-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnormaldist.py
315 lines (260 loc) · 14.8 KB
/
normaldist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from manim import *
from math import sqrt, exp, pi, erf
from manim.mobject.mobject import T
from manim.utils import scale
import csv
import numpy as np
class MainFunction(MovingCameraScene):
def construct(self):
ax = Axes(
x_range = [-4, 4, 1],
y_range = [0, 0.4, 0.4],
x_length = 15,
y_length = 5,
tips=False,
axis_config = {'include_numbers':False}
)
# We draw our PDF function:
curve = ax.plot(lambda x: PDF_normal(x, 0, 1, 1))
curve.set_color_by_gradient([YELLOW,PINK,PURPLE])
vg = VGroup(ax,curve).scale(0.6)
t0 = Tex(r'A beautiful prove for ',r'The Empirical Rule',r' or...')
t0[1].set_color_by_gradient([PURPLE_C,WHITE])
self.play(Write(t0))
self.wait()
self.play(FadeOut(t0))
t1 = Tex(r"¿",r"Why is the percentage value within one standard deviation $(1 \sigma)$ range ",r"68\%",r"?", font_size=25)
t1[2].set_color(PURE_GREEN)
t2 = MathTex(r'\dfrac{e^{-\frac{(kx - \mu)^2}{2 \sigma^2}}}{\sigma \sqrt{2 \pi}}')
t2Mid = MathTex(r'\dfrac{e^{-\frac{(1x - 0)^2}{2\cdot 1^2}}}{1 \sqrt{2 \pi}}').shift(LEFT*1.5)
t2Final = MathTex(r'\dfrac{e^{-\frac{x^2}{2}}}{\sqrt{2 \pi}}').shift(LEFT*1.5)
t2Int = MathTex(r'\int_{-1}^{1} \dfrac{e^{-\frac{x^2}{2}}}{\sqrt{2 \pi}} dx')
t2Int2 = MathTex(r'\int_{-1}^{1} \dfrac{e^{-\frac{x^2}{2}}}{\sqrt{2} \sqrt{\pi}} dx')
t3 = Tex(r'Our', r' PDF - (Probability Density Function)',r' is defined by:',font_size=25).move_to(UP*1.5)
t3[1].set_color_by_gradient([YELLOW,PINK,PURPLE])
center_dot = Dot().move_to(UP*2.5)
mu = MathTex(r'\mu', font_size = 20)
sigma1 = MathTex(r'1 \sigma', font_size = 20)
sigma2 = MathTex(r'-1 \sigma', font_size = 20)
sigma3 = MathTex(r'2 \sigma', font_size = 20)
sigma4 = MathTex(r'-2 \sigma', font_size = 20)
sigma5 = MathTex(r'3 \sigma', font_size = 20)
sigma6 = MathTex(r'-3 \sigma', font_size = 20)
mu.move_to(ax.coords_to_point(0,0))
mu.shift(DOWN*0.3)
sigma1.move_to(ax.coords_to_point(1,0))
sigma1.shift(DOWN*0.3)
sigma2.move_to(ax.coords_to_point(-1,0))
sigma2.shift(DOWN*0.3)
sigma3.move_to(ax.coords_to_point(2,0))
sigma3.shift(DOWN*0.3)
sigma4.move_to(ax.coords_to_point(-2,0))
sigma4.shift(DOWN*0.3)
sigma5.move_to(ax.coords_to_point(3,0))
sigma5.shift(DOWN*0.3)
sigma6.move_to(ax.coords_to_point(-3,0))
sigma6.shift(DOWN*0.3)
let = Tex(r'\underline{Let:}').move_to(UP*1.6)
kt = MathTex(r'k = 1').move_to(UP*0.75)
mt = MathTex(r'\mu = 0')
st = MathTex(r'\sigma = 1').move_to(DOWN*0.75)
iex = Tex(r'When we integrate a PDF we get the probability as the area bellow the bounded curve. We will rewrite our expression as:',font_size=25).move_to(DOWN*1.5)
