diff --git a/.gitignore b/.gitignore index 04bc2b8f4..1b4f1b656 100644 --- a/.gitignore +++ b/.gitignore @@ -152,3 +152,5 @@ debug*/ *.dat *.tsv *.gz + +cache/ diff --git a/app/image_text_match.py b/app/image_text_match.py index 568acfefc..e7957384e 100644 --- a/app/image_text_match.py +++ b/app/image_text_match.py @@ -74,7 +74,7 @@ def app(): qry_tok = tokenizer(qry, return_tensors="pt").to(device) gradcam, output = compute_gradcam(model, img, qry, qry_tok, block_num=layer_num) - avg_gradcam = getAttMap(norm_img, gradcam[1], blur=True) + avg_gradcam = getAttMap(norm_img, gradcam[0][1], blur=True) col2.image(avg_gradcam, use_column_width=True, clamp=True) # output = model(img, question) diff --git a/app/text_localization.py b/app/text_localization.py index e62ff108f..d01655b97 100644 --- a/app/text_localization.py +++ b/app/text_localization.py @@ -73,7 +73,7 @@ def app(): gradcam, _ = compute_gradcam(model, img, qry, qry_tok, block_num=layer_num) - avg_gradcam = getAttMap(norm_img, gradcam[1], blur=True) + avg_gradcam = getAttMap(norm_img, gradcam[0][1], blur=True) col2.image(avg_gradcam, use_column_width=True, clamp=True) num_cols = 4.0 @@ -81,7 +81,7 @@ def app(): num_rows = int(math.ceil(num_tokens / num_cols)) - gradcam_iter = iter(gradcam[2:-1]) + gradcam_iter = iter(gradcam[0][2:-1]) token_id_iter = iter(qry_tok.input_ids[0][1:-1]) for _ in range(num_rows): diff --git a/dataset_card/gqa.md b/dataset_card/gqa.md new file mode 100644 index 000000000..5c65d1875 --- /dev/null +++ b/dataset_card/gqa.md @@ -0,0 +1,32 @@ +![From https://arxiv.org/abs/1902.09506.pdf.](imgs/gqa.png) + +# GQA Dataset + +## Description +(from https://cs.stanford.edu/people/dorarad/gqa/about.html) + +GQA is a VQA dataset for real-word images which requires visual, spatial and compositional reasoning. +It consists of 22M questions and 110K images. + +## Task +(from https://arxiv.org/abs/1902.09506) + +Given an image and a question, the model is required to output a correct answer. +GQA questions require spatial understanding, multiple reasoning skills and multiple-step inference. + +## Metrics + +The metrics are accuracy, consistency, validity, plausibility. The commonly reported metric is accuracy. + +## Leaderboard + +TBD + +## Auto-Downloading + +``` +cd lavis/datasets/download_scripts && python download_gqa.py +``` + +## References +"GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering", Drew A. Hudson, Christopher D. Manning \ No newline at end of file diff --git a/dataset_card/imgs/gqa.png b/dataset_card/imgs/gqa.png new file mode 100644 index 000000000..1471ec171 Binary files /dev/null and b/dataset_card/imgs/gqa.png differ diff --git a/examples/blip_text_localization.ipynb b/examples/blip_text_localization.ipynb index cc4c12e46..5713293a3 100644 --- a/examples/blip_text_localization.ipynb +++ b/examples/blip_text_localization.ipynb @@ -150,7 +150,7 @@ "metadata": {}, "outputs": [], "source": [ - "avg_gradcam = getAttMap(norm_img, gradcam[1], blur=True)" + "avg_gradcam = getAttMap(norm_img, gradcam[0][1], blur=True)" ] }, { @@ -214,7 +214,7 @@ "num_image = len(txt_tokens.input_ids[0]) - 2\n", "fig, ax = plt.subplots(num_image, 1, figsize=(15, 5 * num_image))\n", "\n", - "gradcam_iter = iter(gradcam[2:-1])\n", + "gradcam_iter = iter(gradcam[0][2:-1])\n", "token_id_iter = iter(txt_tokens.input_ids[0][1:-1])\n", "\n", "for i, (gradcam, token_id) in enumerate(zip(gradcam_iter, token_id_iter)):\n", @@ -230,7 +230,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.10 ('base')", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -244,9 +244,8 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.8.13" }, - "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" diff --git a/lavis/common/vqa_tools/vqa_eval.py b/lavis/common/vqa_tools/vqa_eval.py index b5d626892..ee808b349 100644 --- a/lavis/common/vqa_tools/vqa_eval.py +++ b/lavis/common/vqa_tools/vqa_eval.py @@ -16,7 +16,7 @@ class VQAEval: - def __init__(self, vqa, vqaRes, n=2): + def __init__(self, vqa=None, vqaRes=None, n=2): self.n = n self.accuracy = {} self.evalQA = {} @@ -24,7 +24,8 @@ def __init__(self, vqa, vqaRes, n=2): self.evalAnsType = {} self.vqa = vqa self.vqaRes = vqaRes - self.params = {"question_id": vqa.getQuesIds()} + if vqa is not None: + self.params = {"question_id": vqa.getQuesIds()} self.contractions = { "aint": "ain't", "arent": "aren't", diff --git a/lavis/configs/datasets/gqa/balanced_testdev.yaml b/lavis/configs/datasets/gqa/balanced_testdev.yaml new file mode 100644 index 000000000..86114fb96 --- /dev/null +++ b/lavis/configs/datasets/gqa/balanced_testdev.yaml @@ -0,0 +1,30 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +datasets: + gqa: + # data_dir: ${env.data_dir}/datasets + data_type: images # [images|videos|features] + + build_info: + # Be careful not to append minus sign (-) before split to avoid itemizing + annotations: + train: + url: + - https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/train_balanced_questions.json + storage: + - gqa/annotations/train_balanced_questions.json + val: + url: + - https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/testdev_balanced_questions.json + storage: + - gqa/annotations/testdev_balanced_questions.json + test: + url: + - https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/test_balanced_questions.json + storage: + - gqa/annotations/test_balanced_questions.json + images: + storage: gqa/images/ diff --git a/lavis/configs/datasets/gqa/balanced_val.yaml b/lavis/configs/datasets/gqa/balanced_val.yaml new file mode 100644 index 000000000..ca420dfdc --- /dev/null +++ b/lavis/configs/datasets/gqa/balanced_val.yaml @@ -0,0 +1,30 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +datasets: + gqa: + # data_dir: ${env.data_dir}/datasets + data_type: images # [images|videos|features] + + build_info: + # Be careful not to append minus sign (-) before split to avoid itemizing + annotations: + train: + url: + - https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/train_balanced_questions.json + storage: + - gqa/annotations/train_balanced_questions.json + val: + url: + - https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/val_balanced_questions.json + storage: + - gqa/annotations/val_balanced_questions.json + test: + url: + - https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/test_balanced_questions.json + storage: + - gqa/annotations/test_balanced_questions.json + images: + storage: gqa/images/ diff --git a/lavis/configs/datasets/gqa/defaults.yaml b/lavis/configs/datasets/gqa/defaults.yaml index f56ddc993..7c2d87cd7 100644 --- a/lavis/configs/datasets/gqa/defaults.yaml +++ b/lavis/configs/datasets/gqa/defaults.yaml @@ -33,4 +33,4 @@ datasets: - aokvqa/annotations/aokvqa_v1p0_test.json - aokvqa/annotations/large_vocab_train_lavis.json images: - storage: coco/images/ + storage: gqa/images/ diff --git a/lavis/configs/models/pnp-vqa/pnp_vqa_3b.yaml b/lavis/configs/models/pnp-vqa/pnp_vqa_3b.yaml new file mode 100644 index 000000000..e4c4a3929 --- /dev/null +++ b/lavis/configs/models/pnp-vqa/pnp_vqa_3b.yaml @@ -0,0 +1,59 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + + image_question_matching_model: + arch: blip_image_text_matching + load_finetuned: True + + finetuned: "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_coco_train2014.pth" + + # vit encoder + vit_type: "large" + vit_grad_ckpt: False + vit_ckpt_layer: 0 + + image_size: 384 + + # bert config + med_config_path: "configs/models/med_large_config.json" + + embed_dim: 256 + + image_captioning_model: + arch: blip_caption + load_finetuned: True + + finetuned: "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption_coco_train2014.pth" + + vit_type: "large" + vit_grad_ckpt: True + vit_ckpt_layer: 5 + + image_size: 384 + + # bert config + med_config_path: "configs/models/med_large_config.json" + + # generation configs + prompt: "a picture of " + + question_answering_model: + arch: pnp_unifiedqav2_fid + + pretrained: "allenai/unifiedqa-v2-t5-3b-1363200" + + t5_config_path: "configs/models/pnp-vqa/unifiedqav2_3b_config.json" + +preprocess: + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_caption" \ No newline at end of file diff --git a/lavis/configs/models/pnp-vqa/pnp_vqa_base.yaml b/lavis/configs/models/pnp-vqa/pnp_vqa_base.yaml new file mode 100644 index 000000000..b892c51d4 --- /dev/null +++ b/lavis/configs/models/pnp-vqa/pnp_vqa_base.yaml @@ -0,0 +1,59 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + + image_question_matching_model: + arch: blip_image_text_matching + load_finetuned: True + + finetuned: "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_coco_train2014.pth" + + # vit encoder + vit_type: "large" + vit_grad_ckpt: False + vit_ckpt_layer: 0 + + image_size: 384 + + # bert config + med_config_path: "configs/models/med_large_config.json" + + embed_dim: 256 + + image_captioning_model: + arch: blip_caption + load_finetuned: True + + finetuned: "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption_coco_train2014.pth" + + vit_type: "large" + vit_grad_ckpt: True + vit_ckpt_layer: 5 + + image_size: 384 + + # bert config + med_config_path: "configs/models/med_large_config.json" + + # generation configs + prompt: "a picture of " + + question_answering_model: + arch: pnp_unifiedqav2_fid + + pretrained: "allenai/unifiedqa-v2-t5-base-1363200" + + t5_config_path: "configs/models/pnp-vqa/unifiedqav2_base_config.json" + +preprocess: + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_caption" \ No newline at end of file diff --git a/lavis/configs/models/pnp-vqa/pnp_vqa_large.yaml b/lavis/configs/models/pnp-vqa/pnp_vqa_large.yaml new file mode 100644 index 000000000..c5d676a16 --- /dev/null +++ b/lavis/configs/models/pnp-vqa/pnp_vqa_large.yaml @@ -0,0 +1,59 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + + image_question_matching_model: + arch: blip_image_text_matching + load_finetuned: True + + finetuned: "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_retrieval_coco_train2014.pth" + + # vit encoder + vit_type: "large" + vit_grad_ckpt: False + vit_ckpt_layer: 0 + + image_size: 384 + + # bert config + med_config_path: "configs/models/med_large_config.json" + + embed_dim: 256 + + image_captioning_model: + arch: blip_caption + load_finetuned: True + + finetuned: "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption_coco_train2014.pth" + + vit_type: "large" + vit_grad_ckpt: True + vit_ckpt_layer: 5 + + image_size: 384 + + # bert config + med_config_path: "configs/models/med_large_config.json" + + # generation configs + prompt: "a picture of " + + question_answering_model: + arch: pnp_unifiedqav2_fid + + pretrained: "allenai/unifiedqa-v2-t5-large-1363200" + + t5_config_path: "configs/models/pnp-vqa/unifiedqav2_large_config.json" + +preprocess: + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_caption" \ No newline at end of file diff --git a/lavis/configs/models/pnp-vqa/unifiedqav2_3b_config.json b/lavis/configs/models/pnp-vqa/unifiedqav2_3b_config.json new file mode 100644 index 000000000..e5220dc59 --- /dev/null +++ b/lavis/configs/models/pnp-vqa/unifiedqav2_3b_config.json @@ -0,0 +1,60 @@ +{ + "architectures": [ + "T5ForConditionalGeneration" + ], + "d_ff": 16384, + "d_kv": 128, + "d_model": 1024, + "decoder_start_token_id": 0, + "dense_act_fn": "relu", + "dropout_rate": 0.1, + "eos_token_id": 1, + "feed_forward_proj": "relu", + "gradient_checkpointing": false, + "initializer_factor": 1.0, + "is_encoder_decoder": true, + "is_gated_act": false, + "layer_norm_epsilon": 1e-06, + "model_type": "t5", + "n_positions": 512, + "num_decoder_layers": 24, + "num_heads": 32, + "num_layers": 24, + "output_past": true, + "pad_token_id": 0, + "relative_attention_max_distance": 128, + "relative_attention_num_buckets": 32, + "task_specific_params": { + "summarization": { + "early_stopping": true, + "length_penalty": 2.0, + "max_length": 200, + "min_length": 30, + "no_repeat_ngram_size": 3, + "num_beams": 4, + "prefix": "summarize: " + }, + "translation_en_to_de": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to German: " + }, + "translation_en_to_fr": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to French: " + }, + "translation_en_to_ro": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to Romanian: " + } + }, + "torch_dtype": "float32", + "transformers_version": "4.21.3", + "use_cache": true, + "vocab_size": 32128 +} \ No newline at end of file diff --git a/lavis/configs/models/pnp-vqa/unifiedqav2_base_config.json b/lavis/configs/models/pnp-vqa/unifiedqav2_base_config.json new file mode 100644 index 000000000..24ffa8d18 --- /dev/null +++ b/lavis/configs/models/pnp-vqa/unifiedqav2_base_config.json @@ -0,0 +1,59 @@ +{ + "architectures": [ + "T5ForConditionalGeneration" + ], + "d_ff": 3072, + "d_kv": 64, + "d_model": 768, + "decoder_start_token_id": 0, + "dense_act_fn": "relu", + "dropout_rate": 0.1, + "eos_token_id": 1, + "feed_forward_proj": "relu", + "gradient_checkpointing": false, + "initializer_factor": 1.0, + "is_encoder_decoder": true, + "is_gated_act": false, + "layer_norm_epsilon": 1e-06, + "model_type": "t5", + "n_positions": 512, + "num_decoder_layers": 12, + "num_heads": 12, + "num_layers": 12, + "output_past": true, + "pad_token_id": 0, + "relative_attention_max_distance": 128, + "relative_attention_num_buckets": 32, + "task_specific_params": { + "summarization": { + "early_stopping": true, + "length_penalty": 2.0, + "max_length": 200, + "min_length": 30, + "no_repeat_ngram_size": 3, + "num_beams": 4, + "prefix": "summarize: " + }, + "translation_en_to_de": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to German: " + }, + "translation_en_to_fr": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to French: " + }, + "translation_en_to_ro": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to Romanian: " + } + }, + "transformers_version": "4.21.3", + "use_cache": true, + "vocab_size": 32128 +} \ No newline at end of file diff --git a/lavis/configs/models/pnp-vqa/unifiedqav2_large_config.json b/lavis/configs/models/pnp-vqa/unifiedqav2_large_config.json new file mode 100644 index 000000000..4f87ec697 --- /dev/null +++ b/lavis/configs/models/pnp-vqa/unifiedqav2_large_config.json @@ -0,0 +1,59 @@ +{ + "architectures": [ + "T5ForConditionalGeneration" + ], + "d_ff": 4096, + "d_kv": 64, + "d_model": 1024, + "decoder_start_token_id": 0, + "dense_act_fn": "relu", + "dropout_rate": 0.1, + "eos_token_id": 1, + "feed_forward_proj": "relu", + "gradient_checkpointing": false, + "initializer_factor": 1.0, + "is_encoder_decoder": true, + "is_gated_act": false, + "layer_norm_epsilon": 1e-06, + "model_type": "t5", + "n_positions": 512, + "num_decoder_layers": 24, + "num_heads": 16, + "num_layers": 24, + "output_past": true, + "pad_token_id": 0, + "relative_attention_max_distance": 128, + "relative_attention_num_buckets": 32, + "task_specific_params": { + "summarization": { + "early_stopping": true, + "length_penalty": 2.0, + "max_length": 200, + "min_length": 30, + "no_repeat_ngram_size": 3, + "num_beams": 4, + "prefix": "summarize: " + }, + "translation_en_to_de": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to German: " + }, + "translation_en_to_fr": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to French: " + }, + "translation_en_to_ro": { + "early_stopping": true, + "max_length": 300, + "num_beams": 4, + "prefix": "translate English to Romanian: " + } + }, + "transformers_version": "4.21.3", + "use_cache": true, + "vocab_size": 32128 +} \ No newline at end of file diff --git a/lavis/datasets/builders/__init__.py b/lavis/datasets/builders/__init__.py index ea07a7598..43d540d62 100644 --- a/lavis/datasets/builders/__init__.py +++ b/lavis/datasets/builders/__init__.py @@ -28,6 +28,7 @@ COCOVQABuilder, OKVQABuilder, VGVQABuilder, + GQABuilder, ) from lavis.datasets.builders.retrieval_builder import ( MSRVTTRetrievalBuilder, @@ -47,6 +48,7 @@ "ConceptualCaption3MBuilder", "DiDeMoRetrievalBuilder", "Flickr30kBuilder", + "GQABuilder", "ImageNetBuilder", "MSRVTTCapBuilder", "MSRVTTQABuilder", diff --git a/lavis/datasets/builders/vqa_builder.py b/lavis/datasets/builders/vqa_builder.py index 9c366fa94..c08a6d140 100644 --- a/lavis/datasets/builders/vqa_builder.py +++ b/lavis/datasets/builders/vqa_builder.py @@ -11,6 +11,7 @@ from lavis.datasets.datasets.aok_vqa_datasets import AOKVQADataset, AOKVQAEvalDataset from lavis.datasets.datasets.coco_vqa_datasets import COCOVQADataset, COCOVQAEvalDataset from lavis.datasets.datasets.vg_vqa_datasets import VGVQADataset +from lavis.datasets.datasets.gqa_datasets import GQADataset, GQAEvalDataset @registry.register_builder("coco_vqa") @@ -43,3 +44,15 @@ class AOKVQABuilder(BaseDatasetBuilder): eval_dataset_cls = AOKVQAEvalDataset DATASET_CONFIG_DICT = {"default": "configs/datasets/aokvqa/defaults.yaml"} + + +@registry.register_builder("gqa") +class GQABuilder(BaseDatasetBuilder): + train_dataset_cls = GQADataset + eval_dataset_cls = GQAEvalDataset + + DATASET_CONFIG_DICT = { + "default": "configs/datasets/gqa/defaults.yaml", + "balanced_val": "configs/datasets/gqa/balanced_val.yaml", + "balanced_testdev": "configs/datasets/gqa/balanced_testdev.yaml", + } \ No newline at end of file diff --git a/lavis/datasets/datasets/gqa_datasets.py b/lavis/datasets/datasets/gqa_datasets.py new file mode 100644 index 000000000..073c57040 --- /dev/null +++ b/lavis/datasets/datasets/gqa_datasets.py @@ -0,0 +1,101 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import os +import json + +from PIL import Image + +from lavis.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset + +from collections import OrderedDict + + +class __DisplMixin: + def displ_item(self, index): + sample, ann = self.__getitem__(index), self.annotation[index] + + return OrderedDict( + { + "file": ann["image"], + "question": ann["question"], + "question_id": ann["question_id"], + "answers": "; ".join(ann["answer"]), + "image": sample["image"], + } + ) + + +class GQADataset(VQADataset, __DisplMixin): + def __init__(self, vis_processor, text_processor, vis_root, ann_paths): + super().