This repository has been archived by the owner on Apr 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathdata.py
639 lines (529 loc) · 21.8 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
"""
trading-server is a multi-asset, multi-strategy, event-driven execution
and backtesting platform (OEMS) for trading common markets.
Copyright (C) 2020 Sam Breznikar <[email protected]>
Licensed under GNU General Public License 3.0 or later.
Some rights reserved. See LICENSE.md, AUTHORS.md.
"""
from event_types import MarketEvent
from itertools import groupby, count
from pymongo import MongoClient, errors
from itertools import groupby, count
from event_types import MarketEvent
import pymongo
import queue
import time
import json
class Datahandler:
"""
Datahandler wraps exchange data and locally stored data with Market
events and adds it to the event queue as each timeframe period elapses.
Market events are created from either live or stored data (depending on
if backtesting or live trading) and pushed to the event queue for the
Strategy object to consume.
"""
def __init__(self, exchanges, logger, db, db_client):
self.exchanges = exchanges
self.logger = logger
self.db = db
self.db_client = db_client
self.db_collections = {
i.get_name(): db[i.get_name()] for i in self.exchanges}
self.live_trading = False
self.ready = False
self.total_instruments = self.get_total_instruments()
self.bars_save_to_db = queue.Queue(0)
# Data processing performance tracking variables.
self.parse_count = 0
self.total_parse_time = 0
self.mean_parse_time = 0
self.std_dev_parse_time = 0
self.var_parse_time = 0
def update_market_data(self, events):
"""
Pushes new market events to the event queue.
Args:
events: empty event queue object.
Returns:
events: event queue object filled with new market events.
Raises:
None.
"""
if self.live_trading:
market_data = self.get_new_data()
else:
market_data = self.get_historic_data()
for event in market_data:
events.put(event)
return events
def get_new_data(self):
"""
Return a list of market events (new bars) for all symbols from
all exchanges for the just-elapsed time period. Add new bar data
to queue for storage in DB, after current minutes cycle completes.
Logs parse time for tick processing.
Args:
None.
Returns:
new_market_events: list containing new market events.
Raises:
None.
"""
# Record tick parse performance.
self.logger.info("Started parsing new ticks.")
start_parse = time.time()
for exchange in self.exchanges:
exchange.parse_ticks()
end_parse = time.time()
duration = round(end_parse - start_parse, 5)
self.logger.info(
"Parsed " + str(self.total_instruments) +
" instruments' ticks in " + str(duration) + " seconds.")
self.track_tick_processing_performance(duration)
# Wrap new 1 min bars in market events.
new_market_events = []
for exchange in self.exchanges:
bars = exchange.get_new_bars()
for symbol in exchange.get_symbols():
for bar in bars[symbol]:
event = MarketEvent(exchange, bar)
new_market_events.append(event)
# Add bars to save-to-db-later queue.
# TODO: store bars concurrently in a separate process.
self.bars_save_to_db.put(event)
return new_market_events
def track_tick_processing_performance(self, duration):
"""
Track tick processing time statistics.
Args:
duration: (float) seconds taken to process events.
Returns:
None.
Raises:
None.
"""
self.parse_count += 1
self.total_parse_time += duration
self.mean_parse_time = self.total_parse_time / self.parse_count
def run_data_diagnostics(self, output):
"""
Check each symbol's stored data for completeness, repair/replace
missing data as needed. Once complete, set ready flag to True.
Args:
output: if True, print verbose report. If false, do not print.
Returns:
None.
Raises:
None.
"""
# Get a status report for each symbols stored data.
reports = []
if output:
self.logger.info("Started data diagnostics.")
for exchange in self.exchanges:
for symbol in exchange.get_symbols():
reports.append(self.data_status_report(
exchange, symbol, output))
# TODO: oll different venues simultaneously with a processpool
# Resolve discrepancies in stored data.
if output:
self.logger.info("Resolving missing data.")
for report in reports:
self.backfill_gaps(report)
self.replace_null_bars(report)
if output:
self.logger.info("Data diagnostics complete.")
self.ready = True
def save_new_bars_to_db(self):
"""
Save bars in storage queue to database.