iex2 = Tex(r'Our limits of integration are -1 \& 1 because we want to know the value at $1\sigma$',font_size=25).move_to(DOWN*1.5)
iex3 = Tex(r'Substitute $u = \dfrac{x}{\sqrt{2}}$ then $\dfrac{du}{dx} = \dfrac{1}{\sqrt{2}} \, \therefore\, dx = \sqrt{2}\, du$:', font_size=25).move_to(UP*1.5)
iex4 = Tex(r'Undo the substitution $u = \dfrac{x}{\sqrt{2}}$:',font_size=30).move_to(DOWN*2)
iex5 = Tex(r'Now we have $\int f(x)\, dx = F(x)$ so we need to evaluate it between our boundaries to get $\int_{-1}^{1} f(x)\, dx$:',font_size=30).move_to(DOWN*2)
sr = SurroundingRectangle(iex2).set_color_by_gradient([GREEN_C,BLUE_C])
alt1 = MathTex(r' = \int_{}^{} \dfrac{2e^{-u^2}}{\sqrt{\pi}} du').move_to(RIGHT*2.5)
alt2 = MathTex(r' = \dfrac{\text{erf(}u\text{)}}{2}').move_to(RIGHT*1.75)
alt3 = MathTex(r' = \dfrac{\text{erf(}\frac{x}{\sqrt{2}}\text{)}}{2} + C').move_to(RIGHT*2.5)
alt4 = MathTex(r'= \text{erf(}\frac{1}{\sqrt{2}}\text{)}').move_to(RIGHT*2)
alt5 = MathTex(r'= 0.682689...').move_to(RIGHT*2.75)
alt6 = MathTex(r'\approx 68\%').move_to(RIGHT*2)
l00 = ax.get_vertical_line(ax.input_to_graph_point(-1,curve), color= WHITE)
l01 = ax.get_vertical_line(ax.input_to_graph_point(1,curve), color= WHITE)
tvg = VGroup(let,kt,mt,st).move_to(RIGHT).scale(0.5)
vg.add(mu,sigma1,sigma2,sigma3,sigma4,sigma5,sigma6, l00,l01)
self.play(Write(t1))
self.wait(0.75)
self.play(t1.animate.move_to(UP*2.5))
# Re-arrenge text:
self.play(FadeOut(t1[1]), t1[2].animate.move_to(center_dot.get_center()), t1[0].animate.shift(RIGHT*4),t1[3].animate.shift(LEFT*4))
self.play(Write(ax))
self.play(Write(curve), Write(mu), Write(sigma1), Write(sigma2), Write(sigma3), Write(sigma4), Write(sigma5), Write(sigma6), Write(l00), Write(l01))
self.wait(1)
self.play(FadeOut(vg))
self.play(Write(t3))
self.wait(0.5)
self.play(Write(t2))
self.play(t2.animate.shift(LEFT*1.5))
self.play(Write(tvg))
self.play(TransformMatchingTex(t2,t2Mid, key_map={"e^{-\frac{(kx - \mu)^2}{2 \sigma^2}}":"e^{-\frac{(1x - 0)^2}{2\cdot 1^2}}","\sigma \sqrt{2 \pi}":"1 \sqrt{2 \pi}"},
transform_mismatches=True))
self.wait(0.5)
self.play(TransformMatchingTex(t2Mid,t2Final, key_map={"e^{-\frac{(1x - 0)^2}{2\cdot 1^2}}":"e^{-\frac{x^2}{2}}","\sqrt{2 \pi}":"\sqrt{2 \pi}"}, transform_mismatches=True))
self.play(Write(iex))
self.play(FadeOut(tvg), TransformMatchingTex(t2Final,t2Int, transform_mismatches=True), FadeOut(t3), iex.animate.shift(UP*3))
self.wait(0.5)
self.play(TransformMatchingTex(t2Int, t2Int2, key_map={"1":"1","-1":"-1"},transform_mismatches=True))
self.play(Write(iex2))