__init__(vis_processor, text_processor, vis_root, ann_paths) + + def __getitem__(self, index): + ann = self.annotation[index] + + image_path = os.path.join(self.vis_root, ann["image"]) + image = Image.open(image_path).convert("RGB") + + image = self.vis_processor(image) + question = self.text_processor(ann["question"]) + + answers = [ann["answer"]] + weights = [1] + + return { + "image": image, + "text_input": question, + "answers": answers, + "weights": weights, + } + + +class GQAEvalDataset(VQAEvalDataset, __DisplMixin): + def __init__(self, vis_processor, text_processor, vis_root, ann_paths): + """ + vis_root (string): Root directory of images (e.g. gqa/images/) + ann_root (string): directory to store the annotation file + """ + + self.vis_root = vis_root + + self.annotation = json.load(open(ann_paths[0])) + + ## TODO: support inference method == 'ranking' + answer_list_path = ann_paths[1] if len(ann_paths) > 1 else '' + if os.path.exists(answer_list_path): + self.answer_list = json.load(open(answer_list_path)) + else: + self.answer_list = None + + self.vis_processor = vis_processor + self.text_processor = text_processor + + self._add_instance_ids() + + def __getitem__(self, index): + ann = self.annotation[index] + + image_path = os.path.join(self.vis_root, ann["image"]) + image = Image.open(image_path).convert("RGB") + + image = self.vis_processor(image) + question = self.text_processor(ann["question"]) + + if "answer" in ann: + # answer is a string + answer = ann["answer"] + else: + answer = None + + return { + "image": image, + "text_input": question, + "answer": answer, + "question_id": ann["question_id"], + "instance_id": ann["instance_id"], + } diff --git a/lavis/datasets/download_scripts/download_gqa.py b/lavis/datasets/download_scripts/download_gqa.py new file mode 100644 index 000000000..0bce71408 --- /dev/null +++ b/lavis/datasets/download_scripts/download_gqa.py @@ -0,0 +1,51 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import os +from pathlib import Path + +from omegaconf import OmegaConf + +from lavis.common.utils import ( + cleanup_dir, + download_and_extract_archive, + get_abs_path, + get_cache_path, +) + + +DATA_URL = "https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip" + + +def download_datasets(root, url): + download_and_extract_archive(url=url, download_root=root, extract_root=storage_dir.parent) + + +if __name__ == "__main__": + + config_path = get_abs_path("configs/datasets/gqa/defaults.yaml") + + storage_dir = OmegaConf.load( + config_path + ).datasets.gqa.build_info.images.storage + + download_dir = Path(get_cache_path(storage_dir)).parent / "download" + storage_dir = Path(get_cache_path(storage_dir)) + + if storage_dir.exists(): + print(f"Dataset already exists at {storage_dir}. Aborting.") + exit(0) + + try: + print("Downloading {}".format(DATA_URL)) + download_datasets(download_dir, DATA_URL) + except Exception as e: + # remove download dir if failed + cleanup_dir(download_dir) + print("Failed to download or extracting datasets. Aborting.") + + cleanup_dir(download_dir) diff --git a/lavis/models/__init__.py b/lavis/models/__init__.py index c14de7360..4eb0f33a0 100644 --- a/lavis/models/__init__.py +++ b/lavis/models/__init__.py @@ -29,6 +29,8 @@ from lavis.models.blip_models.blip_pretrain import BlipPretrain from lavis.models.blip_models.blip_retrieval import BlipRetrieval from lavis.models.blip_models.blip_vqa import BlipVQA +from lavis.models.pnp_vqa_models.pnp_vqa import PNPVQA +from lavis.models.pnp_vqa_models.pnp_unifiedqav2_fid import PNPUnifiedQAv2FiD from lavis.models.med import XBertLMHeadDecoder from lavis.models.vit import VisionTransformerEncoder from lavis.models.clip_models.model import CLIP @@ -58,6 +60,8 @@ "BlipPretrain", "BlipRetrieval", "BlipVQA", + "PNPVQA", + "PNPUnifiedQAv2FiD", "CLIP", "VisionTransformerEncoder", "XBertLMHeadDecoder", diff --git a/lavis/models/blip_models/blip_image_text_matching.py b/lavis/models/blip_models/blip_image_text_matching.py index 2b77e37c9..164dcee80 100644 --- a/lavis/models/blip_models/blip_image_text_matching.py +++ b/lavis/models/blip_models/blip_image_text_matching.py @@ -133,7 +133,7 @@ def compute_gradcam(model, visual_input, text_input, tokenized_text, block_num=6 mask = tokenized_text.attention_mask.view( tokenized_text.attention_mask.size(0), 1, -1, 1, 1 ) # (bsz,1,token_len, 1,1) - token_length = mask.sum() - 2 + token_length = tokenized_text.attention_mask.sum(dim=-1) - 2 token_length = token_length.cpu() # grads and cams [bsz, num_head, seq_len, image_patch] grads = model.text_encoder.base_model.base_model.encoder.layer[ @@ -150,16 +150,21 @@ def compute_gradcam(model, visual_input, text_input, tokenized_text, block_num=6 * mask ) - gradcam = cams * grads - gradcam = gradcam[0].mean(0).cpu().detach() - # [enc token gradcam, average gradcam across token, gradcam for individual token] - gradcam = torch.cat( - ( - gradcam[0:1, :], - gradcam[1 : token_length + 1, :].sum(dim=0, keepdim=True) - / token_length, - gradcam[1:, :], + gradcams = cams * grads + gradcam_list = [] + + for ind in range(visual_input.size(0)): + token_length_ = token_length[ind] + gradcam = gradcams[ind].mean(0).cpu().detach() + # [enc token gradcam, average gradcam across token, gradcam for individual token] + gradcam = torch.cat( + ( + gradcam[0:1, :], + gradcam[1 : token_length_ + 1, :].sum(dim=0, keepdim=True) + / token_length_, + gradcam[1:, :], + ) ) - ) - - return gradcam, output + gradcam_list.append(gradcam) + + return gradcam_list, output diff --git a/lavis/models/med.py b/lavis/models/med.py index a6b3a2c29..e963ffb3b 100644 --- a/lavis/models/med.py +++ b/lavis/models/med.py @@ -3,6 +3,7 @@ All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + Based on huggingface code base https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert """ diff --git a/lavis/models/pnp_vqa_models/__init__.py b/lavis/models/pnp_vqa_models/__init__.py new file mode 100644 index 000000000..44178e550 --- /dev/null +++ b/lavis/models/pnp_vqa_models/__init__.py @@ -0,0 +1,29 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import torch + + +def prepare_qa_input(sample, num_captions, num_captions_fid): + sample_question_captions = [] + + for question, captions in zip(sample['text_input'], sample['captions']): + assert isinstance(captions, list) + question_captions = [] + question_caption = '' + for cap_id, cap_ in enumerate(captions[0:num_captions]): + question_caption += (cap_.strip() + '. ') + if (cap_id + 1) != num_captions and ((cap_id + 1) % num_captions_fid == 0): + question_caption = question.lower().strip() + " \\n " + question_caption.lower().strip() + question_captions.append(question_caption) + question_caption = '' + if (cap_id + 1) == num_captions: + question_caption = question.lower().strip() + " \\n " + question_caption.lower().strip() + question_captions.append(question_caption) + sample_question_captions.append(question_captions) + + sample['question_captions'] = sample_question_captions diff --git a/lavis/models/pnp_vqa_models/pnp_unifiedqav2_fid.py b/lavis/models/pnp_vqa_models/pnp_unifiedqav2_fid.py new file mode 100644 index 000000000..43da9ac14 --- /dev/null +++ b/lavis/models/pnp_vqa_models/pnp_unifiedqav2_fid.py @@ -0,0 +1,87 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + + Based on facebookresearch code base + https://github.com/facebookresearch/FiD +""" + +import torch +import torch.nn as nn +from lavis.common.registry import registry +from lavis.models.base_model import BaseModel +from lavis.common.utils import get_abs_path +from transformers import T5Config, T5Tokenizer, T5ForConditionalGeneration + + +@registry.register_model("pnp_unifiedqav2_fid") +class PNPUnifiedQAv2FiD(T5ForConditionalGeneration, BaseModel): + + PRETRAINED_MODEL_CONFIG_DICT = {} + + def __init__(self, config, model_path): + super().__init__(config) + + self.tokenizer = T5Tokenizer.from_pretrained(model_path) + + def forward(self, input_ids=None, attention_mask=None, **kwargs): + if input_ids != None: + if input_ids.dim() == 3: + self.encoder.num_contexts = input_ids.size(1) + input_ids = input_ids.view(input_ids.size(0), -1) + if attention_mask != None: + attention_mask = attention_mask.view(attention_mask.size(0), -1) + + return super().forward( + input_ids=input_ids, + attention_mask=attention_mask, + **kwargs + ) + + def generate(self, input_ids, attention_mask, num_beams=1, min_length=0, max_length=20): + self.encoder.num_contexts = input_ids.size(1) + + return super().generate( + input_ids=input_ids.view(input_ids.size(0), -1), + attention_mask=attention_mask.view(attention_mask.size(0), -1), + num_beams=num_beams, + min_length=min_length, + max_length=max_length + ) + + def load_unifiedqa(self, state_dict): + self.load_state_dict(state_dict) + self.encoder = T5EncoderWrapper(self.encoder) + + @classmethod + def from_config(cls, cfg): + model_path = cfg.get('pretrained') + t5_config_path = get_abs_path(cfg.get("t5_config_path")) + t5_config = T5Config.from_json_file(t5_config_path) + model = cls(t5_config, model_path) + model.load_unifiedqa(T5ForConditionalGeneration.from_pretrained(model_path).state_dict()) + + return model + + +class T5EncoderWrapper(torch.nn.Module): + + def __init__(self, encoder): + super().__init__() + + self.encoder = encoder + self.block = self.encoder.block + self.parallelize = self.encoder.parallelize + self.main_input_name = encoder.main_input_name + + def forward(self, input_ids=None, attention_mask=None, **kwargs): + bsz, total_length = input_ids.shape + context_length = total_length // self.num_contexts + input_ids = input_ids.view(bsz*self.num_contexts, context_length) + attention_mask = attention_mask.view(bsz*self.num_contexts, context_length) + outputs = self.encoder(input_ids, attention_mask, **kwargs) + outputs = (outputs[0].view(bsz, self.num_contexts*context_length, -1), ) + outputs[1:] + + return outputs \ No newline at end of file diff --git a/lavis/models/pnp_vqa_models/pnp_vqa.py b/lavis/models/pnp_vqa_models/pnp_vqa.py new file mode 100644 index 000000000..59b9d888b --- /dev/null +++ b/lavis/models/pnp_vqa_models/pnp_vqa.py @@ -0,0 +1,340 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import torch +import torch.nn as nn +from itertools import chain +from lavis.common.registry import registry +from lavis.models.base_model import BaseModel +from torch.nn import CrossEntropyLoss, MSELoss +from transformers import T5ForConditionalGeneration +from lavis.models.pnp_vqa_models import prepare_qa_input +from lavis.models.blip_models.blip_image_text_matching import compute_gradcam +from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions + + +@registry.register_model("pnp_vqa") +class PNPVQA(BaseModel): + """ + PNPVQA model consists of three submodels for zero-shot VQA: + 1. Image-questioning matching model + 2. Image captioning model + 3. Question answering model + + Supported model types: + - base: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-base) + - large: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-large) + - 3b: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-3b) + + Usage: + >>> from lavis.models import load_model + >>> model = load_model("pnp_vqa", "base", is_eval=True) + >>> model = load_model("pnp_vqa", "large", is_eval=True) + >>> model = load_model("pnp_vqa", "3b", is_eval=True) + """ + + PRETRAINED_MODEL_CONFIG_DICT = {"base": "configs/models/pnp-vqa/pnp_vqa_base.yaml", + "large": "configs/models/pnp-vqa/pnp_vqa_large.yaml", + "3b": "configs/models/pnp-vqa/pnp_vqa_3b.yaml", + } + + def __init__(self, image_question_matching_model, image_captioning_model, + question_answering_model, offload_model=False): + super().