Args:
None.
Returns:
None.
Raises:
pymongo.errors.DuplicateKeyError.
"""
count = 0
while True:
try:
bar = self.bars_save_to_db.get(False)
except queue.Empty:
self.logger.info(
"Wrote " + str(count) + " new bars to database " +
str(self.db.name) + ".")
break
else:
if bar is not None:
count += 1
# store bar in relevant db collection
try:
self.db_collections[
bar.exchange.get_name()].insert_one(bar.get_bar())
# Skip duplicates if they exist.
except pymongo.errors.DuplicateKeyError:
continue
self.bars_save_to_db.task_done()
def data_status_report(self, exchange, symbol, output=False):
"""
Create a stored data completness report for the given instrment.
Args:
exchange: exchange object.
symbol: instrument ticker code (string)
output: if True, print verbose report. If false, do not print.
Returns:
report: dict showing state and completeness of given symbols
stored data. Contains pertinent timestamps, periods of missing bars
and other relevant info.
Raises:
None.
"""
current_ts = exchange.previous_minute()
max_bin_size = exchange.get_max_bin_size()
result = self.db_collections[exchange.get_name()].find(
{"symbol": symbol}).sort([("timestamp", pymongo.ASCENDING)])
total_stored = (
self.db_collections[exchange.get_name()].count_documents({
"symbol": symbol}))
origin_ts = exchange.get_origin_timestamp(symbol)
# print('Origin ts', symbol, str(origin_ts))
# Handle case where there is no existing data (e.g fresh DB).
if total_stored == 0:
oldest_ts = current_ts
newest_ts = current_ts
else:
oldest_ts = result[total_stored - 1]['timestamp']
newest_ts = result[0]['timestamp']
# Make timestamps sort-agnostic, in case of sorting mixups.
if oldest_ts > newest_ts:
oldest_ts, newest_ts = newest_ts, oldest_ts
# Find gaps (missing bars) in stored data.
actual = {doc['timestamp'] for doc in result}
required = {i for i in range(origin_ts, current_ts + 60, 60)}
gaps = required.difference(actual)
# Find bars with all null values (if ws drop out, or no trades).
result = self.db_collections[exchange.get_name()].find({"$and": [
{"symbol": symbol},
{"high": None},
{"low": None},
{"open": None},
{"close": None},
{"volume": 0}]})
null_bars = [doc['timestamp'] for doc in result]
if output:
self.logger.info(
"Exchange & instrument:......" +
exchange.get_name() + ":" + str(symbol))
self.logger.info(
"Total required bars:........" + str(len(required)))
self.logger.info(
"Total locally stored bars:.." + str(total_stored))
self.logger.info(
"Total null-value bars:......" + str(len(null_bars)))
self.logger.info(
"Total missing bars:........." + str(len(gaps)))
return {
"exchange": exchange,
"symbol": symbol,
"origin_ts": origin_ts,
"oldest_ts": oldest_ts,
"newest_ts": newest_ts,
"current_ts": current_ts,
"max_bin_size": max_bin_size,
"total_stored": total_stored,
"total_needed": len(required),
"gaps": list(gaps),
"null_bars": null_bars}
def backfill_gaps(self, report):
"""
Get and store small bins of missing bars. Intended to be called
as a data QA measure for patching missing locally saved data incurred
from server downtime.
Args:
exchange: exchange object.
symbol: instrument ticker code (string)
output: if True, print verbose report. If false, do not print.
Returns:
report: dict showing state and completeness of given symbols
stored data. Contains pertinent timestamps, periods of missing bars
and other relevant info.
Raises:
Polling timeout error.
pymongo.errors.DuplicateKeyError.
Timestamp mismatch error.
"""
# Sort timestamps into sequential bins (to reduce # of polls).
poll_count = 1
if len(report['gaps']) != 0:
bins = [
list(g) for k, g in groupby(
sorted(report['gaps']),
key=lambda n, c=count(0, 60): n - next(c))]
# If any bins > max_bin_size, split them into smaller bins.
bins = self.split_oversize_bins(bins, report['max_bin_size'])
total_polls = str(len(bins))
delay = 1.5 # Wait time before attempting re-poll after error.
stagger = 2 # Stagger request polls, increment failed polls.
timeout = 10 # No. of times to repoll before exception raised.
# Poll venue API for replacement bars.
bars_to_store = []
for i in bins:
# Progress indicator.
if poll_count:
self.logger.info(
"Poll " + str(
poll_count) + " of " + total_polls + " " +
str(report['symbol']) + " " + str(
report['exchange'].get_name()))
try:
bars = report['exchange'].get_bars_in_period(
report['symbol'], i[0], len(i))
for bar in bars:
bars_to_store.append(bar)
# Reset stagger to base after successful poll.
stagger = 2
time.sleep(stagger + 0.3)
except Exception as e:
# Retry polling with an exponential delay.
for i in range(timeout):
try:
time.sleep(delay + 1)
bars = report['exchange'].get_bars_in_period(
report['symbol'], i[0], len(i))
for bar in bars:
bars_to_store.append(bar)
stagger = 2
break
except Exception as e:
delay *= stagger
if i == timeout - 1:
raise Exception("Polling timeout.")
poll_count += 1
# Sanity check, check that the retreived bars match gaps.
self.logger.info("Verifying new data...")
timestamps = [i['timestamp'] for i in bars_to_store]
timestamps = sorted(timestamps)
bars = sorted(report['gaps'])
if timestamps == bars:
query = {"symbol": report['symbol']}
doc_count_before = (
self.db_collections[report[
'exchange'].get_name()].count_documents(query))
self.logger.info("Storing new data...")
for bar in bars_to_store:
try:
self.db_collections[
report['exchange'].get_name()].insert_one(bar)
except pymongo.errors.DuplicateKeyError:
# Skip duplicates that exist in DB.
self.logger.info(
"Stored duplicate bars exist. Skipping.")
continue
doc_count_after = (
self.db_collections[report[
'exchange'].get_name()].count_documents(query))
doc_count = doc_count_after - doc_count_before
self.logger.info(
"Saved " + str(doc_count) + " missing " +
report['symbol'] + " bars.")
return True
else:
# Dump the mismatched bars and timestamps to file if error.
with open("bars.json", 'w', encoding='utf-8') as f1:
json.dump(bars, f, ensure_ascii=False, indent=4)
with open("timestamps.json", 'w', encoding='utf-8') as f2:
json.dump(timestamps, f, ensure_ascii=False, indent=4)
raise Exception(
"Fetched bars do not match missing timestamps.")
else:
# Return false if there is no missing data.
self.logger.info("No missing data.")
return False
def split_oversize_bins(self, original_bins, max_bin_size):
"""
Splits oversize lists into smaller lists.
Args:
original_bins: list of lists (timestamps in bins)
max_bin_size: int, maximum items per api respons (bin).
Returns:
bins: list of lists (timestamps in bins) containing
the timestamps from orignal_bins, but split into bins
not larger than max_bin_size.
Raises:
None.
"""
bins = original_bins
# Identify oversize bins and their positions in original list.
to_split = []
indices_to_remove = []
for i in bins:
if len(i) > max_bin_size:
# Save the bins.
to_split.append(bins.index(i))
# Save the indices.
indices_to_remove.append(bins.index(i))
# Split into smaller bins.
split_bins = []
for i in to_split:
new_bins = [(bins[i])[x:x+max_bin_size] for x in range(
0, len((bins[i])), max_bin_size)]
split_bins.append(new_bins)
final_bins = []
for i in split_bins:
for j in i:
final_bins.append(j)
# Remove the oversize bins by their indices, add the smaller split bins
for i in indices_to_remove:
del bins[i]
for i in final_bins:
bins.append(i)
return bins
def replace_null_bars(self, report):
"""
Replace null bars in db with newly fetched ones. Null bar means
all OHLCV values are None or zero.
Args:
report: dict showing state and completeness of given symbols
stored data. Contains pertinent timestamps, periods of missing bars
and other relevant info.
Returns:
True if all null bars are successfully replaces, False if not.
Raises:
Polling timeout error.
pymongo.errors.DuplicateKeyError.
Timestamp mismatch error.
"""
if len(report['null_bars']) != 0:
# sort timestamps into sequential bins (to reduce polls)
bins = [
list(g) for k, g in groupby(
sorted(report['null_bars']),
key=lambda n, c=count(0, 60): n - next(c))]
delay = 1 # wait time before attmepting to re-poll after error
stagger = 2 # delay co-efficient
timeout = 10 # number of times to repoll before exception raised.
# poll exchange REST endpoint for missing bars
bars_to_store = []
for i in bins:
try:
bars = report['exchange'].get_bars_in_period(
report['symbol'], i[0], len(i))
for bar in bars:
bars_to_store.append(bar)
stagger = 2 # reset stagger to base after successful poll
time.sleep(stagger)
except Exception as e:
# retry poll with an exponential delay after each error
for i in range(timeout):
try:
time.sleep(delay)
bars = report['exchange'].get_bars_in_period(
report['symbol'], i[0], len(i))
for bar in bars:
bars_to_store.append(bar)
stagger = 2
break
except Exception as e:
delay *= stagger
if i == timeout - 1:
raise Exception("Polling timeout.")
# sanity check, check that the retreived bars match gaps
timestamps = [i['timestamp'] for i in bars_to_store]
timestamps = sorted(timestamps)
bars = sorted(report['null_bars'])
if timestamps == bars:
doc_count = 0
for bar in bars_to_store:
try:
query = {"$and": [
{"symbol": bar['symbol']},
{"timestamp": bar['timestamp']}]}
new_values = {"$set": {
"open": bar['open'],
"high": bar['high'],
"low": bar['low'],
"close": bar['close'],
"volume": bar['volume']}}
self.db_collections[
report['exchange'].get_name()].update_one(
query, new_values)
doc_count += 1
except pymongo.errors.DuplicateKeyError:
continue # skip duplicates if they exist
doc_count_after = (
self.db_collections[report[
'exchange'].get_name()].count_documents(
{"symbol": report['symbol']}))
self.logger.info(
"Replaced " + str(doc_count) + " " + report['symbol'] +
" null bars.")
return True
else:
raise Exception(
"Fetched bars do not match missing timestamps.")
self.logger.info(
"Bars length: " + str(len(bars)) +
" Timestamps length: " + str(len(timestamps)))
else:
return False
def split_oversize_bins(self, original_bins, max_bin_size):
"""Given a list of lists (timestamp bins), if any top-level
element length > max_bin_size, split that element into
lists of max_bin_size, remove original element, replace with
new smaller elements, then return the new modified list."""
bins = original_bins
# Identify oversize bins and their positions in original list.
to_split = []
indices_to_remove = []
for i in bins:
if len(i) > max_bin_size:
# Save the bins.
to_split.append(bins.index(i))
# Save the indices.
indices_to_remove.append(bins.index(i))
# split into smaller bins
split_bins = []
for i in to_split:
new_bins = [(bins[i])[x:x+max_bin_size] for x in range(
0, len((bins[i])), max_bin_size)]
split_bins.append(new_bins)
final_bins = []
for i in split_bins:
for j in i:
final_bins.append(j)
# Remove the oversize bins by their indices, add the smaller split bins
for i in indices_to_remove:
del bins[i]
for i in final_bins:
bins.append(i)
return bins
def get_total_instruments(self):
"""
Return total number of monitored instruments.
Args:
None.
Returns:
total: int, all instruments grand total.
Raises:
None.
"""
total = 0
for exchange in self.exchanges:
total += len(exchange.symbols)
return total
def get_instrument_symbols(self):
"""
Return a list containing all instrument symbols.
Args:
None.
Returns:
instruments: list of all instruments ticker codes.
Raises:
None.
"""
instruments = []
for exchange in self.exchanges:
for symbol in exchange.get_symbols():
instruments.append(
exchange.get_name() + "-" + symbol)
return instruments