self.play(Write(sr))
self.wait(1)
self.play(FadeOut(iex), Uncreate(sr),FadeOut(iex2))
self.play(Write(iex3))
self.play(t2Int2.animate.shift(LEFT*0.75),Write(alt1))
self.wait(0.5)
self.play(TransformMatchingTex(alt1,alt2, transform_mismatches=True))
self.play(FadeOut(iex3), Write(iex4))
self.play(iex4.animate.shift(UP*3.5))
self.play(TransformMatchingTex(alt2,alt3, transform_mismatches=True))
self.play(FadeOut(iex4), Write(iex5))
self.play(iex5.animate.shift(UP*3.5))
self.wait(0.5)
self.play(TransformMatchingTex(alt3,alt4, transform_mismatches=True))
self.wait(0.5)
geqvg = VGroup(alt4,t2Int2)
self.play(geqvg.animate.shift(LEFT*2),TransformMatchingTex(alt4.copy(),alt5, transform_mismatches=True))
self.wait()
self.play(TransformMatchingTex(alt5,alt6, transform_mismatches=True))
self.play(alt6.animate.set_color(PURE_GREEN))
self.wait(2)
vgP1 = VGroup(alt6,t1[0],t1[2],t1[3],t2Int2, iex5, alt4)
self.play(FadeOut(vgP1))
textfi = Tex("But what does this all mean? Let's check it out visually!")
self.play(Write(textfi))
self.play(textfi.animate.shift(UP*2.5))
self.play(FadeIn(vg))
l1 = ax.get_vertical_line(ax.input_to_graph_point(-1,curve), color= WHITE)
l2 = ax.get_vertical_line(ax.input_to_graph_point(1,curve), color= WHITE)
l3 = ax.get_vertical_line(ax.input_to_graph_point(-2,curve), color= WHITE)
l4 = ax.get_vertical_line(ax.input_to_graph_point(2,curve), color= WHITE)
l5 = ax.get_vertical_line(ax.input_to_graph_point(-3,curve), color= WHITE)
l6 = ax.get_vertical_line(ax.input_to_graph_point(3,curve), color= WHITE)
textfi2 = MathTex(r"\text{We've just seen that for } 1 \sigma \text{ our value is } \int_{-1}^{1} \dfrac{e^{-\frac{x^2}{2}}}{\sqrt{2 \pi}} dx = \text{erf(}\frac{1}{\sqrt{2}}\text{)} = 0.682689... \,\approx 68\%", font_size=30).move_to(UP*2.5)
jk = Tex(r"That's just a fancy way to say that the area bellow the curve between $\pm 1\sigma$ is ",r"$\approx 0.68$", font_size=30).move_to(DOWN*3)
jk[1].set_color_by_gradient([BLUE_D,BLUE_C,BLUE_A])
textf3 = Tex(r"But what if we want to know it at $2\sigma$ or $3\sigma$?",font_size=30).move_to(UP*2.5)
textf4 = Tex(r"A beautiful move is just changing the integration limits to $\pm \sigma$: $\int_{-\sigma}^{\sigma} \dfrac{e^{-\frac{x^2}{2}}}{\sqrt{2 \pi}} dx$ but an easier way is to compute: ",font_size=30).move_to(DOWN*3)
eqfin = MathTex(r"\text{erf(}\frac{\sigma}{\sqrt{2}}\text{)}").move_to(UP)
eqfin1 = MathTex(r"\text{erf(}\frac{1}{\sqrt{2}}\text{)} = 0.682689... \approx 68\%").move_to(DOWN*3).set_color_by_gradient([BLUE_D,BLUE_C,BLUE_A])
eqfin2 = MathTex(r"\text{erf(}\frac{2}{\sqrt{2}}\text{)} = 0.954499... \approx 95\%").move_to(DOWN*3).set_color_by_gradient([GREEN_D,GREEN_C,GREEN_A])