__init__() + + self.image_question_matching_model = image_question_matching_model + self.image_captioning_model = image_captioning_model + self.question_answering_model = question_answering_model + self.offload_model = offload_model + + def forward_itm(self, samples, block_num=7): + """ + Args: + samples (dict): A dictionary containing the following keys: + - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) + - text_input (list): A list of strings of length batch_size + block_num (int): The index of cross-attention block for gradcam computation. + + Returns: + samples (dict): A dictionary containing the following keys: + - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) + - text_input (list): A list of strings of length batch_size + - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) + """ + image = samples['image'] + question = [text.strip('?') for text in samples['text_input']] + tokenized_text = self.image_question_matching_model.tokenizer(question, padding='longest', truncation=True, + return_tensors="pt").to(self.image_question_matching_model.device) + with torch.set_grad_enabled(True): + gradcams, _ = compute_gradcam(model=self.image_question_matching_model, + visual_input=image, + text_input=question, + tokenized_text=tokenized_text, + block_num=block_num) + + gradcams = [gradcam_[1] for gradcam_ in gradcams] + samples['gradcams'] = torch.stack(gradcams).reshape(samples['image'].size(0), -1) + + return samples + + def forward_cap( + self, + samples, + cap_max_length=20, + cap_min_length=0, + top_p=1, + top_k=50, + repetition_penalty=1.0, + num_captions=100, + num_patches=20, + ): + """ + Args: + samples (dict): A dictionary containing the following keys: + - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) + - text_input (list): A list of strings of length batch_size + - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) + cap_max_length (int): The maximum length of the caption to be generated. + cap_min_length (int): The minimum length of the caption to be generated. + top_p (float): The cumulative probability for nucleus sampling. + top_k (float): The number of the highest probability tokens for top-k sampling. + repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. + num_captions (int): Number of captions generated for each image. + num_patches (int): Number of patches sampled for each image. + + Returns: + samples (dict): A dictionary containing the following keys: + - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) + - text_input (list): A list of strings of length batch_size + - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) + - captions (nested list): A nested list of strings of total length batch_size * num_captions + """ + encoder_out = self.image_captioning_model.forward_encoder(samples) + captions = [[] for _ in range(encoder_out.size(0))] + + min_num_captions = 0 + + while min_num_captions < num_captions: + encoder_out_samples = [] + for i in range(num_captions): + patch_id = torch.multinomial(samples['gradcams'].to(self.image_captioning_model.device), + num_patches).reshape(encoder_out.size(0), -1) + 1 + patch_id = patch_id.sort(dim=1).values.unsqueeze(-1).expand(-1, -1, encoder_out.size(2)) + encoder_out_sample = torch.gather(encoder_out, 1, patch_id) + encoder_out_samples.append(encoder_out_sample) + + stacked = torch.stack(encoder_out_samples, dim=1) + image_embeds = torch.flatten(stacked, start_dim=0, end_dim=1) #(bsz*num_seq, num_patch, dim) + + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.image_captioning_model.device) + model_kwargs = { + "encoder_hidden_states": image_embeds, + "encoder_attention_mask": image_atts, + } + + prompt = [self.image_captioning_model.prompt] * image_embeds.size(0) + prompt = self.image_captioning_model.tokenizer(prompt, + return_tensors="pt").to(self.image_captioning_model.device) + prompt.input_ids[:, 0] = self.image_captioning_model.tokenizer.bos_token_id + prompt.input_ids = prompt.input_ids[:, :-1] + + decoder_out = self.image_captioning_model.text_decoder.generate( + input_ids=prompt.input_ids, + max_length=cap_max_length, + min_length=cap_min_length, + do_sample=True, + top_p=top_p, + top_k=top_k, + num_return_sequences=1, + eos_token_id=self.image_captioning_model.tokenizer.sep_token_id, + pad_token_id=self.image_captioning_model.tokenizer.pad_token_id, + repetition_penalty=repetition_penalty, + **model_kwargs) + + outputs = self.image_captioning_model.tokenizer.batch_decode(decoder_out, skip_special_tokens=True) + + for counter, output in enumerate(outputs): + ind = counter//num_captions + if len(captions[ind]) < num_captions: + caption = output[len(self.image_captioning_model.prompt):] + overlap_caption = [1 for caps in captions[ind] if caption in caps] + if len(overlap_caption) == 0: + captions[ind].append(caption) + + min_num_captions = min([len(i) for i in captions]) + + samples['captions'] = captions + + return samples + + def forward_qa( + self, + samples, + num_beams=1, + max_len=20, + min_len=0, + internal_bsz_fid=1, + num_captions=100, + num_captions_fid=1, + ): + """ + Args: + samples (dict): A dictionary containing the following keys: + - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) + - text_input (list): A list of strings of length batch_size + - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) + - captions (nested list): A nested list of strings of total length batch_size * num_captions + - question_captions (nested list): A nested list of concatenated strings of questions and captions + num_beams (int): Number of beams for beam search. 1 means no beam search. + max_len (int): Maximum length of generated answers. + min_len (int): Minimum length of generated answers. + internal_bsz_fid (int): Internal batch size when using FiD decoding. + num_captions (int): Number of captions generated for each image. + num_captions_fid (int): Number of captions concatenated with a question during FiD decoding. + + Returns: + List: A list of strings, each string is an answer. + """ + prepare_qa_input(samples, num_captions=num_captions, num_captions_fid=num_captions_fid) + + pred_answers = [] + question_captions = samples['question_captions'] + question_captions_chunk = [question_captions[i:i + internal_bsz_fid] + for i in range(0, len(question_captions), internal_bsz_fid)] + question_captions_chunk = list(chain(*question_captions_chunk)) + + for question_caption in question_captions_chunk: + question_caption_input = self.question_answering_model.tokenizer(question_caption, padding='longest', + truncation=True, return_tensors="pt").to(self.question_answering_model.device) + + question_caption_input.input_ids = question_caption_input.input_ids.reshape( + internal_bsz_fid, -1, question_caption_input.input_ids.size(1)) + question_caption_input.attention_mask = question_caption_input.attention_mask.reshape( + internal_bsz_fid, -1, question_caption_input.attention_mask.size(1)) + + outputs = self.question_answering_model.generate(input_ids=question_caption_input.input_ids, + attention_mask=question_caption_input.attention_mask, + num_beams=num_beams, + min_length=min_len, + max_length=max_len, + ) + + for output in outputs: + pred_answer = self.question_answering_model.tokenizer.decode(output, skip_special_tokens=True) + pred_answers.append(pred_answer) + + return pred_answers + + def predict_answers( + self, + samples, + num_beams=1, + inference_method="generate", + max_len=20, + min_len=0, + internal_bsz_fid=1, + num_captions=50, + num_captions_fid=1, + cap_max_length=20, + cap_min_length=10, + top_k=50, + top_p=1, + repetition_penalty=1, + num_patches=50, + block_num=7, + ): + """ + Args: + samples (dict): A dictionary containing the following keys: + - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480. + - text_input (str or [str]): String or a list of strings, each string is a question. + The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first. + num_beams (int): Number of beams for beam search. 