Skip to content

Latest commit

 

History

History
 
 

kubernetes

Torchserve on Kubernetes

Overview

This page demonstrates a Torchserve deployment in Kubernetes using Helm Charts. It uses the DockerHub Torchserve Image for the pods and a PersistentVolume for storing config / model files.

Using Azure AKS Cluster

AKS Cluster setup

Using AWS EKS Cluster

EKS Cluster setup

Using Google GKE Cluster

GKE Cluster setup

Deploy TorchServe using Helm Charts

The following table describes all the parameters for the Helm Chart.

Parameter Description Default
image Torchserve Serving image pytorch/torchserve:latest-gpu
inference_port TS Inference port 8080
management_port TS Management port 8081
metrics_port TS Metrics port 8082
replicas K8S deployment replicas 1
model-store EFS mountpath /home/model-server/shared/
persistence.size Storage size to request 1Gi
n_gpu Number of GPU in a TS Pod 1
n_cpu Number of CPU in a TS Pod 1
memory_limit TS Pod memory limit 4Gi
memory_request TS Pod memory request 1Gi

Edit the values in values.yaml with the right parameters. Somethings to consider,

  • Set torchserve_image to the pytorch/torchserve:latest if your nodes are CPU.
  • Set persistence.size based on the size of your models.
  • The value of replicas should be less than number of Nodes in the Node group.
  • n_gpu would be exposed to TS container by docker. This should be set to number_of_gpu in config.properties above.
  • n_gpu & n_cpu values are used on a per pod level and not in the entire cluster level
# Default values for torchserve helm chart.

torchserve_image: pytorch/torchserve:latest-gpu

namespace: torchserve

torchserve:
  management_port: 8081
  inference_port: 8080
  metrics_port: 8082
  grpc_inference_port: 7070
  pvd_mount: /home/model-server/shared/
  n_gpu: 1
  n_cpu: 1
  memory_limit: 4Gi
  memory_request: 1Gi

deployment:
  replicas: 1 # Changes this to number of node in Node Group

persitant_volume:
  size: 1Gi

To install Torchserve run helm install ts .

ubuntu@ip-172-31-50-36:~/serve/kubernetes/Helm$ helm install ts .
NAME: ts
LAST DEPLOYED: Wed Jul 29 08:29:04 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

Verify that torchserve has successfully started by executing kubectl exec pod/torchserve-fff -- cat logs/ts_log.log on your torchserve pod. You can get this id by lookingup kubectl get po --all-namespaces

Your output should should look similar to

ubuntu@ip-172-31-50-36:~/serve/kubernetes$ kubectl exec pod/torchserve-fff -- cat logs/ts_log.log
2020-07-29 08:29:08,295 [INFO ] main org.pytorch.serve.ModelServer -
Torchserve version: 0.1.1
TS Home: /home/venv/lib/python3.6/site-packages
Current directory: /home/model-server
......

Test Torchserve Installation

Fetch the Load Balancer External IP by executing

kubectl get svc

You should see an entry similar to

ubuntu@ip-172-31-65-0:~/ts/rel/serve$ kubectl get svc
NAME         TYPE           CLUSTER-IP      EXTERNAL-IP                                                              PORT(S)                         AGE
torchserve   LoadBalancer   10.100.142.22   your-loadbalancer-address   8080:31115/TCP,8081:31751/TCP   14m

Now execute the following commands to test Management / Prediction APIs

curl http://your-loadbalancer-address:8081/models

# You should something similar to the following
{
  "models": [
    {
      "modelName": "mnist",
      "modelUrl": "mnist.mar"
    },
    {
      "modelName": "squeezenet1_1",
      "modelUrl": "squeezenet1_1.mar"
    }
  ]
}


curl http://your-loadbalancer-address:8081/models/squeezenet1_1

# You should see something similar to the following
[
  {
    "modelName": "squeezenet1_1",
    "modelVersion": "1.0",
    "modelUrl": "squeezenet1_1.mar",
    "runtime": "python",
    "minWorkers": 3,
    "maxWorkers": 3,
    "batchSize": 1,
    "maxBatchDelay": 100,
    "loadedAtStartup": false,
    "workers": [
      {
        "id": "9000",
        "startTime": "2020-07-23T18:34:33.201Z",
        "status": "READY",
        "gpu": true,
        "memoryUsage": 177491968
      },
      {
        "id": "9001",
        "startTime": "2020-07-23T18:34:33.204Z",
        "status": "READY",
        "gpu": true,
        "memoryUsage": 177569792
      },
      {
        "id": "9002",
        "startTime": "2020-07-23T18:34:33.204Z",
        "status": "READY",
        "gpu": true,
        "memoryUsage": 177872896
      }
    ]
  }
]


wget https://raw.githubusercontent.com/pytorch/serve/master/docs/images/kitten_small.jpg
curl -X POST  http://your-loadbalancer-address:8080/predictions/squeezenet1_1 -T kitten_small.jpg

# You should something similar to the following
[
  {
    "lynx": 0.5370921492576599
  },
  {
    "tabby": 0.28355881571769714
  },
  {
    "Egyptian_cat": 0.10669822245836258
  },
  {
    "tiger_cat": 0.06301568448543549
  },
  {
    "leopard": 0.006023923866450787
  }
]

Metrics

Install prometheus

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm install prometheus prometheus-community/prometheus

Install grafana

helm repo add grafana https://grafana.github.io/helm-charts
helm install grafana grafana/grafana

