-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathDMSHN.py
156 lines (142 loc) · 5.24 KB
/
DMSHN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
#Conv1
self.layer1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.layer2 = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1)
)
self.layer3 = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1)
)
#Conv2
self.layer5 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
self.layer6 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1)
)
self.layer7 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1)
)
#Conv3
self.layer9 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.layer10 = nn.Sequential(
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1)
)
self.layer11 = nn.Sequential(
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1)
)
def forward(self, x):
#Conv1
x = self.layer1(x)
x = self.layer2(x) + x
x = self.layer3(x) + x
#Conv2
x = self.layer5(x)
x = self.layer6(x) + x
x = self.layer7(x) + x
#Conv3
x = self.layer9(x)
x = self.layer10(x) + x
x = self.layer11(x) + x
return x
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
# Deconv3
self.layer13 = nn.Sequential(
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1)
)
self.layer14 = nn.Sequential(
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1)
)
self.layer16 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
#Deconv2
self.layer17 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1)
)
self.layer18 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1)
)
self.layer20 = nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1)
#Deconv1
self.layer21 = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1)
)
self.layer22 = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1)
)
self.layer24 = nn.Conv2d(32, 3, kernel_size=3, padding=1)
def forward(self,x):
#Deconv3
x = self.layer13(x) + x
x = self.layer14(x) + x
x = self.layer16(x)
#Deconv2
x = self.layer17(x) + x
x = self.layer18(x) + x
x = self.layer20(x)
#Deconv1
x = self.layer21(x) + x
x = self.layer22(x) + x
x = self.layer24(x)
return x
class DMSHN(nn.Module):
def __init__(self):
super(DMSHN, self).__init__()
self.encoder_lv1 = Encoder()
self.encoder_lv2 = Encoder()
self.encoder_lv3 = Encoder()
self.decoder_lv1 = Decoder()
self.decoder_lv2 = Decoder()
self.decoder_lv3 = Decoder()
def forward(self,images_lv1):
H = images_lv1.size(2)
W = images_lv1.size(3)
images_lv2 = F.interpolate(images_lv1, scale_factor = 0.5, mode = 'bilinear')
images_lv3 = F.interpolate(images_lv2, scale_factor = 0.5, mode = 'bilinear')
feature_lv3 = self.encoder_lv3(images_lv3)
residual_lv3 = self.decoder_lv3(feature_lv3)
out_lv3 = images_lv3 + residual_lv3
residual_lv3 = F.interpolate(residual_lv3, scale_factor=2, mode= 'bilinear')
feature_lv3 = F.interpolate(feature_lv3, scale_factor=2, mode= 'bilinear')
feature_lv2 = self.encoder_lv2(images_lv2 + residual_lv3)
residual_lv2 = self.decoder_lv2(feature_lv2 + feature_lv3)
out_lv2 = images_lv2 + residual_lv2
residual_lv2 = F.interpolate(residual_lv2, scale_factor=2, mode= 'bilinear')
feature_lv2 = F.interpolate(feature_lv2, scale_factor=2, mode= 'bilinear')
feature_lv1 = self.encoder_lv1(images_lv1 + residual_lv2)
bokeh_image = self.decoder_lv1(feature_lv1 + feature_lv2)
return bokeh_image
'''
model = DMSHN().cuda()
inp = torch.randn(1,3,1024,1024).cuda()
y = model(inp)
print (y.shape)
'''