1 means no beam search. + inference_method (str): Inference method. Must be "generate". The model will generate answers. + max_len (int): Maximum length of generated answers. + min_len (int): Minimum length of generated answers. + internal_bsz_fid (int): Internal batch size when using FiD decoding. + num_captions (int): Number of captions generated for each image. + num_captions_fid (int): Number of captions concatenated with a question during FiD decoding. + cap_max_length (int): The maximum length of the caption to be generated. + cap_min_length (int): The minimum length of the caption to be generated. + top_k (float): The number of the highest probability tokens for top-k sampling. + top_p (float): The cumulative probability for nucleus sampling. + repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. + num_patches (int): Number of patches sampled for each image. + block_num (int): The index of cross-attention block for gradcam computation. + + Returns: + List: A list of strings, each string is an answer. + gradcams (torch.Tensor): A tensor of shape (batch_size, H*W) + captions (nested list): A nested list of strings of total length batch_size * num_captions + """ + assert inference_method in [ + "generate", + ], "Inference method must be 'generate', got {}.".format( + inference_method + ) + + if isinstance(samples["text_input"], str): + samples["text_input"] = [samples["text_input"]] + + assert len(samples["text_input"]) == samples["image"].size( + 0 + ), "The number of questions must be equal to the batch size." + + samples = self.forward_itm(samples, block_num=block_num) + + samples = self.forward_cap(samples, + cap_max_length=cap_max_length, + cap_min_length=cap_min_length, + top_k=top_k, + top_p=top_p, + repetition_penalty=repetition_penalty, + num_captions=num_captions, + num_patches=num_patches) + + if self.offload_model: + samples['image'] = samples['image'].to('cpu') + self.image_question_matching_model.to('cpu') + self.image_captioning_model.to('cpu') + torch.cuda.empty_cache() + + pred_answers = self.forward_qa(samples, + num_beams=num_beams, + max_len=max_len, + min_len=min_len, + internal_bsz_fid=internal_bsz_fid, + num_captions=num_captions, + num_captions_fid=num_captions_fid) + + if self.offload_model: + self.image_question_matching_model.to(self.question_answering_model.device) + self.image_captioning_model.to(self.question_answering_model.device) + + return pred_answers, samples['captions'], samples['gradcams'] + + @classmethod + def from_config(cls, model_config): + itm_config = model_config.image_question_matching_model + cap_config = model_config.image_captioning_model + qa_config = model_config.question_answering_model + + itm_cls = registry.get_model_class(itm_config.arch) + cap_cls = registry.get_model_class(cap_config.arch) + qa_cls = registry.get_model_class(qa_config.arch) + + image_question_matching_model = itm_cls.from_config(itm_config) + image_captioning_model = cap_cls.from_config(cap_config) + question_answering_model = qa_cls.from_config(qa_config) + + model = cls(image_question_matching_model=image_question_matching_model, + image_captioning_model=image_captioning_model, + question_answering_model=question_answering_model, + offload_model= True if model_config.model_type == '3b' else False, + ) + + return model \ No newline at end of file diff --git a/lavis/models/vit.py b/lavis/models/vit.py index 12411840f..f35b7bb68 100644 --- a/lavis/models/vit.py +++ b/lavis/models/vit.py @@ -3,6 +3,7 @@ All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + Based on timm code base https://github.com/rwightman/pytorch-image-models/tree/master/timm """ diff --git a/lavis/projects/pnp-vqa/eval/gqa_eval.yaml b/lavis/projects/pnp-vqa/eval/gqa_eval.yaml new file mode 100644 index 000000000..d8c97adfd --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/gqa_eval.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: base + +datasets: + gqa: # name of the dataset builder + type: balanced_testdev + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: gqa_reading_comprehension + + # optimization-specific + batch_size_train: 16 + batch_size_eval: 16 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 5 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA/GQA" + + evaluate: True + test_splits: ["val"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/gqa_eval_3b.yaml b/lavis/projects/pnp-vqa/eval/gqa_eval_3b.yaml new file mode 100644 index 000000000..933691c2c --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/gqa_eval_3b.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: 3b + +datasets: + gqa: # name of the dataset builder + type: balanced_testdev + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: gqa_reading_comprehension + + # optimization-specific + batch_size_train: 4 + batch_size_eval: 4 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 5 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA-3b/GQA" + + evaluate: True + test_splits: ["val"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/gqa_eval_large.yaml b/lavis/projects/pnp-vqa/eval/gqa_eval_large.yaml new file mode 100644 index 000000000..537936aa4 --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/gqa_eval_large.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: large + +datasets: + gqa: # name of the dataset builder + type: balanced_testdev + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: gqa_reading_comprehension + + # optimization-specific + batch_size_train: 12 + batch_size_eval: 12 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 5 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA-large/GQA" + + evaluate: True + test_splits: ["val"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/okvqa_eval.yaml b/lavis/projects/pnp-vqa/eval/okvqa_eval.yaml new file mode 100644 index 000000000..f29e95db6 --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/okvqa_eval.yaml @@ -0,0 +1,59 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: base + +datasets: + ok_vqa: # name of the dataset builder + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 16 + batch_size_eval: 16 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA/OKVQA" + + evaluate: True + test_splits: ["test"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/okvqa_eval_3b.yaml b/lavis/projects/pnp-vqa/eval/okvqa_eval_3b.yaml new file mode 100644 index 000000000..3a0c2dd26 --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/okvqa_eval_3b.yaml @@ -0,0 +1,59 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: 3b + +datasets: + ok_vqa: # name of the dataset builder + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 4 + batch_size_eval: 4 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA-3b/OKVQA" + + evaluate: True + test_splits: ["test"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/okvqa_eval_large.yaml b/lavis/projects/pnp-vqa/eval/okvqa_eval_large.yaml new file mode 100644 index 000000000..a55d7f25f --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/okvqa_eval_large.yaml @@ -0,0 +1,59 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: large + +datasets: + ok_vqa: # name of the dataset builder + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 12 + batch_size_eval: 12 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA-large/OKVQA" + + evaluate: True + test_splits: ["test"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/vqav2_eval.yaml b/lavis/projects/pnp-vqa/eval/vqav2_eval.yaml new file mode 100644 index 000000000..e6f26b6e3 --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/vqav2_eval.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: base + +datasets: + coco_vqa: # name of the dataset builder + type: eval + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 16 + batch_size_eval: 16 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA/VQAv2_val" + + evaluate: True + test_splits: ["val"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/vqav2_eval_3b.yaml b/lavis/projects/pnp-vqa/eval/vqav2_eval_3b.yaml new file mode 100644 index 000000000..dc0db0176 --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/vqav2_eval_3b.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: 3b + +datasets: + coco_vqa: # name of the dataset builder + type: eval + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 4 + batch_size_eval: 4 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA-3b/VQAv2_val" + + evaluate: True + test_splits: ["val"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/vqav2_eval_large.yaml b/lavis/projects/pnp-vqa/eval/vqav2_eval_large.yaml new file mode 100644 index 000000000..3e59eae99 --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/vqav2_eval_large.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: large + +datasets: + coco_vqa: # name of the dataset builder + type: eval + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 12 + batch_size_eval: 12 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA-large/VQAv2_val" + + evaluate: True + test_splits: ["val"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/vqav2_test_eval.yaml b/lavis/projects/pnp-vqa/eval/vqav2_test_eval.yaml new file mode 100644 index 000000000..a5f3d387a --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/vqav2_test_eval.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: base + +datasets: + coco_vqa: # name of the dataset builder + type: default + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 16 + batch_size_eval: 16 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA/VQAv2_test" + + evaluate: True + test_splits: ["test"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/vqav2_test_eval_3b.yaml b/lavis/projects/pnp-vqa/eval/vqav2_test_eval_3b.yaml new file mode 100644 index 000000000..799ad5633 --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/vqav2_test_eval_3b.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: 3b + +datasets: + coco_vqa: # name of the dataset builder + type: default + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 4 + batch_size_eval: 4 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA-3b/VQAv2_test" + + evaluate: True + test_splits: ["test"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/projects/pnp-vqa/eval/vqav2_test_eval_large.yaml b/lavis/projects/pnp-vqa/eval/vqav2_test_eval_large.yaml new file mode 100644 index 000000000..10aa447ed --- /dev/null +++ b/lavis/projects/pnp-vqa/eval/vqav2_test_eval_large.yaml @@ -0,0 +1,60 @@ + # Copyright (c) 2022, salesforce.com, inc. + # All rights reserved. + # SPDX-License-Identifier: BSD-3-Clause + # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause + +model: + arch: pnp_vqa + model_type: large + +datasets: + coco_vqa: # name of the dataset builder + type: default + vis_processor: + eval: + name: "blip_image_eval" + image_size: 384 + text_processor: + eval: + name: "blip_question" + +run: + task: vqa_reading_comprehension + + # optimization-specific + batch_size_train: 12 + batch_size_eval: 12 + num_workers: 4 + + # image question matching specific + block_num: 7 + + # image captioning specific + top_k: 50 + top_p: 1 + cap_min_length: 10 + cap_max_length: 20 + repetition_penalty: 1 + num_patches: 20 + num_captions: 100 + prompt: 'a picture of ' + + # question answering specific + internal_bsz_fid: 1 + num_captions_fid: 1 + min_len: 0 + max_len: 20 + num_beams: 1 + inference_method: "generate" + + seed: 42 + output_dir: "output/PNP-VQA-large/VQAv2_test" + + evaluate: True + test_splits: ["test"] + + # distribution-specific + device: "cuda" + world_size: 1 + dist_url: "env://" + distributed: True diff --git a/lavis/tasks/__init__.py b/lavis/tasks/__init__.py index cd827b099..7b8ad9d4d 100644 --- a/lavis/tasks/__init__.py +++ b/lavis/tasks/__init__.py @@ -14,6 +14,7 @@ ) from lavis.tasks.retrieval import RetrievalTask from lavis.tasks.vqa import VQATask, AOKVQATask +from lavis.tasks.vqa_reading_comprehension import VQARCTask, GQARCTask from lavis.tasks.dialogue import DialogueTask @@ -33,6 +34,8 @@ def setup_task(cfg): "RetrievalTask", "CaptionTask", "VQATask", + "VQARCTask", + "GQARCTask", "MultimodalClassificationTask", # "VideoQATask", # "VisualEntailmentTask", diff --git a/lavis/tasks/vqa.py b/lavis/tasks/vqa.py index 01c2bab79..ff6b2ce5f 100644 --- a/lavis/tasks/vqa.py +++ b/lavis/tasks/vqa.py @@ -153,7 +153,12 @@ def _report_metrics(self, result_file, split): "%s : %.02f" % (ans_type, vqa_scorer.accuracy["perAnswerType"][ans_type]) ) - metrics["ansType"] = vqa_scorer.accuracy["perAnswerType"][ans_type] + metrics[ans_type] = vqa_scorer.accuracy["perAnswerType"][ans_type] + + with open( + os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" + ) as f: + f.write(json.dumps(metrics) + "\n") return metrics diff --git a/lavis/tasks/vqa_reading_comprehension.py b/lavis/tasks/vqa_reading_comprehension.py new file mode 100644 index 000000000..254f464b8 --- /dev/null +++ b/lavis/tasks/vqa_reading_comprehension.py @@ -0,0 +1,248 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import logging +import json +import os +import torch +import torch.distributed as dist +from itertools import chain + +import lavis.common.dist_utils as dist_utils +from lavis.common.dist_utils import get_rank, get_world_size, is_main_process +from lavis.common.registry import registry +from lavis.common.vqa_tools.vqa_eval import VQAEval as VQATool +from lavis.tasks.vqa import VQATask + + +@registry.register_task("vqa_reading_comprehension") +class VQARCTask(VQATask): + def __init__( + self, + num_beams, + max_len, + min_len, + evaluate, + num_ans_candidates, + inference_method="rank", + **kwargs, + ): + super().__init__(num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method) + + self.config = kwargs.get('config') + + @classmethod + def setup_task(cls, cfg): + run_cfg = cfg.run_cfg + + num_beams = run_cfg.get("num_beams", 3) + max_len = run_cfg.get("max_len", 10) + min_len = run_cfg.get("min_len", 1) + + evaluate = run_cfg.get("evaluate", False) + + inference_method = run_cfg.get("inference_method", "rank") + num_ans_candidates = run_cfg.get("num_ans_candidates", 128) + + return cls( + num_beams=num_beams, + max_len=max_len, + min_len=min_len, + evaluate=evaluate, + num_ans_candidates=num_ans_candidates, + inference_method=inference_method, + config=run_cfg, + ) + + def valid_step(self, model, samples): + answers, captions, gradcams = model.predict_answers( + samples=samples, + inference_method=self.inference_method, + num_beams=self.num_beams, + max_len=self.max_len, + min_len=self.min_len, + internal_bsz_fid=self.config['internal_bsz_fid'], + num_captions=self.config['num_captions'], + num_captions_fid=self.config['num_captions_fid'], + cap_max_length=self.config['cap_max_length'], + cap_min_length=self.config['cap_min_length'], + top_k=self.config['top_k'], + top_p=self.config['top_p'], + repetition_penalty=self.config['repetition_penalty'], + num_patches=self.config['num_patches'], + block_num=self.config['block_num'], + ) + + pred_qa_pairs = [] + sample_captions = [] + sample_gradcams = [] + + question_id = samples["question_id"] + for answer, caption, gradcam, ques_id in zip(answers, captions, gradcams, question_id): + ques_id = int(ques_id.item()) + pred_qa_pairs.append({"question_id": ques_id, "answer": answer}) + sample_captions.append({"question_id": ques_id, "caption": caption}) + sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam}) + + return [sample_gradcams, sample_captions, pred_qa_pairs] + + def after_evaluation(self, val_result, split_name, **kwargs): + result_ = list(chain(*val_result[0::3])) + result_file = self.save_gradcam( + result_, + result_dir=registry.get_path("result_dir"), + filename=f"{split_name}_gradcam_result", + remove_duplicate="question_id", + ) + + result_ = list(chain(*val_result[1::3])) + result_file = self.save_result( + result_, + result_dir=registry.get_path("result_dir"), + filename=f"{split_name}_caption_result", + remove_duplicate="question_id", + ) + + result_ = list(chain(*val_result[2::3])) + result_file = self.save_result( + result_, + result_dir=registry.get_path("result_dir"), + filename=f"{split_name}_vqa_result", + remove_duplicate="question_id", + ) + + metrics = self._report_metrics(result_file=result_file, split=split_name) + + return metrics + + def save_gradcam(self, result, result_dir, filename, remove_duplicate=""): + result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, get_rank())) + final_result_file = os.path.join(result_dir, '%s.pth' % filename) + torch.save({'result': result}, result_file) + + dist.barrier() + + if is_main_process(): + logging.warning("rank %d starts merging results." % get_rank()) + # combine results from all processes + result = [] + + for rank in range(get_world_size()): + result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, rank)) + res_ckpt = torch.load(result_file, map_location='cpu') + res = res_ckpt['result'] + + result += res + + if remove_duplicate: + result_new = [] + id_list = [] + for res in result: + if res[remove_duplicate] not in id_list: + id_list.append(res[remove_duplicate]) + result_new.append(res) + result = result_new + + torch.save({'result': result}, final_result_file) + print("result file saved to %s" % final_result_file) + + return final_result_file + + +@registry.register_task("gqa_reading_comprehension") +class GQARCTask(VQARCTask): + def valid_step(self, model, samples): + answers, captions, gradcams = model.predict_answers( + samples=samples, + inference_method=self.inference_method, + num_beams=self.num_beams, + max_len=self.max_len, + min_len=self.min_len, + internal_bsz_fid=self.config['internal_bsz_fid'], + num_captions=self.config['num_captions'], + num_captions_fid=self.config['num_captions_fid'], + cap_max_length=self.config['cap_max_length'], + cap_min_length=self.config['cap_min_length'], + top_k=self.config['top_k'], + top_p=self.config['top_p'], + repetition_penalty=self.config['repetition_penalty'], + num_patches=self.config['num_patches'], + block_num=self.config['block_num'], + ) + + pred_qa_pairs = [] + sample_captions = [] + sample_gradcams = [] + + question_id = samples["question_id"] + gt_answers = samples["answer"] + + for pred_answer, caption, gradcam, ques_id, gt_answer in zip(answers, captions, gradcams, question_id, gt_answers): + ques_id = int(ques_id.item()) + pred_qa_pairs.append({"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer}) + sample_captions.append({"question_id": ques_id, "caption": caption}) + sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam}) + + return [sample_gradcams, sample_captions, pred_qa_pairs] + + @dist_utils.main_process + def _report_metrics(self, result_file, split): + """ + TODO: add other evaluation metrics for GQA + """ + + results = json.load(open(result_file, "r")) + acc = [] + vqa_tool = VQATool() + + for res in results: + if res["gt_ans"] is None: + # prepare test results for leaderboard evaluation + self._save_result_leaderboard(results) + return + + gt_ans = res["gt_ans"] + pred = res["pred_ans"] + + if self.inference_method == "generate": + pred = vqa_tool.processPunctuation(pred) + pred = vqa_tool.processDigitArticle(pred) + + vqa_acc = 1 if pred == gt_ans else 0 + + acc.append(vqa_acc) + + accuracy = sum(acc) / len(acc) * 100 + metrics = {"agg_metrics": accuracy, "acc": accuracy} + + with open( + os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" + ) as f: + f.write(json.dumps(metrics) + "\n") + + logging.info(metrics) + + return metrics + + @dist_utils.main_process + def _save_result_leaderboard(self, results): + """ + Saving the results in the format required for leaderboard evaluation. + """ + result_leaderboard = [] + for res in results: + result_leaderboard.append({ + "questionId": str(res['question_id']), + "prediction": str(res["pred_ans"]), + }) + + result_file = registry.get_path("result_dir") + "_leaderboard.json" + + with open(result_file, "w") as f: + json.dump(result_leaderboard, f) + + logging.info(f"Saved results for leaderboard evaluation at {result_file}") diff --git a/projects/pnp-vqa/README.md b/projects/pnp-vqa/README.md index 1537eeddd..e61f54ba1 100644 --- a/projects/pnp-vqa/README.md +++ b/projects/pnp-vqa/README.md @@ -1,20 +1,112 @@ -# Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training -Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, Steven C.H. Hoi +## Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training -[paper](https://arxiv.org/abs/2210.08773), accepted by EMNLP 22 Findings 🎉. + -code, notebook example, coming soon +This is the code for PNP-VQA paper. We integrate the implementation into LAVIS. +### Demo +We include an interactive demo [Colab notebook](https://colab.research.google.com/github/salesforce/LAVIS/blob/main/projects/pnp-vqa/pnp_vqa.ipynb) +to show PNP-VQA inference workflow: +1. Image-question matching: compute the relevancy score of the image patches wrt the question. +2. Image captioning: generate question-guided captions based on the relevancy score. +3. Question answering: answer the question by using the captions. -## Citation +### Evaluation +