Add prometheus as data source in grafana

kubectl get pods

NAME                                             READY   STATUS    RESTARTS   AGE
grafana-cbd8775fd-6f8l5                          1/1     Running   0          4h12m
model-store-pod                                  1/1     Running   0          4h35m
prometheus-alertmanager-776df7bfb5-hpsp4         2/2     Running   0          4h42m
prometheus-kube-state-metrics-6df5d44568-zkcm2   1/1     Running   0          4h42m
prometheus-node-exporter-fvsd6                   1/1     Running   0          4h42m
prometheus-node-exporter-tmfh8                   1/1     Running   0          4h42m
prometheus-pushgateway-85948997f7-4s4bj          1/1     Running   0          4h42m
prometheus-server-f8677599b-xmjbt                2/2     Running   0          4h42m
torchserve-7d468f9894-fvmpj                      1/1     Running   0          4h33m

kubectl get pod prometheus-server-f8677599b-xmjbt -o jsonpath='{.status.podIPs[0].ip}'
192.168.52.141

Expose grafana with loadbalancer

kubectl patch service grafana -p '{"spec": {"type": "LoadBalancer"}}'

kubectl get svc grafana -o jsonpath='{.status.loadBalancer.ingress[0].hostname}'

Get admin user password by running:

kubectl get secret --namespace default grafana -o jsonpath="{.data.admin-password}" | base64 --decode ; echo

Login to grafana

Username: admin Password: <--The password got from previous step-->

Open Grafana in browser with the url - <http://your.grafana.loadbalancer.address:3000>

Add Prometheus data source

Add data source

The TS metrics will be available in Prometheus for Grafana dashboards.

Logging

Follow the link for log aggregation with EFK Stack.
Log aggregation using EFK stack

Troubleshooting

Troubleshooting Torchserve Helm Chart

Check configuration

  • Incorrect values in values.yaml
    • If you changed values in torchserve.pvd_mount, make sure config.properties was also updated to match the values.
  • Invalid config.properties
    • You can verify these values by running this for local TS installation.

TS Pods hanging in Pending state

  • Ensure you have available Nodes in Node Group.

Helm Installation Issues

  • You may inspect the values by running helm list and helm get all ts to verify if the values used for the installation.
  • You can uninstall / reinstall the helm chart by executing helm uninstall ts and helm install ts .
  • helm install ts . fails with Error: create: failed to create: Request entity too large: limit is 3145728 or invalid: data: Too long: must have at most 1048576 characters.
    • Ensure that you don't have any stale files in your kubernetes directory where you are executing the command. If so, move them out of the directory or add them to .helmignore file.
  • kubectl get svc does't show my torchserve service
    • Try reinstalling the helm chart by executing helm uninstall ts and helm install ts .
  • "Error: unable to build kubernetes objects from release manifest: unable to recognize “”: no matches for kind “ClusterConfig” in version “eksctl.io/v1alpha5”"
    • Helm is picking up other .yaml files. Make sure you’ve added other files correctly to .helmignore. It should only run with values.yaml.
  • kubectl describe pod shows error message "0/1 nodes are available: 1 Insufficient cpu."
    • Ensure that the n_cpu value in values.yaml is set to a number that can be supported by the nodes in the cluster.

Autoscaling

Autoscaling with torchserve metrics

Session Affinity with Multiple Torchserve pods

Pre-requisites

  • Follow the instructions above and deploy Torchserve with more than 1 replica to the kubernetes cluster
  • Download Istio and add to path as shown here
  • Install Istio with below command
    • istioctl install --set meshConfig.accessLogFile=/dev/stdout

Steps

Now we have multiple replicas of Torchserve running and istio installed. We can apply gateway, virtual service and destination rule to enable session affinity to the user requests.

  • Apply the istio gateway via kubectl apply -f gateway.yaml
    • This gateway exposes all the host behind it via port 80 as defined in the yaml file.
  • Apply the virtual service with command kubectl apply -f virtual_service.yaml
    • This with look for header named protocol in the incoming request and forward the request to Torchserve service. If the protocol header has a value rest then the request is forwarded to port 8080 of Torchserve service and if the protocol header has a value grpc then the request is forwarded to port 7070 for Torchserve service.
  • Apply the destination Rule using the command kubectl apply -f destination_rule.yaml.
    • The destination rule look for a http cookie with a key session_id. The request with session_id is served by the same pod that served the previous request with the same session_id

HTTP Inference

  • Fetch the external IP from istio-ingress gateway using the below command
ubuntu@ubuntu$ kubectl get svc -n istio-system
NAME                   TYPE           CLUSTER-IP      EXTERNAL-IP                                                               PORT(S)                                                   AGE
istio-ingressgateway   LoadBalancer   10.100.84.243   a918b2zzzzzzzzzzzzzzzzzzzzzz-1466623565.us-west-2.elb.amazonaws.com   15021:32270/TCP,80:31978/TCP,443:31775/TCP,70:31778/TCP   2d6h
  • Make Request as shown below
curl -v -H "protocol: REST" --cookie "session_id="12345" http://a918b2d70dbddzzzzzzzzzzz49ec8cf03b-1466623565.us-west-2.elb.amazonaws.com:80/predictions/<model_name> -d "data=<input-string>"

gRPC Inference

  • Refer grpc_api to generate python files and run
python ts_scripts/torchserve_grpc_client.py infer <model_name> <input-string>

Roadmap

  • [] Log / Metrics Aggregation using AWS Container Insights
  • [] EFK Stack Integration
  • [] Readiness / Liveness Probes
  • [] Canary
  • [] Cloud agnostic Distributed Storage example