eqfin3 = MathTex(r"\text{erf(}\frac{3}{\sqrt{2}}\text{)} = 0.997300... \approx 99\%").move_to(DOWN*3).set_color_by_gradient([RED_D,RED_C,RED_A])
area1 = ax.get_area(curve, x_range=[-1,1], fill_opacity=0.9)
area1.set_color_by_gradient([BLUE_D,BLUE_C,BLUE_A])
area2 = ax.get_area(curve, x_range=[-2,2], fill_opacity=0.9)
area2.set_color_by_gradient([GREEN_D,GREEN_C,GREEN_A])
area3 = ax.get_area(curve, x_range=[-3,3], fill_opacity=0.9)
area3.set_color_by_gradient([RED_D,RED_C,RED_A])
fivg1 = VGroup(l1,l2,area1)
fivg2 = VGroup(l3,l4,area2)
fivg3 = VGroup(l5,l6,area3)
self.play(FadeOut(textfi))
self.play(Write(textfi2))
self.play(Write(jk),Write(l1), Write(l2),sigma1.animate.set_color(BLUE_C), sigma2.animate.set_color(BLUE_C))
self.play(Create(area1), rate_func=rate_functions.smooth)
self.play(FadeOut(textfi2))
self.play(Write(textf3), FadeOut(jk))
self.wait(0.5)
self.play(Write(textf4))
self.wait(0.5)
self.play(
FadeOut(textf3), textf4.animate.shift(UP*5.5), FadeOut(ax), FadeOut(curve), FadeOut(fivg1),
FadeOut(sigma1),FadeOut(sigma2),FadeOut(sigma3),FadeOut(sigma4),FadeOut(sigma5),FadeOut(sigma6),
FadeOut(l1), FadeOut(l2), FadeOut(mu), FadeOut(l00), FadeOut(l01)
)
sr3 = SurroundingRectangle(eqfin).set_color_by_gradient([YELLOW,PINK,PURPLE])
self.play(Write(eqfin))
self.play(Create(sr3))
self.play(Uncreate(sr3), eqfin.animate.set_color_by_gradient([YELLOW,PINK,PURPLE]))
self.play(eqfin.animate.shift(DOWN*4))
self.wait(0.5)
self.play(TransformMatchingTex(eqfin,eqfin1,transform_mismatches=True),Write(ax),Write(sigma1),Write(sigma2),Write(sigma3),Write(sigma4),Write(sigma5),Write(sigma6),Write(curve),Write(l1), Write(l2), Create(area1), rate_func=linear)
self.wait(1)
self.play(Uncreate(l1), Uncreate(l2), Uncreate(area1))
self.play(sigma1.animate.set_color(WHITE),
sigma2.animate.set_color(WHITE),
sigma3.animate.set_color(GREEN_C),
sigma4.animate.set_color(GREEN_C),
TransformMatchingTex(eqfin1,eqfin2,transform_mismatches=True),
Write(l3),Write(l4), Create(area2), rate_func=linear)
self.wait(1)
self.play(Uncreate(l3), Uncreate(l4), Uncreate(area2))
self.play(sigma3.animate.set_color(WHITE),
sigma4.animate.set_color(WHITE),
sigma5.animate.set_color(RED_C),
sigma6.animate.set_color(RED_C),
TransformMatchingTex(eqfin2,eqfin3,transform_mismatches=True),Create(l5),Create(l6),Create(area3), rate_func=linear)
self.wait()
eqfin.set_color(WHITE)
self.play(FadeOut(l5),FadeOut(l6),FadeOut(area3), FadeOut(textf4), FadeOut(vg))
self.play(TransformMatchingTex(eqfin3,eqfin,transform_mismatches=True))
self.play(eqfin.animate.shift(UP*3))
