-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsentimental_analysis.py
95 lines (75 loc) · 2.76 KB
/
sentimental_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.collocations import BigramCollocationFinder
from nltk.collocations import BigramAssocMeasures
from nltk.collocations import TrigramCollocationFinder
from nltk.collocations import TrigramAssocMeasures
from nltk import pos_tag
import random
import re
def word_feats(words):
features = dict([(word, True) for word in words])
finder = BigramCollocationFinder.from_words(words)
finder.apply_word_filter(lambda x: False if re.match('\w', x) else True)
bigrams = finder.nbest(BigramAssocMeasures.chi_sq, 20000)
features.update(dict([(bigram, True) for bigram in bigrams]))
finder = TrigramCollocationFinder.from_words(words)
finder.apply_word_filter(lambda x: False if re.match('\w', x) else True)
trigrams = finder.nbest(TrigramAssocMeasures.chi_sq, 20000)
features.update(dict([(trigram, True) for trigram in trigrams]))
#adjs = get_adjectives(words)
#for adj in adjs:
# features[adj[0]] += 1
# features["JJ"+adj[0]] = 5
return features
#f = open('review_small.json', 'r')
f = open('review_15000.json', 'r')
pos_data = []
neg_data = []
def get_adjectives(words):
pos_words = pos_tag(words)
adjs = [w for w in pos_words if w[1] == 'JJ']
return adjs
def tokenize(sentence):
tokens = word_tokenize(sentence.lower())
return [w for w in tokens if not w in stopwords.words('english')]# and re.match('\w', w)]
read = 0
for line in f:
read+=1
print read
line = eval(line)
print line['text']
tokens = tokenize(line['text'])
features = word_feats(tokens)
if line['stars'] >= 3.5:
pos_data.append((features, 'pos'))
else:
neg_data.append((features, 'neg'))
#tokens = nltk.word_tokenize(line['text'])
#tagged = nltk.pos_tag(tokens)
#entities = nltk.chunk.ne_chunk(tagged)
#leaves = entities.leaves()
#print leaves
#nouns = [t[0] for t in leaves if t[1][:2] == "NN"]
#print nouns
if read > 1000:
break
pos_size = len(pos_data)
neg_size = len(neg_data)
min_size = min(pos_size, neg_size)
if pos_size > min_size:
pos_data = random.sample(pos_data, min_size)
elif neg_size > min_size:
neg_data = random.sample(neg_data, min_size)
pos_limit = len(pos_data)*3/4
neg_limit = len(neg_data)*3/4
train_data = neg_data[:neg_limit] + pos_data[:pos_limit]
test_data = neg_data[neg_limit:] + pos_data[pos_limit:]
print 'train on %d instances, test on %d instances' % (len(train_data), len(test_data))
classifier = NaiveBayesClassifier.train(train_data)
print 'accuracy:', nltk.classify.util.accuracy(classifier, test_data)
import pdb
pdb.set_trace()
classifier.show_most_informative_features()