-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathparameters.py
57 lines (40 loc) · 1.8 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from os.path import dirname,join
root_path = join(dirname(__file__))
dataset = 'qmLonUpfLaosheng'
# dataset = 'danAll'
am = 'cnn'
# am = 'gmm'
keras_model_name = 'choi_danAll_mfccBands_2D_all_optim'
if dataset == 'danAll':
base_path = 'danAll'
syllableTierName = 'dian'
elif dataset == 'qmLonUpfLaosheng':
base_path = 'qmLonUpf/laosheng'
syllableTierName = 'dian'
phonemeTierName = 'details'
# if you don't have this dataset, please download from http://doi.org/10.5281/zenodo.344932
dataset_path = '/your/path/to/jingju_a_cappella_singing_dataset'
wav_path = join(dataset_path,'wav',base_path)
textgrid_path = join(dataset_path,'textgrid',base_path)
gmmModel_path = join(root_path,'gmmModels',base_path)
scaler_path = join(root_path, 'pretrainedDLModels', base_path,
'scaler_'+dataset+'_phonemeSeg_mfccBands2D.pkl')
kerasModels_jordi_path = join(root_path, 'pretrainedDLModels', base_path,
'keras.cnn_jordi_mfccBands_2D_all_optim.h5')
kerasModels_choi_path = join(root_path, 'pretrainedDLModels', base_path,
'keras.cnn_choi_mfccBands_2D_all_optim.h5')
kerasModels_dnn_path = join(root_path, 'pretrainedDLModels', base_path,
'keras.dnn_optim_mfccBands_neighbor_all.h5')
##-- other parameters
fs = 44100
framesize_t = 0.025 # in second
hopsize_t = 0.010
framesize = int(round(framesize_t*fs))
hopsize = int(round(hopsize_t*fs))
# MFCC params
highFrequencyBound = fs/2 if fs/2<11000 else 11000
varin = {}
varin['N_feature'] = 40
varin['N_pattern'] = 21 # adjust this param, l in paper
# mfccBands feature half context window length
varin['nlen'] = 10