sr2 = SurroundingRectangle(eqfin).set_color_by_gradient([BLUE_C,GREEN_C])
self.play(Write(sr2), eqfin.animate.set_color_by_gradient([BLUE_C,GREEN_C]))
self.wait()
ax2 = Axes(
x_range = [0, 3, 1],
y_range = [0, 1, 0.5],
x_length = 3,
y_length = 1,
tips=False,
axis_config = {'include_numbers':False}
)
erf1 = ax2.plot(lambda x: erf(x), x_range=[0,3])
erf1.set_color_by_gradient([YELLOW,GREEN,BLUE])
erfg = VGroup(erf1,ax2).scale(2)
t = ValueTracker(0)
md = Dot(ax2.coords_to_point(0,0)).scale(0.7).set_color(ORANGE)
md.add_updater(lambda x: x.move_to(ax2.c2p(t.get_value(), erf(t.get_value()))))
xt = Tex(r"$\sigma$ = x = ").move_to(DOWN*2).scale(0.7)
xt.shift(LEFT*2)
xt_value_text = always_redraw(
lambda: DecimalNumber(num_decimal_places=5)
.set_value(t.get_value())
.next_to(xt, RIGHT, buff=0.1)
.scale(0.7)
)
yt = Tex(r"y = ").move_to(DOWN*2).scale(0.7)
yt.shift(RIGHT*2)
yt_value_text = always_redraw(
lambda: DecimalNumber(num_decimal_places=5)
.set_value(erf(t.get_value()))
.next_to(yt, RIGHT, buff=0.1)
.scale(0.7)
)
sef = MathTex(r'\text{erf(}\frac{\sigma}{\sqrt{2}}\text{)} = ').move_to(DOWN*3).set_color(WHITE)
sef_value_text = always_redraw(
lambda: DecimalNumber(num_decimal_places=5)
.set_value(erf(t.get_value()/sqrt(2)))
.next_to(sef, RIGHT, buff=0.1)
.scale(0.7)
)
sefG = VGroup(sef, sef_value_text)
ss = always_redraw(lambda: SurroundingRectangle(sefG).set_color(ORANGE))
tef = Tex(r"To sum up, let's just have a quick look at the ",r"Gaussian error function",r":", font_size=30).move_to(UP*2.5)
tef[1].set_color_by_gradient([YELLOW,GREEN,BLUE])
self.play(Write(tef))
self.play(Uncreate(sr2), FadeOut(eqfin))
self.play(Write(ax2), Write(erf1), Write(md), Write(xt), Write(yt), Write(xt_value_text), Write(yt_value_text), Write(sef), Write(sef_value_text))
self.wait()
self.play(t.animate.set_value(1))
self.play(Write(ss))
self.wait()
self.play(Uncreate(ss))
self.play(t.animate.set_value(2))
self.play(Write(ss))
self.wait()
self.play(Uncreate(ss))
self.play(t.animate.set_value(3))
self.play(Write(ss))
self.wait()
self.play(Uncreate(ss),Unwrite(tef), Uncreate(ax2), Uncreate(erf1), Uncreate(md), Unwrite(xt), Unwrite(yt), FadeOut(xt_value_text), FadeOut(yt_value_text), Uncreate(sef), FadeOut(sef_value_text))
sq = Square(side_length=1, color=WHITE, fill_opacity=0.5).move_to(DOWN*0.3).scale(0.25)
sq.shift(RIGHT).set_color_by_gradient([PURPLE_C,WHITE])
qed = Tex(r'Q.E.D.').set_color_by_gradient([PURPLE_C,WHITE])
self.play(Write(qed), Create(sq))
self.wait(2)
self.play(Uncreate(sq), Unwrite(qed))
self.wait(3)
def PDF_normal(x, mu, sigma,k):
return exp(-(((k*x)-mu)**2)/(2*sigma**2))/(sigma*sqrt(2*pi))