulation_steps=1, #2
mixed_precision='bf16',
)
AllConfigs = tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc)