This repository has been archived by the owner on Apr 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathportfolio.py
951 lines (744 loc) · 35.8 KB
/
portfolio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
"""
trading-server is a multi-asset, multi-strategy, event-driven execution
and backtesting platform (OEMS) for trading common markets.
Copyright (C) 2020 Sam Breznikar <[email protected]>
Licensed under GNU General Public License 3.0 or later.
Some rights reserved. See LICENSE.md, AUTHORS.md.
"""
from trade_types import SingleInstrumentTrade, Order, Position, TradeID
from event_types import OrderEvent, FillEvent
from datetime import datetime
import numpy as np
import traceback
import matplotlib
matplotlib.use('qt5agg')
import mplfinance as mpl
import pymongo
import queue
import time
import json
import sys
import os
class Portfolio:
"""
Portfolio manages the net holdings for all models, issuing order events
and reacting to fill events to open and close positions as strategies
dictate.
Capital allocations to strategies and risk parameters are defined here.
"""
MAX_SIMULTANEOUS_POSITIONS = 20
MAX_CORRELATED_POSITIONS = 4
CORRELATION_THRESHOLD = 0.5 # Level at which instrument considered correlated (-1 to 1)
MAX_ACCEPTED_DRAWDOWN = 25 # Percentage as integer.
RISK_PER_TRADE = 0.5 # Percentage as integer or float OR 'KELLY'
SNAPSHOT_SIZE = 100 # Lookback period for trade snapshot images
DEFAULT_STOP = 1 # Default (%) stop distance if none provided.
DEFAULT_START = 1000 # Default portfolio size if none given.
def __init__(self, exchanges, logger, db_other, db_client, models,
telegram):
self.exchanges = {i.get_name(): i for i in exchanges}
self.logger = logger
self.db_other = db_other
self.db_client = db_client
self.models = models
self.telegram = telegram
self.broker = None
self.trades_save_to_db = queue.Queue(0)
self.id_gen = TradeID(db_other)
self.pf = self.load_portfolio()
self.verify_portfolio_state(self.pf)
def new_signal(self, events, event):
"""
Convert incoming Signal events to Order events.
Args:
events: event queue object.
event: new market event.
Returns:
None.
Raises:
None.
"""
signal = event.get_signal_dict()
orders = []
# Generate sequential trade ID for new trade.
trade_id = self.id_gen.new_id()
# Handle single-instrument signals:
if signal['instrument_count'] == 1:
stop = self.calculate_stop_price(signal),
size = self.calculate_position_size(stop[0],
signal['entry_price'])
# Entry order.
orders.append(Order(
self.logger,
trade_id, # Parent trade ID.
None, # Order ID as used by venue.
signal['symbol'], # Instrument ticker code.
signal['venue'], # Venue name.
signal['direction'], # LONG or SHORT.
size, # Size in native denomination.
signal['entry_price'], # Order price.
signal['entry_type'], # LIMIT MARKET STOP_LIMIT/MARKET.
"ENTRY", # ENTRY, TAKE_PROFIT, STOP.
stop[0], # Order invalidation price.
False, # Trail.
False, # Reduce-only order.
False)) # Post-only order.
# Stop order.
orders.append(Order(
self.logger,
trade_id,
None,
signal['symbol'],
signal['venue'],
event.inverse_direction(),
size,
stop[0],
"STOP",
"STOP",
None,
signal['trail'],
True,
False))
# Take profit order(s).
if signal['targets']:
count = 1
for target in signal['targets']:
# Label final TP order as "FINAL_TAKE_PROFIT".
tp_type = "TAKE_PROFIT" if count != len(signal['targets']) else "FINAL_TAKE_PROFIT"
count += 1
orders.append(Order(
self.logger,
trade_id,
None,
signal['symbol'],
signal['venue'],
event.inverse_direction(),
(size / 100) * target[1],
target[0],
"LIMIT",
tp_type,
stop[0],
False,
True,
False))
# Set sequential order ID's, based on trade ID.
count = 1
for order in orders:
order.order_id = str(trade_id) + "-" + str(count)
count += 1
# Parent trade object:
trade = SingleInstrumentTrade(
self.logger,
signal['direction'], # Direction
signal['venue'], # Venue name.
signal['symbol'], # Instrument ticker code.
signal['strategy'], # Model name.
signal['entry_timestamp'], # Signal timestamp.
signal['timeframe'], # Signal timeframe.
signal['entry_price'], # Entry price.
None, # Position object.
{str(i.get_order_dict()['order_id']): i.get_order_dict() for i in orders}) # noqa
# Finalise trade object. Must be called to set ID + order count
trade.set_batch_size_and_id(trade_id)
# Queue the trade for storage.
self.trades_save_to_db.put(trade.get_trade_dict())
# Store trade immediately
self.save_new_trades_to_db()
# Set order batch size and queue orders for execution.
batch_size = len(orders)
for order in orders:
order.batch_size = batch_size
within_risk_limits, msg = self.within_risk_limits(signal)
# Generate static image of trade setup.
t_dict = trade.get_trade_dict()
self.generate_trade_setup_image(
t_dict, signal['op_data'], within_risk_limits, msg)
# Only raise orders and add to portfilio if within risk limits.
if within_risk_limits:
self.pf['trades'][str(trade_id)] = t_dict
self.save_portfolio(self.pf)
for order in orders:
events.put(OrderEvent(order.get_order_dict()))
# TODO: handle multi-instrument, multi-venue trades.
elif signal['instrument_count'] == 2:
pass
elif signal['instrument_count'] > 2:
pass
self.logger.info("Trade " + str(trade_id) + " registered.")
def new_fill(self, fill_event):
"""
Process incoming fill event, update position, trade and order state
accordingly.
Args:
events: event queue object.
event: new market event.
Returns:
None.
Raises:
None.
"""
fill_conf = fill_event.get_order_conf()
position = Position(fill_conf).get_pos_dict()
trade_id = str(position['trade_id'])
if fill_conf['metatype'] == "ENTRY":
# Create a position record and set trade to active.
self.pf['trades'][trade_id]['position'] = position
self.pf['trades'][trade_id]['active'] = True
self.pf['trades'][trade_id]['exposure'] = 100
self.pf['trades'][trade_id]['entry_price'] = position['avg_entry_price']
self.pf['total_active_trades'] += 1
elif fill_conf['metatype'] == "STOP":
# Update the now closed postiion, trade is done.
size = self.pf['trades'][trade_id]['position']['size']
new_size = size - fill_conf['size']
# Should be 0
if new_size > 0:
raise Exception(new_size)
# Can be negative if user modifies positions manually
elif new_size < 0:
new_size = 0
self.pf['trades'][trade_id]['position']['size'] = new_size
self.pf['trades'][trade_id]['position']['status'] = "CLOSED"
self.pf['trades'][trade_id]['exposure'] = 0
# If ther order was cancelled there will not be
self.trade_complete(trade_id)
elif fill_conf['metatype'] == "TAKE_PROFIT":
# Update the modified position.
size = self.pf['trades'][trade_id]['position']['size']
new_size = size - fill_conf['size']
self.pf['trades'][trade_id]['position']['size'] = new_size
# TODO: Find adjusted exposure
# what % of the position has been closed vs starting size
# self.pf['trades'][trade_id]['exposure'] = ?
if new_size == 0:
self.trade_complete(trade_id)
else:
self.calculate_pnl_by_trade(trade_id, take_profit=True)
elif fill_conf['metatype'] == "FINAL_TAKE_PROFIT":
# Update the now closed postiion, trade is done.
size = self.pf['trades'][trade_id]['position']['size']
new_size = size - fill_conf['size']
self.pf['trades'][trade_id]['position']['size'] = new_size
self.pf['trades'][trade_id]['position']['status'] = "CLOSED"
self.pf['trades'][trade_id]['exposure'] = 0
if new_size != 0:
raise Exception(
"Position close size error:", new_size)
self.trade_complete(trade_id)
else:
raise Exception("Order metatype error:", fill_conf['metatype'])
self.save_portfolio(self.pf)
def new_order_conf(self, order_confs: list, events):
"""
Update stored trade and order state to match given order confirmations.
Args:
order_confs: list of order dicts containing updated details.
events: event queue object.
Returns:
None.
Raises:
None.
"""
# Update portfolio state.
for conf in order_confs:
trade_id = str(conf['trade_id'])
o_id = str(conf['order_id'])
self.pf['trades'][trade_id]['orders'][o_id] = conf
# Create a fill event if order already filled (e.g. market orders).
if conf['status'] == "FILLED":
events.put(FillEvent(conf))
self.save_portfolio(self.pf)
def trade_complete(self, trade_id):
"""
Check all orders and positions are closed, calculate pnl, run post
trade checks/analytics.
"""
self.cancel_orders_by_trade_id(trade_id)
# Close positions if still open.
if self.check_position_open(trade_id):
self.close_position_by_trade_id(trade_id)
# Only update portfolio metrics if trade was accepted by user.
if self.pf['trades'][trade_id]['consent'] != "SUPERCEEDED" and self.pf['trades'][trade_id]['consent'] is not None:
self.calculate_pnl_by_trade(trade_id)
self.post_trade_analysis(trade_id)
# Reduce active trade count by 1.
if self.pf['total_active_trades'] > 0:
self.pf['total_active_trades'] -= 1
# Mark trade as inactive
self.pf['trades'][trade_id]['active'] = False
# Save updated portfolio state to DB.
self.save_portfolio(self.pf, output=False)
# Update trades DB to reflect portfolio state.
self.update_trades_db(trade_id)
def cancel_orders_by_trade_id(self, trade_id):
"""
Cancel all orders matching the given trade ID and update
local portfolio state.
"""
t_id = str(trade_id)
o_ids = list(self.pf['trades'][t_id]['orders'].keys())
v_ids = [
self.pf['trades'][t_id]['orders'][o]['venue_id'] for o in o_ids if
self.pf['trades'][t_id]['orders'][o]['status'] != "FILLED"]
venue = self.pf['trades'][t_id]['venue']
cancel_confs = self.exchanges[venue].cancel_orders(v_ids)
if cancel_confs:
for v_id in v_ids:
if cancel_confs[v_id]['venue_id'] in v_ids:
if cancel_confs[v_id]['status'] == "CANCELLED" or cancel_confs[v_id]['status'] == "FILLED":
self.pf['trades'][t_id]['active'] = False
for o in o_ids:
# print("Setting new order status:", o, cancel_confs[v_id]['status'])
self.pf['trades'][t_id]['orders'][o]['status'] == cancel_confs[v_id]['status']
if cancel_confs[v_id]['order_type'] == 'Stop':
self.pf['trades'][t_id]['exit_price'] = cancel_confs[v_id]['price']
else:
print(json.dumps(cancel_confs[v_id], indent=2))
raise Exception("Unexpected response format.")
# Set price from trade records for cancelled orders
# price = self.db_other['trades'].find_one(
# {"trade_id": int(trade_id)}, {"_id": 0})['orders'][order_id]['price']
# self.pf['trades'][trade_id]['orders'][order_id][
# 'price'] = price
# No active cancellations or order state modification ocurred
else:
pass
def check_position_open(self, trade_id):
"""
Return true if position is still open according to local portfolio.
"""
t_id = str(trade_id)
if self.pf['trades'][t_id]['position'] is None:
return False
elif self.pf['trades'][t_id]['position']['status'] == "OPEN":
return True
elif self.pf['trades'][t_id]['position']['status'] == "CLOSED":
return False
else:
raise Exception(
"Position status error:",
self.pf['trades'][t_id]['position']['status'])
def close_position_by_trade_id(self, trade_id):
"""
This method will close only the remaining amount for the given trade -
it will not necessarily close an entire position, unless there is only
one open position in that particular instrument.
Then, update local portfolio state.
Use close_position_absolute() to completely close all positions in
for specifc instrument at a specific venue.
"""
close = self.exchanges[
self.pf['trades'][trade_id]['venue']].close_position(
self.pf['trades'][trade_id]['symbol'],
self.pf['trades'][trade_id]['position']['size'],
self.pf['trades'][trade_id]['direction'])
if close:
self.pf['trades'][trade_id]['position']['size'] = 0
self.pf['trades'][trade_id]['position']['status'] = "CLOSED"
def close_position_absolute(self, venue, symbol):
"""
Close ALL units of given instrument symbol indiscriminately.
"""
return self.exchanges[venue].close_position(symbol)
def calculate_pnl_by_trade(self, trade_id, take_profit=False):
"""
Calculate pnl for the given trade and update portfolio state.
"""
trade = self.pf['trades'][trade_id]
# Get order executions for trade in period from trade signal to current time.
execs = self.exchanges[trade['venue']].get_executions(
trade['symbol'], trade['signal_timestamp'], int(datetime.now().timestamp()))
# Handle two-order trades (single exit, single entry).
total_orders = len(trade['orders'])
if total_orders == 2:
entry_oid = trade['orders'][trade_id + "-1"]['order_id']
exit_oid = trade['orders'][trade_id + "-2"]['order_id']
# TODO: Handle trade types with more than 2 orders (order, tp(s), exit).
elif total_orders >= 3:
entry_oid = None
exit_oid = None
# tp_oids = []
# Entry executions will match direction of trade and bear the entry order id.
entries = [i for i in execs if i['direction'] == trade['direction'] and i['order_id'] == entry_oid]
# API-submitted exit executions should be the reverse
exits = [i for i in execs if i['direction'] != trade['direction'] and i['order_id'] == exit_oid]
manual_exit = False
# Exit orders placed manually wont bear the order id and cant be evaluated with certainty
# if there were multiple trades with executions in the same period as the current trade.
# If manual exit, notify user if the exit total is differnt to entry total.
if not exits:
exits = [i for i in execs if i['direction'] != trade['direction']]
manual_exit = True if exits else None
# Find final pnl figures
if entries and exits:
avg_entry = sum(i['avg_exc_price'] for i in entries) / len(entries)
avg_exit = (sum(i['avg_exc_price'] for i in exits) / len(exits))
fees = sum(i['total_fee'] for i in (entries + exits))
percent_change = abs((avg_entry - avg_exit) / avg_entry) * 100
abs_pnl = abs((trade['orders'][trade_id + "-1"]['size'] / 100) * percent_change) - fees
if trade['direction'] == "LONG":
final_pnl = abs_pnl if avg_exit > avg_entry + fees else -abs_pnl
elif trade['direction'] == "SHORT":
final_pnl = abs_pnl if avg_exit < avg_entry - fees else -abs_pnl
# Log trade stats
self.pf['current_balance'] += final_pnl
self.pf['balance_history'][str(int(time.time()))] = {
'amt': final_pnl,
'trade_id': trade_id}
self.pf['trades'][trade_id]['u_pnl'] = 0
self.pf['trades'][trade_id]['r_pnl'] = final_pnl
self.pf['trades'][trade_id]['fees'] = fees
self.pf['trades'][trade_id]['exposure'] = None
self.pf['trades'][trade_id]['exit_price'] = avg_exit
self.pf['trades'][trade_id]['systematic_close'] = False if manual_exit else True
if final_pnl > 0:
self.pf['total_winning_trades'] += 1
elif final_pnl < 0:
self.pf['total_losing_trades'] += 1
self.logger.info("Trade " + trade_id + " returned " + str(final_pnl) + " USD.")
else:
raise Exception("No entry or exit executions found for trade " + trade_id + ".")
if manual_exit:
self.logger.info("Non-systematic exit orders detected for trade " + trade_id + ". Please manually verify final pnl figure and that all orders are closed. Avoid closing positions or cancelling orders manually.")
def post_trade_analysis(self, trade_id):
"""
Conduct post-trade portfolio analytics.
"""
# 'total_trades'
self.pf['total_trades'] += 1
# 'peak_balance'
# 'low_balance'
if self.pf['current_balance'] > self.pf['peak_balance']:
self.pf['peak_balance'] = self.pf['current_balance']
self.logger.info("New portfolio value all-time-high: " + str(self.pf['current_balance']))
elif self.pf['current_balance'] < self.pf['low_balance']:
self.pf['low_balance'] = self.pf['current_balance']
self.logger.info("New portfolio value all-time-low: " + str(self.pf['current_balance']))
balance_history = [i for i in list(self.pf['balance_history'].values())[1:]]
if len(balance_history) > 1:
# 'total_consecutive_wins'
# 'total_consecutive_losses'
if balance_history[-1]['amt'] > 0 and balance_history[-2]['amt'] > 0:
self.pf['total_consecutive_wins'] += 1
elif balance_history[-1]['amt'] < 0 and balance_history[-2]['amt'] < 0:
self.pf['total_consecutive_losses'] += 1
# 'avg_r_per_trade'
# 'avg_r_per_winner'
# 'avg_r_per_loser'
winners_r, losers_r, total_r = [], [], []
for transaction in balance_history:
trade = self.pf['trades'][transaction['trade_id']]
entry = trade['position']['avg_entry_price']
stop = list(trade['orders'].values())[-1]['price']
exit = trade["exit_price"]
rr = (exit - entry) / (entry - stop)
total_r.append(rr)
if transaction['amt'] > 0:
winners_r.append(rr)
elif transaction['amt'] < 0:
losers_r.append(rr)
self.pf['avg_r_per_trade'] = round(sum(total_r) / len(total_r), 2)
self.pf['avg_r_per_winner'] = round(sum(winners_r) / len(winners_r), 2)
self.pf['avg_r_per_loser'] = round(sum(losers_r) / len(losers_r), 2)
# 'win_loss_ratio'
if self.pf['total_winning_trades'] and self.pf['total_losing_trades']:
self.pf['win_loss_ratio'] = self.pf['total_winning_trades'] / self.pf['total_losing_trades']
elif self.pf['total_winning_trades'] and not self.pf['total_losing_trades']:
self.pf['win_loss_ratio'] = self.pf['total_winning_trades']
def verify_portfolio_state(self, portfolio):
"""
Check stored portfolio data matches actual positions and orders.
"""
# TODO.
self.save_portfolio(portfolio)
self.logger.info("Portfolio verification complete.")
def load_portfolio(self, ID=1):
"""
Load portfolio matching ID from database or return empty portfolio.
"""
portfolio = self.db_other['portfolio'].find_one({"id": ID}, {"_id": 0})
if portfolio:
return portfolio
else:
default_portfolio = {
'id': ID,
'balance_history': {
str(int(time.time())): {
'amt': self.DEFAULT_START,
'trade_id': "initial_deposit"}},
'current_balance': self.DEFAULT_START,
'starting_balance': self.DEFAULT_START,
'peak_balance': self.DEFAULT_START,
'low_balance': self.DEFAULT_START,
'total_trades': 0,
'total_winning_trades': 0,
'total_losing_trades': 0,
'total_consecutive_wins': 0,
'total_consecutive_losses': 0,
'avg_r_per_winner': 0,
'avg_r_per_loser': 0,
'avg_r_per_trade': 0,
'win_loss_ratio': 0,
'risk_per_trade': self.RISK_PER_TRADE,
'max_simultaneous_positions': self.MAX_SIMULTANEOUS_POSITIONS,
'max_correlated_positions': self.MAX_CORRELATED_POSITIONS,
'max_accepted_drawdown': self.MAX_ACCEPTED_DRAWDOWN,
'default_stop': self.DEFAULT_STOP,
'model_allocations': { # Equal allocation by default.
i.get_name(): (100 / len(self.models)) for i in self.models},
'total_active_trades': 0,
'trades': {}}
return default_portfolio
def save_portfolio(self, portfolio, output=True):
"""
Save portfolio state to DB.
"""
result = self.db_other['portfolio'].replace_one(
{"id": portfolio['id']}, portfolio, upsert=True)
if result.acknowledged and output:
self.logger.info("Portfolio save successful.")
else:
self.logger.info("Portfolio save unsuccessful.")
def within_risk_limits(self, signal):
"""
Return true if signal would not exceed risk limits or cause conflicts when traded.
"""
# Position limit check.
if self.pf['total_active_trades'] < self.pf['max_simultaneous_positions']:
# Drawdown check.
if self.pf['current_balance'] >= (100 - self.pf['max_accepted_drawdown']) * (self.pf['starting_balance'] / 100):
# Correlation check.
if not self.correlated(signal):
# Same-asset, same-venue trade conflict checks.
trades = [t for t in self.pf['trades'].values()]
conflicted_active_trades = [t for t in trades if t['active'] and t['symbol'] == signal['symbol'] and t['venue'] == signal['venue']]
conflicted_pending_trades = [t for t in trades if not t['active'] and not t['position'] and t['consent'] != "SUPERCEEDED" and t['symbol'] == signal['symbol'] and t['venue'] == signal['venue']]
if conflicted_active_trades:
all_trades_risk_off = True
for trade in conflicted_active_trades:
# If all conflicted trades are risk free and same direction as signal, proceed with signal
if trade['exposure'] and trade['direction'] == signal['direction']:
all_trades_risk_off = False
# If signal opposite direction to trade, notify user but take no action.
elif trade['direction'] != signal['direction']:
self.logger.info("New signal is opposite direction to existing position.")
return False, "New signal is opposite direction to existing position. Check for a possible reversal."
if all_trades_risk_off:
# Check if signal should superceeds any pending signals.
if (signal['symbol'], signal['venue']) not in [(t['symbol'], t['venue']) for t in conflicted_pending_trades]:
self.logger.info("Existing position is risk-free. Adding to existing position.")
return True, "New trade within risk limits. Compound existing position."
# New signal conflicts with older pending signal(s),
else:
self.superceed_older_signals(signal, conflicted_pending_trades)
return True, "New trade within risk limits."
else:
self.logger.info("Existing position matching new signal is not risk-free.")
return False, "An existing position matching new signal is not risk-free."
# Check if signal should superceeds any pending signals.
else:
if (signal['symbol'], signal['venue']) not in [(t['symbol'], t['venue']) for t in conflicted_pending_trades]:
# All risk checks cleared, free to action signal as is.
self.logger.info("New trade within all risk limits.")
return True, "New trade within risk limits."
# New signal conflicts with older pending signal(s)
else:
self.superceed_older_signals(signal, conflicted_pending_trades)
return True, "New trade within risk limits."
else:
self.logger.info(
"New trade skipped. Correlated position limit reached.")
return False, "Correlated position limit reached."
else:
self.logger.info("New trade skipped. Drawdown limit reached.")
return False, "Drawdown limit reached."
else:
self.logger.info("New trade skipped. Position limit reached.")
return False, "Position limit reached."
def superceed_older_signals(self, signal, conflicted_pending_trades: list):
"""
Remove pending, unactioned trades that conflict with the given signal.
"""
for trade in conflicted_pending_trades:
t_id = str(trade['trade_id'])
if trade['signal_timestamp'] < signal['entry_timestamp']:
try:
self.pf['trades'][t_id]['consent'] = "SUPERCEEDED"
del self.broker.orders[trade['trade_id']]
self.trade_complete(t_id)
self.logger.info("New signal superceeds a pending trade. Trade " + t_id + " cancelled.")
except:
traceback.print_exc()
print("orders:", type(self.broker.orders))
print(json.dumps(self.broker.orders, indent=2))
print("conflicted trade")
print(json.dumps(trade, indent=2))
print("conflicted_pending_trades")
print(json.dumps(conflicted_pending_trades, indent=2))
sys.exit(0)
def calculate_exposure(self, trade):
"""
Calculate the currect capital at risk for the given trade.
"""
# TODO.
def correlated(self, signal):
"""
Return true if any active trades would be correlated with trades
produced by the incoming signal.
"""
# TODO
return False
def calculate_stop_price(self, signal):
"""
Find stop price for the given signal.
"""
if signal['stop_price'] is not None:
return signal['stop_price']
else:
if signal['direction'] == "LONG":
return signal['entry_price'] / 100 * (100 - self.DEFAULT_STOP)
elif signal['direction'] == "SHORT":
return signal['entry_price'] / 100 * (100 + self.DEFAULT_STOP)
def calculate_position_size(self, stop, entry):
"""
Find appropriate position size according to portfolio risk parameters
"""
# Fixed percentage per trade risk management.
if isinstance(self.RISK_PER_TRADE, int) or isinstance(self.RISK_PER_TRADE, float):
account_size = self.pf['current_balance']
risked_amt = (account_size / 1000) * self.RISK_PER_TRADE
position_size = risked_amt // ((stop - entry) / entry)
return abs(position_size)
# TOOD: Kelly criteron risk management.
elif self.RISK_PER_TRADE.upper() == "KELLY":
pass
else:
raise Exception("RISK_PER_TRADE must be an integer or 'KELLY': " + self.RISK_PER_TRADE)
def update_price(self, events, market_event):
"""
Check price and time updates against existing positions.
Args:
events: event queue object.
event: new market event.
Returns:
None.
Raises:
None.
"""
# TODO.
def update_trades_db(self, trade_id):
"""
Update trade DB to reflect trade state of local portfolio
"""
def save_new_trades_to_db(self):
"""
Save trades in save-later queue to database.
Args:
None.
Returns:
None.
Raises:
pymongo.errors.DuplicateKeyError.
"""
count = 0
while True:
try:
trade = self.trades_save_to_db.get(False)
except queue.Empty:
if count:
self.logger.info(
"Wrote " + str(count) + " new trades to database " +
str(self.db_other.name) + ".")
break
else:
if trade is not None:
count += 1
# Store signal in relevant db collection.
try:
self.db_other['trades'].insert_one(trade)
# Skip duplicates if they exist.
except pymongo.errors.DuplicateKeyError:
continue
self.trades_save_to_db.task_done()
def generate_trade_setup_image(self, trade, op_data, within_risk_limits: bool, msg: str):
"""
Create a snapshot image of trade setup and send to user.
"""
self.logger.info("Creating signal snapshot image")
# Create image directory if it doesnt exist
if not os.path.exists("setup_images"):
os.mkdir("setup_images")
# Dump trade data to file for ease of testing next stage
# Remove from production
# op_data.to_csv('op_data.csv')
# with open('trade.json', 'w') as outfile:
# json.dump(trade, outfile)
# Reformat dataframe for mplfinance compatibility
df = op_data.copy(deep=True)
df.rename(
{'open': 'Open', 'high': 'High', 'low': 'Low',
'close': 'Close', 'volume': 'Volume'}, axis=1,
inplace=True)
df = df.tail(self.SNAPSHOT_SIZE)
# Get markers for trades triggered by the current bar
entry_marker = [np.nan for i in range(self.SNAPSHOT_SIZE)]
entry_marker[-1] = trade['entry_price']
stop = None
stop_marker = [np.nan for i in range(self.SNAPSHOT_SIZE)]
for order in trade['orders'].values():
if order['order_type'] == "STOP":
stop = order['price']
stop_marker[-1] = stop
# TODO: Trades triggered by interaction with historic bars
# Create plot figures
adp, hlines = self.create_addplots(df, mpl, stop, entry_marker,
stop_marker)
mc = mpl.make_marketcolors(up='w', down='black', wick="w", edge='w')
style = mpl.make_mpf_style(gridstyle='', base_mpf_style='nightclouds',
marketcolors=mc)
filename = "setup_images/" + str(trade['trade_id']) + "_" + str(trade['signal_timestamp']) + '_' + trade['model'] + "_" + trade['timeframe']
try:
plot = mpl.plot(df, type='candle', addplot=adp, style=style, hlines=hlines,
title="\n" + trade['model'] + " - " + trade['timeframe'],
datetime_format='%d-%m %H:%M', figscale=1, savefig=filename,
tight_layout=False)
except ValueError:
traceback.print_exc()
print(df)
print(df['Open'])
sys.exit(0)
message = "Trade " + str(trade['trade_id']) + " - " + trade['model'] + " " + trade['timeframe'] + "\n\nEntry: " + str(trade['entry_price']) + " \nStop: " + str(stop) + "\n"
options = [[str(trade['trade_id']) + " - Accept", str(trade['trade_id']) + " - Veto"]]
try:
self.telegram.send_image(filename + ".png", message)
if within_risk_limits is True:
self.telegram.send_option_keyboard(options)
else:
self.telegram.send_message("Trade would exceed risk limits. " + msg)
except Exception as ex:
self.logger.info("Failed to send setup image via telegram.")
print(ex)
traceback.print_exc()
def create_addplots(self, df, mpl, stop, entry_marker, stop_marker):
"""
Helper method for generate_trade_setup_image.
Formats plot artifacts for mplfinance.
"""
adps, hlines = [], {'hlines': [], 'colors': [], 'linestyle': '--',
'linewidths': 0.5}
# Add technical feature data (indicator values, etc).
for col in list(df):
if (
col != "Open" and col != "High" and col != "Low"
and col != "Close" and col != "Volume"):
adps.append(mpl.make_addplot(df[col]))
# Add entry marker
adps.append(mpl.make_addplot(
entry_marker, type='scatter', markersize=500, marker="_",
color='limegreen'))
# Add stop marker
if stop:
adps.append(mpl.make_addplot(
stop_marker, type='scatter', markersize=500, marker='_',
color='crimson'))
return adps, hlines