Model | +VQAv2 val | +VQAv2 test | +OK-VQA test | +GQA test-dev | +||||
---|---|---|---|---|---|---|---|---|
Paper | +LAVIS | +Paper | +LAVIS | +Paper | +LAVIS | +Paper | +LAVIS | +|
PNP-VQAbase | +54.3 | +54.2 | +55.2 | +55.3 | +23.0 | +23.3 | +34.6 | +34.9 | +
PNP-VQAlarge | +57.5 | +57.5 | +58.8 | +58.9 | +27.1 | +27.1 | +38.4 | +38.4 | +
PNP-VQA3B | +62.1 | +62.1 | +63.5 | +63.5 | +34.1 | +34.0 | +42.3 | +42.3 | +
+@misc{tiong2022pnpvqa, title={Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training}, - author={Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, Steven C. H. Hoi}, + author={Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, and Steven C.H. Hoi}, year={2022}, eprint={2210.08773}, archivePrefix={arXiv}, primaryClass={cs.CV} -} -``` +}diff --git a/projects/pnp-vqa/pnp_vqa.ipynb b/projects/pnp-vqa/pnp_vqa.ipynb new file mode 100644 index 000000000..2ebb005a8 --- /dev/null +++ b/projects/pnp-vqa/pnp_vqa.ipynb @@ -0,0 +1,414 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0746610a", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "_qxQ4_bEhkrd", + "metadata": { + "id": "_qxQ4_bEhkrd" + }, + "source": [ + "## PNP-VQA: Inference Demo" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dq8t0LJThhuJ", + "metadata": { + "id": "dq8t0LJThhuJ" + }, + "outputs": [], + "source": [ + "# install requirements\n", + "import sys\n", + "if 'google.colab' in sys.modules:\n", + " print('Running in Colab.')\n", + " !git clone https://github.com/salesforce/LAVIS\n", + " %cd LAVIS\n", + " !pip install ." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "838168ff", + "metadata": { + "id": "838168ff" + }, + "outputs": [], + "source": [ + "import torch\n", + "import requests\n", + "from PIL import Image\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "\n", + "from lavis.common.gradcam import getAttMap\n", + "from lavis.models import load_model_and_preprocess" + ] + }, + { + "cell_type": "markdown", + "id": "2ffeec4e", + "metadata": { + "id": "2ffeec4e" + }, + "source": [ + "### Load an example image and question" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2da65ed1", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 335 + }, + "id": "2da65ed1", + "outputId": "31b7806a-95eb-418f-fed9-e55ee9cc51fd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEsCAIAAABi1XKVAAEAAElEQVR4nCz9a7Nu2XUehj3jMuda77v3Puf06UZf0I1ugAABkCBIiaIulCLJpBxZoqTEkqWU47gqH/J3/CHlUuwqlVJRUrGdVFzyhzh2qijr4vBSEkmQBIlrX9FAA309fc7Ze7/vWnOOMZ582PgL6zLneK5D/uF/8n/oXVprV+343MXhmePy8c3tJ49uR9WQPKNt276uflDPLS8e3Pvcz3zh5c++4OvBbd/OJ0AO7X4VZu1W0lqHiQGruEJOsXm7QCHrtLam5hk1XcprJXOrpS2n2GEGVZ8lVcOiVI7VJiytEWbaLiSfbB/N6MtSXZybxBKpqdqWdRlzSJjQAgVJBW5Oc1ltiQrledYr6/EmcRPlPaz1MU7jPA3LxeGQEmC/HeepsW+3H/34/d/8H37r5uZmWSlVOuRWtmSsNNlRrTQHgXP4ZE8+hRRFe+UYdvKqeb4Mfcbv/8arX4+3P+DN5F6kAjJtM0QSCTczmdz7pmU9V2pVndMywUxFM6SKjE3O7/npT25//HTbo0YXRevoXdAUJUqYI2AVu50ZVWyVUFVka02kFc1otiRk1JysCiFTU4oAp3mh+hxiOtSlIBHKELMBkKUAS4RewtAd2iXEJUMGzQ6ps7LopkZGcAgAAaQ1OxSEkoIJpKgYHCKEJfTFl175mZc/+5N33kLFPI8PP300hfQgiqkoKprByEpJcVMqhZXl1vrF4ZmlKyu0bfvNoyc3RW1Gs0SKxWG5OuqBjz/6sNNTbJCUUoDULr03EaKQG7eZCQoErra0NWJCGIpKvXr2xZ/9ua+89/YbH/7wB0W6taMbrA1oZUiNpCSCWWAJIBABCSVwFG2+7sIqmvc5I/IWpMBVW5GAOqpQSbpAkAlNAiJgihQhBna9hGXIJFuBzEDRrHWyBFvkL/7Kn/2Nv/8ffeN3f/9Pv/GHP37/Y5dNdA1E1+nhpGJ58Nwzhw8+emefw7ybXrEd/XB2aerLzrLILiXlI1Ud2ySSkTcLc5ZkhdZZWSUOSEmxUildmpC7BGmqxipKqZk5atLZzbDFSEylP2gPhkIDF4hheuMa87piAkomQLfm/aIiag7zAyVK+Oqrry3H1S4PX/7an7395CyRy3rwZVEXf0ZXQz64vLg8Xnnpex88ut63ESXmViIzdDXJ7H548MLLr33x85fPXh0PnsUW5TBq62YbwlzNV01qBiLZjVJiJR53X6wodo9Ro22i4uVyaF2YR/MtKEebFdRMUcO6KyLLXaARGE+pbbnqNnpz0nZNUirVxGKmorrpjHnO4tqNsx+0l/eOas3k9lqxVa7HFfCCu5Ufe7NGCYGwoi96sVxk9wvxv/Uf/I1/+a/+9ZPHn6zSuvdTSVkUq1XsBhW/gDnzhudNqE33mULRpVWMo/dV+RGu365Pvvxg3bddIZMROXqYarhKoOdoJupA6ZzYyqeQKIFKWBaoQlN2X47I5/zB4V48HeebuWugxkkE1pp4t1RNbU3LhDVnUo2Zg8UxhCmipsKtQUzN0KmeeY6ikW4ptIT7AkorVWD2IZDMgjgABaiSUSZUQoHSAqniWbqbQhKcFGaSQoMAEhUDtwIBWHcfNSRQLm7USugUlVX9cLM9eXq6nkJ3K0kSRSQMoihRLMQQ2VrpzibVD+vauiiHqG0VT25uq0rMjWxZSQnJ/fQ4T2nihIiEqiWUSVU99H5QLQBOpzy+uaFAqCLImllOJDOEvLn59L2f/PB8+7gY6qsti5gVNMXKtNMMkrlTSrJUkqgMF7HLy3stc5+3ChHxyhl5IktERdVU/sav//W33nrzB6+/Y2pElYClKgokWIIERaW6mUImtEyrErOQJWopNTWN+sWf/cJv/K/+0b/93d978ZVX/sHP/Zlv/dE3fuaLr/7L3/yffvLeexkMFERyPv3xBx9CUkRUSWxSi2MBW6W6iBoEMiMdXKlucvYg2qH6UhEbB5eQUKGVZ85UlDAQCoiQIEkAZs2sJ0chSkcxihBo00OJpUw0uanQ1hkjKwCCJSBUoBJxElF4JSoLqvOdt74nEAE++O6bU+XhZ195fn321c985rf/5Ldcjnj+3r2HV4cnp9sPH9/c7mECag5kmKz0NWxdjw8+85kvfeWrzyzH9KncCy7amrdRum3Eourt0FvMXURAZI1hLZsnRmtNqPtpeC7rctkNlDrVbYlrLa1Xys0cPOhaI0QKQniJy45hpVaZNcsVPkddgCzL5Xgxb24jRlNn61FUw0NbNds+JWNfF3jzOfeucmLAJDGM3aREAcriStEZMlHL0irKxbu3L37pc8+99L/+w9//xrvff+d0vWviwo+oIQ4gz6ZWpiZeeYEeUa46FuOwe7BjSWk04Ic/fv8LL/xc+JQtUlWaRO0GNTQP7WW0rGJQVIST1eDaRKJ0KoSQVC21ogdcuVzoYkdojBE3I+aYmft1x83RO/2AVMNajKx0KRpJsFg5gpSEuZv6VMyGMlcoKJwBipgyaChl0HoCm4SwPLMACGHCwiIeQkjCKImuIAIUFIgEEhARJRVS1GAAAKBZUQREwTISsG2cLw59PS7vfvB42099WUVb5VRVqIMO9dTJCIqirCgg7i/L1bKmhVRU8Ob6Scw006ZuzKSEICRYQ62xJFki2SmTEuDSmy6KUIiUcuwFwpSLa9Ffevlzt7fXjz59SkjL4vn8yfdfDxCyqDawcmZptuNFVXpMREIEKo5OzrKcimfu3fvSz/7Ce2+/dfv4aVeNwr7vZAEqihI885nPfPHLX/2Db3yjpJRVSMAAMQgFlEShQFUVtZhTrUUVZyABASoFoEhiuXkyfus3/+WU9uGHH+Zp/+ovfm0/ffof/J2/df349p033vjxj9959513W9+aMBOlBxJRrLrmUzhW6aqXHYoKiEiwprYunLJ1SJtrRjbrJUfa7hK2uWoH9mRUESRFIMWC62KqWaeShCtgcwhRTbrRRiUNQAyn5mZBzaSKQYTutlB71a2QyaJMiCRFzISQksePPp2Ip4/ef5f4I18m07/w8NLNP3j06NHNbZQqdABnBVVX8y56sVw+/PznPvu5ly6WHpzmpZFW7tZTKoj1sJbEZDhJ7+Igppqdo0x6V1TOtvRp1rhsJ9y2uXQ2XbMgmGPM9eKCe82p2g5qkXGKyK3menwgIRjhOe3YQtucZjW9tX1GOyzCICkb1XXMjWNbpfvi0r2UNzObmovuVSSSbCaOmUzVNifBWsRb66OSwbZ4HVdUPNuv/vqv/ZUnv/S1H731o7dff+f9n3y4J4Ttni03yAaZHJ09VDLLM667XAguUSZ6lnYJ3W/3J9wf3r/cbp9MVrLawSNalbqKVcwE4CKGmqv4jibuKrLmgMaASlmDXagfpN2KLs0MMZdWywWwI6L2KTF2nm5vz2XLwVcVIxTCO9gjQEkmi1U6MpBDShu7NYgm1NwcuyjgzkCEZEHKVkTqpl0ls3Jqa5WSJQlSSUJUBKGKGVpUakDh6cIKEqKoMkGRuLuHAWQGWEKYX58fn7drMk6nm3VZzVtB1BZDuS/7SGgAligqRbqU32t2dXmYjjK17OebU+wbxKiWc5so7Z0Q4SStMhVCFYhkFcC1tcvWKDobqjhinLadgEoTLHvIL/zSX3j+pXv/l3/yT8XXRJmWA8yECOsce1bRvLnM49INmGhUSSWgkoDKIlqq2XU5ruvTLotup704RQxQp1Tppx8/+if/xX+ROaECAiSQDhEq7uC0UkVNe0KkCQCJlCRxBxilSVPxM+2DD58+/ui3demh8vDh8Vf+zJ9/4dUXbx+nav8Lf+mX/rt//j1xKbaqXbRhWjKhSkwZoahzTibUe8tuItXsaeSVancYJLVMTYiuDZJNVRen2gFrzZk5RCtFoubV4f7aDrenp5ySpdpazglQFK2ZVqZBRBVlihhTsxSSRaDuRnsUhHcDtQoqmQaklEANFloiLlKs3GMn4GX7Tz55/OntCFXVhsIsJhTQdnG8/NxnvvDaZ5+5d7BmOdOoBpWSKg0TY12sPeJWFK33c6XZsmIJ3XeZvYlBLsSDjC3T5FqHlYkIwqIyOfrirv2011LuInNusvjQxuy2UfZY+yoXLXbJkm5NG5oezmOIty3Owly1KUuy1u43zBtMby6S8xTiELVCOzSNGSeaSgZJ86QhVYXTOS32KuumTlXoRA4e14v2wvLiw+d/4ee+8pMP3n/ze29/+IMP3r3+1KpWV1kt9yoAsC55b9YVRF1SXWJOLVzJD27ef+Xhl/DJDc8oapEA2GpImK6eGuKzsttBqlr68DB2JUI3QFEdJcS0trZ1VO1akaJa/R7WYOgyaxlnnmI7J/fb7WzaRFc1dTNJCkSqGCw3iGqJEhKTkYKpqs1UoClMBE2hopMuHihRE0A0XC0UQQlIMyUF5QVS4u4nUisAqNbuhn9CYEIa0lWjSrQVpaSAu2kszjdPv/md7+ynG9OmNBSgSZR5k5S1G9T2OdtxlDD29fLZq6987mfeff/98FpyjPN+s29TSvQg1Nd+9tW/83f/zv/tn/1X19cnEyO0MGkVEFdziksdD72JnFXKc5z27Xwm00ypBtXPvvaZ/oy/9pWvHA6HbWNnE8vIqFRREbUiJhSzMjbbJ7yVHtgWaZVzM4VBZq2n6I9n6ro2rKeIMYNQhXoTb6jSfQZLTHsyBaqiySAqkQSLoqrqYtACkyFlTKOUEFoKrMHee/tP/9P/8LXXvhA3+i9/8//9e3/w7z48nf/HH/1/Hzz34P7x3uHq/huv/7ssUJekDXEFYCRDRJZSFy8ALNmL5yzllGSGwKd2iMnSoudF7Tr7oWUbJclyoYiVr62N5il7pq6H9atf/YXzk9Pbbz5WqIqhmFlCURNxSIZ3JaXIKiYrJEkQKEFgqlIUFUW6wBRQwtlEkhTCUwrSEDuEYInA333/0xEeKiGs4qy5SLuSRS8On3nx+c+98tnLQzv4slFde0PsRZWO1YM8mqU51ENuRUvoY06BmqqZiLVZcR67UGfOQ/dhNWOTkrSLYFpl0DZW5OzSqvUmyDG9d0AvVztvOW1YRt5xIKPMsHFWM680pagsQVB2KmMc26EMhDTvtdQdszJmeu9dXbtWngVqdqyKnAGHiBi0Aw6xkhIPanMg0sXccLi6+vz9q5c///lPP/n0+2+8+f033/zgk4/nGAd1g4qxhJ0sqWsrMKaWNj053xqPv1JPLh+YjYUYSxozR88ST4bY0hMUHYCIqlDmLiJhEuagloWIbsIsrKoJLW/KaolD6rQ1AZVa9WqR46w2T7dVPNVk5qSqNzNrRRdB9dIIQ8EEC3MUEak5w1wstZq5FVWayFqxl2zZDVlqJWqlnVmSaTC4T0XWcE9MVW9CUEYsRJSJCCVDCKMXsgStCAFoAO9OUIF8/NGPQHPpOStidheFTgJGYXhpRxG+UyTY+vHBi89+dP3RPA8d+6f70xM3bV2Axfuf+/O/+kd//K3rmydFADCKwbKKKgkrY2/H5q5SFTkY53HL1CaLmw1yvbz623/373346Yf/+D/7z+a+i6xZVaNKgyaaYupq3qXlnDv3pzF07mZTYzkejnBLeA0UjCPmtt9b7z+Sn9zcXmcRBu1u0s0gbkuDjLSIc9RP+TpBQQRCmHFQVEtVUpTFijwXCwAFRTERSMTIP/idP/qFX/4rh89d/HvtN7769T/7J9/+5tuvf//JJ588+vh96KrLEUKGkiVmZKBKtAQptgiUQkKMiwi16GijWDonkrXmvNa1zrbSsVrIwTV8WhepnCxmMrqgiZpdnaLRmrd+2qaI5thAQk10jTTTRQtiE4XcBlkFCBQCtrVkagpZlCCESgo0D0QTeVpAIMneqlSQLFGhiPzv/uP/PRbdKxRu9BLxtjz7zGeee+m5lz7z3NGOLqwut+Ms0GeeuZqTDKDZYiZFUGiWthlNdBlzg7lpE7Jkc5VxM2byoHZ5vDhXEmViEeWmDRoEF4/cUSLWZ2xqZXCdwCIN69huZOXYk2mltKYiFJirbfsJMh12WZejt1Enx0/lpO7NiG2OFF4ej7cpYDaNo9lWMuDeJPdwlUYotGbOOXTxG4FUXbhLzdMcq3UGWFqGvUYbvL69fu+T97//xlvvvPnO4yenKK4CDZkxNsnG6pVA7FY6/Wv+8OfXF27feVo5fPisKKs7NlFAjza1Np9VWLi7MCjRPDRQM4Rh8rHub+bjW50OqPnZUmPvXFK1cofkpPXoozgjB283BCu5zYxUqQaBGaVLl6TOChNFTtIAF6TIUEJbd/EJLoJFkGI7FVWjp07TISrJHrvWnVSGqDQEU+jAXhwZnSC1XAVMSCo9iUAppUhQVERUMgEVU2RAoXffogtIlMFMmoqJAVouI0XDXnzm+a//+a++/YPvPf340+ub0+Pra3ezZkJlYUZBShUgTRzUyoSy7uCot6tlOVq1zjH49Hae5t6lL3D1HJhBI8RI1UxxwnXmpImm6tbKTJq5LabN/abm9XbKCAAqixm7H5S25TYtfbn/2Z/50svPPP+nv/db1zcfu6r3bssBNAi06CJShSJGnJVbpjKTU6yRbAUsonRPQGOviCBAgRCi4iKqDi2dieODZ5Zja8ov/czPf/kXf+7q3oOnHz9+43vf+973v/XRRx9y6v17Vy+/8tIbr7+hMithFQoJsTIpL2ZKqlK1tEELlajUVDGTgHJggWhTsFmzIwkUzdsilrmJxJLM5eLZV3/2YO173//jbXvCyIwhUmbNZC0VipuUy8yKfdt/qqSKuntJgxQzoaIaFSZqmZTsTRA4F1gkYIpQEKKwJgK/lRRKVl/ZDLV2efj8w+de/ewzDx64WUYuvmblpSyTU8a4zDZL0wwHlVGxBRZhO3CwRF2lN50o17Zfz+p+7OvNzdb6GlFubWbA0HsTIIJiS2TCRAUydtPY5naw47qut7HNUV0xt3HV74UWHXOcrDjBvdN7dzRRbtCW7L3tvKMeQtFNvThTWcIoXcRdarsdWeYHq1HzfBJV90NVwqyO62bMUZfWonJCzI9RhHPm8KU3dGm80OPXHnzx85///Pt/4em733/rO99//dG7P+JQ1eXQ2DLKRqIaCMiPtqev3HvBH7R6vMMmejWWUsI0okT2ziblU3ZDNLFSoYLJoMgqIYOxBwsphlKhuqdICNlQJmCDtBPRiQvt3kZRdDZfevocMSrGSJIpFJPeVRxSzSeichekQIRLTUklpDLl7FEtQzsURVEXVBpToVEQCgGqiqpmY4l2FKfpiDItGgwilAqtSjM2QYiQMJAoiiihKAWikKTg7i4VMMlEirgVYShRtea235xPqcvxuW179PS0q669NTPJygCbKRChifgpYK0KQFTVRNdDP2RV1Q4fuc+5iZkqnGptjmSivPoKDYyAMwkGQRIeYmbSrZpOm91Gp2G/g8JYFeG2zfNCN4JE8unj99+V2yen7WmTdrCuVFMXlR2iNJZQMur2sOhiPYuM8DmRYYf16vkXTh+/z50FklJFgBAQFLh5Y6VVuYg4t+uPtmu69d/90b/6nd/6N+vFxc99/Re/9ku/8Bd/7Vdvb85vf/c7X/7iz3/4/k+++53viJdZQLUmEixQI4wIQchUpVG1lBR4GyRTO0UxmQnVGDZNFqJJybKIr1o+nUsTLaiIre7NcY6MAdD00NtSUWKamsqsmvs+7yg7A1RM7MgsFlRKEAK4ONOzArZlGcWq0tWUmKikiKiKEMO1ehvLIc0s2v3ltc+9evXcw/bsPU64r4tLBpt3W5a1a1fKxFJWI7eam00r9F0PdkDDFgFRJC8ptu/WLlJpiXsXl+c5mlhlAEnK+TzXw5oOyFAoSpww1cVhpMBv5m5KabLNUMpWoWpGHtqyjR1uq7qLzqxNIiWPdUcHc59zjr1pyyptZoIRcaFmSWgTFcxRMbG0frlkVEg2VZJG+KxGLCJnCqVR4JZBMV+JKRJAa8fFKO32/LkHz7785+/9wte/8uN33vnB6++98857nz7+eFOqGrOnlCy4Rr5++8mfee45vd0ySppqpZYk2DSXzpqWKVxQ6dO8FGSoKcVoqakJm2jCWYWihgOOsQegBhfVwVmOVgJwaYtAmaIt2ZtMr2gQidojNgYMCj2zmWlTdLNWtU1ShYU0FqhTOCIyQ12bOjV1gZVq6hFGkoYwUgUaSlW6YBWhe8pMsEqUNJWCWPvpmWQFE0kVEeLOmQZTSiEFRAFQFQAlSakoYkqVqSXGvvL9/Wa5WB9df1rIZb1/p9BVooBFVWFhYUBkJunuShHD8bAeGnVkoN2ceXva4eJLQ3mkVxTMwBTTTCtxL0smTCglZKZq9+oeWtr7SXh7u1WEAU3EzaLkH/5v/9G3//Ab73zn7W7rJtenj37y9IMfCUBpOygoy23p3nTJ0IRXAv04hMzqhhQzqnH5zKtfeOazz79x/TRO12U6K6uocBVJlMNEFEqZ0KatEZGSyknvWlXb6fyN3/m3f/zbv3vxcH3xpVf+xq/9zSeP3vvn/+3/gy5FQJKQEpCJAFiEiOHOOJZUgaSClQBKl2Cx9lKw0wIzY2ppRtyeNjmINe2yaS+V0/XpytrV8eLJpynCJq21BarWS6AVaS5jFgiBQKREvB+lX7jkmFkcktPuLsIkJcUG0DJVFRBUEVCIQRsMAvpD66EGj/vPPnj+lc9/9sWX4ZkuCtWyaErDUqquDiB5XmxG3p9+QWHkycCDF9M4GysEoI9iNiarUwV1vZ3Xi2MTJyhkb81NVJDcQTRpmiYm2WVWLrZKegrJ7IuL28yIpDaxhMJwvMixsZjS0JoXrsrDNHNbtJ0qW7/IElR5b9171Na4w30T6Sa6GJuQFGQRgVOVZqK19cp6ZpxriuqaLK/MlFn3jhcjZKRsSBfLmVm5tt71qvXl+LUvvfZzX/3lR0/ffuPt73zjT24+vXl6um2+wIe5/CRufsbu379/MecenDNLCwSiD6ulolSUpWG+AV5oJWloxhHWeKTgNJ+itCNVzpF0MaKsXMqCQ9ZYTc2XgShTLe8dpOw53DqHocwaWmfOPmdORu2zYZq1TFXrsF31zDKbLhrQMqoWJCp1kxKF71LWvImCQBOAyQwpV0VS1AA2mloGk0qlGD3FXKtESBdSCRcpalEFSBaEqqK0hJYQlSBVhIAQWiSraHoeH73zg6Uxa/pySIsCRJuarxTJmtBLOZ7WlMyFaoWY87AuffExd3fEnuO0g9nv9QXcT7lHHsSE2i0VRWsKwwwoygQASDGRVsbQ8FX0HLHfDIWZtrR+qnjhhWd/5c/9hRx8/dtvNgkoDB2WwCAqOWNSE3Oq9VikHe0wWzvVgpiGsTIStTUJW86hD3u7vLj/6Pp6MpMFERVnYZWuojurFKqarFk64W4ER3IxNk2BwpX77fzet7/7vW9/E4RJV3GhSd55W00QSZSa3ukcAEUAFJkgNRdQKCO12ERrcvSaBpbk2UqqUJYzLZntGmy3N+205O3jDxlpgu4ilsFNBA2tybJvtxmpEIiKm/e1L5drO8JyoOeYcTqDk7iVPqWqVIoJCpCZoFBAVS1oVbqJp6euy8PPvPzKZ1+7vLzvS5/zrKc8rMtglFkEnM70ILrJKTcyh0lTX9tKVsxUFYciZhfRzlDALc77Um2qqUeSnLG6ZWHkTNcCVrRF7Unt2nozi4oJFZiCzZeI2E8ntMOoXNz223NbWrlZam6YMg9dhPCmFVPMNI3n/crU3HVtYwsrFfHq7emTs68IZvOV1pLD4S7drdD6djo/WJdUGxCsXTA7Swt7qZlnjW3f7/hXOSe6d3O9d5xZzSjSDv3YBu+99NLzDx/+yle++v5PfvTdb73+k3ceffr0Ue63t73eP+8X9y/r8dkHaEqlp6QuJzZodgkTlk1ISDZ6g9EhQYHhZt+HCZIsEYuk5c6Otsve4cHhU4yabsVY5+ixzKpp0N6WGa21W+KMA6pByrtXdu57cpscNcNDmpFNAXGzFBbMwlIKdCUz95ASSGFOCNy9mgJSCdFYxQKEkmFIpbp0VpI6pEnJkFIpVe6Z0yxhokimVqQU1IrSRLQEdccFR975JrSqAAKYrPzo7TfJUKiNRJbZokKqCwtVE2YTzRrVl0BVvfDZl1/43Avvvvldg+xZ57idFX3tyxAWHrz43N/+9b/5//lv/7scFVQBk6E086Sckqqkql2sy6ILR8Cwg7fnW9LUnGJZ8lf+6l/7tb/+1/7Vb/6Lf/Uv/nXXlhyahlJYmXpLrSoIKDq2xPl6Vzssqda1LeGcMEKuCpIzgXHeZfgixqziRBGGtHJZWnkJnZ41qBnQOe9exCgpVUgSRJEFSHRVwgBWhbSSlJHSlQpNAKJAGYDSKUSDO4JCg0MKqjFoREdl6UyEVc9Cto0DKib00mLUGML945+889EHb1UkoCauuUT3cF0CLRCVMwsARBY7lLq3dfUlVLTWFtJZvGq3EIyuMS8Y+9gip5t4+dRRcOHaxUtyls8S18O9lz73+c+9/OK9y3WfueXp8tA14CIzuJiPqv18e9EvwQw1LTRp0tpJ6rawoB+Ky4S734p4q2BmKcJXM5ix8dBWKyFKHE+f3B7benE4TomWSMJ8lcDIClQyZ7FLc7VtqJuYUWa5uR+XEJYkCg8u7s1xSwEct+M297o6HsUgB+/aXeTxftK+YGI+uW6X63I8AtHQQKk5xUWaFQTFubPLKmwFoihNq2REtWTvNlmqBmLkdNf1mYstsqq6GbyPqkR18eaisFBbHj74wrOXL33xcx8/uv7wnZ+88Z3XX//BT95/+vTFzxz6Q+eT0lCwUqh0GrGUEBmUzKWrJkokcrpy7T6Y7jiGdYuzIbwbk8NSpEwSZVgtpUq1NgADS0kmk9aqKSEIUZmKtYiWozGGUaGKfs7zqFkpLBlbUqFN804/EhUUUVIi0KSoWmUJSIyRe1MTMThNpFyNWmKkZFSRJY2qAlUpqdnUKgnVEhSoKEGpqYsUxahKhiIFICUJEDBCCd55ynhnUhJnMYtSJXPLWbSuqu7eTXViD1D7ilCR5suy3jseH2znm7iJsaebiLYaoSZzG2+//U5UpEggKYICSBEQXahNYm22aEfAxFNi27aYqWrUIvDCCy/9wtd/8f/4n//n158+OnZPl1kU6U0VwkoIhaQ3tcXGHjmtiqfzU0CldbFefYU3z1DqaqnYJbfLi8WEd9BMpWnr5k3nouhCKp6w7G78JAqipovfsdMqU8JdJCZoAVBTzQsFKGEaQEUgSZhoFQhzsSLKCRSSVRpRrDQIpCgFMS3VspQSoaUZCjK1WG7CjJwkBCICt57oOUubYNW513Z7Lg5VXCxH+rHZsvqq9AFJkeZoFBEEukmuprRF++W27zWHgXSnLvfX53G+nvPmlhjm/trP/NwLL75wuaRENL3UxaQNs8WxPOhtz7pYOlUps0Gai0dj0FKEdWmLRB5aE6s5hzVDGSn7GOtFc2TOneTaDjJVV78ZJ1nd3WIMaJ4ystTacSaT1Ze+WCeLyY1xce/BjHPm+V5fmi/niDI0VRuUquPF1agRCEAu18MiOHOE2dxvL9vxYl1HcUiyq6kjQ3whVcpaExqzCqRFLcvSy1Aya1+6VQ4l1uNlnveZQWGMfVGD5Jyjy3qprUlNpo2s3uBVlSyGlHl37xjbYeUrr937zEvPfumXvvTzb//o3W+99ckP33/pnuctDS5j9iJrhrWoXiUglbAUy5wY5mXep+eOuM2dB+jAhdQpQdZBOTertqDVbbg4FtYxqoDNsiQX853cIqBSrmreA6ImrUdoJ5tBNjFt0eOJFXfqzJnztJ1p0sQK5g4ohKaqUXchDDFJIFA7rBHu0xyaJlqAaUHUlUSxSZnPdJMUUJSqjSUVRDVBMyAUorOoUFMRlEiBMKgAw5Qk1KCAkCymqDqFJCkECzGZRmFkwM2tA0J4NCr18fnmfm5t9etbbvsJpX3xFNah66zx6c3v/JvfOvRFJFSnQCiaNQoi2lRa162DyoAqyX3uY9tFaFaQMlsfffLh//m//McJNFeI7FpJaAK5K6PgZyldbOldiGO7CNXzfipOSHKeZSYCoeMmdrVs6K33LW/10M81RbD07n7Q1snU49mEGNZ0JVEpnINO2QWTZ4qKFaM0yGxMwSI/9UCIokemECqEGuqnjlUIAE01MqYIaAK3pCEhSgJA3YWYqk3ktCmAZmPDXjvSjnCFJnIygdawGiyMStbkXFiswJ2Aa2aiF735ZcOybYQYfUsZxaZ1oQwuNXOKWtFFr9TOLcVbvfjq5xvv/fD1P9l5oohK+vMPLy9ak2hgWss5E5pJYUavcm3btpsBZJeeycwCVc1x3mqelmZ7DqMiUxfdRCbReusx3EqFQqj6VoGN1g8X3ffbc2sWM/12O17ee7qd0+GtIdnKUrlxRkF5qpgMuqEYTWBmOePgy8zY7wz+YlfrFfbpZqvIucKOxwroNpqZLO3EIsuALKG4qkdMBXvH3Hn0JUWihgTbcQnM4jS6zMxieROphtZISCfh4lJSpmls8DHnumhQCqm9gVEcbBQYi80vuegXf+5LP/PzX/n4xx89/uPvxaPXZZ/TXAMCyylW1kynnmlOiEufOVPujn0jytY16sm5Hw5T1W83LY9VXSh3w59ITSAIE6TLHJBNmZHG6m6iEqULaZw7KkQPqtCa3qleNptlA6CcNcDIOSViYh8Zomba3dvaNSqCqOkMdeuchEqp7gASQqrKRDaIe8Osg1gpkijtVJgbMlr99HZnUcRCJFwUWkhQBFnCcgdTQcpdmkeAJKQA3pHDQKAIE7hQhVqTNepGz2K2tGZUwIS+yFL94r3TD/dxvdqFW28NHsZW0+l9RZWPgJmhz9KSCS0RNcGyWDdjscDJuN42oYioqal6lYiQCEBFZCCiFASlysvYUgoNrTcta6VqzQxjbISIipa4qgtnDWKO4jhN3T59J1/P7ZSF1pZ7V/eSVmWtSUqUkaRbUzKHu65DwhHIylEiRIZLs5IgigGBSBOKAnZHW5OEECJQMFWqWJ6h5CgWzGlNMlAETdSABpslBv7UqCJWIp3KUiE0lWDdjb5yVBytFWTMEkJ0GsMgRFVmXt8+xRiHw3Z1+Yy5VxG4bYvVriYXjbmL0B0jF+1Xomypirxo4XpYBEcf0RQuOf3QPPNsdjRbJ25bt8XX2k9Ng1iy0FuzriR6+qnKohZvc05tDQKAJl4Q6e60B93O27b0BTTmnuKP923D6dCOkiYoFYf4uXh1vKxmT5FDqh0MUasuFmIubLWkcr/p7iObinHOtbdzFswmM6X2KEitqszMZMAMvtKrvDhcZDJicqG4YkiyBDmyV4PUGNoJ2Pk8bfGQOvQexFaEuI4sjO6+CekNrJoBc6RoyVbVXazQTZt51LmVUkqQCJOy0aSaYaPt6LPZouZsLz7zzPHrb77xwbj50Kep+tRyI8Z0tqZ9hiCxpKg7c0ZNCWnlK9uDdrzDIqZ0rGkinsAUaZBNGEpJdZQSHBIN1sWE4lnDqlIryszctQugQlQzVWFXWXOVqoHUrmSKOHU/o6IQxczBSPqdHK2pprJUiUoKI6pgKpFJyowO0HVUmUBQ4spQlaZaRDVvHCgScN5d8maAVGQjRARQEYoYRSVChAIvAEAJ1LQCSgjKaYSVZjFWt6NZEucYnCMzqnlbLkeMAcq6ns/XJtaXo1oxPaqrp2EOGaJsIa6N4QHChBATLov1VSLYdK3M0zgX2WCUI6igzLk9eHjxpZ/9+jf/8E8n95TUEoGKZkpZdvHS5gZ1lALCGvuGGn01QDG0CbzVq6+99uEHnzy53TIplY8/eSQ1IbTUfRu1rHePSJBJZQMsW63OJQqzJk2WbvQtmVJtTmF5N501oqTKVJmyUwEWUlAKmSg1VZAQ8SoFkyIG5QBTNAIEVUgqQlFVRmEZgLu3bvRysjgqSlJhnY7GEMmp2VWNPmG6hmnKHhVJkbHfju18+2gRl0X75cpcLrQjx26horpJ1z5FCErXmjILIrquuHdx2G+WrCLDK6Y4Zt0062bi0j1tTx0d2vV2xrE7qEmcmQL07sUUUUm6wArapVBiWpxjMOecLJFm5hCsrVG4xfmyHxUU0O8fd9bI4GJr6io1KpP56ObTB/euiKmFGkNZdvTCBJ2es0bBUluHuWBdGHMiUkXboaforNKsxWI3jFKBXqhveU51sd7qzhswmh58sb3OrcHERuC0b1fPHBSY5rPqcFgxp6geVCaKw04jmtGOPs/ZNInqiWKag3SYALZFaUmnWikjiaQGDlYtFmEP9/v3PvOXv/z2e0+P1yKJFss5Imq6iVRfidTYnXR0o1A3CkobrIeqVJPN0ydEAHVRdlY0oYmX+pl1VTwzQ9kYhSblUVkSdxBA1SpIDlERSbGTVAHSUGx2YXaWbaocdRl294csJDIixthmcYqCzbysoFQzlUaWVhbocMJFQoi5B01uXMxcK02REAkxlzA1Aj8lTdCqm0r51kGGoPRulq0ZQCudQBo8BQudhQRKh4jfkSam2myujqUvZdBdzqdt5DaHtIyMeP31b2KcZ+TajjAdGoCnmcq8pCE9aqsmolo2JWaDTsHhcrnUZUQBFdJOsW9jKqSJQxcWRp7+yq//5V//9//GH/+7P/qj3/+GaWaSIsqCqFEnS9SO0pSEi3WNfYtxEhUVm0Hzfj1u/uE//I9efOVzH7z/wduv/+gPf//f9ss1rm9FD65RlefTNvPW9bLZcTFdup49B23xdacUpwksbVTiQp3WeE9Hjbpt1WQ+jjaFcmfSbWJ7VIqoiIP8afaRwiQkYA3iIrvM/W5oZ1EQ0JIgEKZxF7OQNhmBaMZSPWEWKfSu3XROE6nu7F7sM9Ry4KQ2Kcf0pYqSezEjcebkrO00Xc+732pfT53dO6Ht4vIcwX0scHqeXcAckZnZVDlPRPjFlZ9zNOuQ6n1V05xlvqJRPCv30+324HhkhKIJQVY0792DMke0gpzzYl22MSZSlOhd3eV26NqbqTSj1Onm9oZh3VXEyp02Is00yBKtkQcVu7w875svjYWUutSDnrRJnyCjLwddGjyxbbs0iFpbumYVmFaqgsjSGlmulycG9jE56tiVxj2HSCkWb4w5AaErOFhtbV52fXt7XNf1zuSX0Rc/x5yZSF9ai7EhEtMUcO2lnAwmD7W6+sZRQklYZ9ScDBV36NoqSkcpBSI6NV/7hZ97/Ec/Ov/pD0HYBpvVAOYMt7JMDFUp2AytFhRaF8yctZsdqId9jkCuRW2yl+7qyOquVsLA3qQIKTVAa1yjyvWIRgYMMeaugGuxWBaianVQQlTKoWxwINA9vUpEB1c4vZ2bVVRl7hyZe9YuqsIuogYVVShFFKSo8C6tDEVyj3O3llaEtKYUdsCpU3Q2QU0XmSYl7UxvVVBJVClL2aFmKzkVyHCWGJE6wt3UqrKympmawtewIzAuL1qO/VQiJiZySM6PPt5zNFurao5b11KY6SBRoiXm7WHWzjtfvqmI3b9/+drnX/74nR9Jzu5SEXPfCKHpNDXdX/niK3/3P/yH4+n+f/0v/+m7P3ivt5aEibIMUoWQSpO21Np3o23wGKjbfdtFlmWNGSJC7L/8K7/88PlXPn5y+uLXvnS8eu549MO9q3Xld//krXdf/2OITlYbkXl9ljGkrUsbHoflMNugiRg058FQJtepyEKcW9NDb53gvPTiNvZp5zvNFGIppBVKkHeODU1UlpZSmMUqIWAkQAVERFiila7MSlMpbcxS0ARVZPCOeaQbelOryXRIl2yOs3L3U59c9nsbVlmrdjGmQYQ5OCIzK/bYMK6Vem79bLKPW7O2trUtohO7ILJOy3o+HM5zTyYFfhKu3mXxIeqZpncRds05Lhb4um4xNcpcUjy3fVnblpHX0S4Og1WCrjrHPI3tuCziJmoI9nvHCGx7tMteHMfjpUIqpojcTYjdem2DTem2FC+bjjTqMmb0LoYVoY8f3fT7B3Obzt1oGbFHmvniYw7OuDocTHDaw40OQDQh5zgdrFf324hFpFQWX84Ze8wGOXMTWzoWZsil7xHt3mWNEV6sZCDJ4QjlZB1MMjZfIEZFFqtSAU+IiewyAUxmd/UURQuvFM6Yqh0wpVuBEUvX1GJrn/3Vr3z7jR8cJuLgTUV3iDVoCxZMvBgshVBowgI7cOyHkXiCzK7NwJo9hCVlbiwkjbMLN+QKbSUBMZduOVT2QEnuKgY6VIHdQqNNOqRcq1OTjinzACIzsFoHkkcdQSsczMsyMrsuNcaYY7LmHASJRs126GpwFYpm0k2UVjOjMFkwCKeWJnQyXFuRVeIOy8qgCJJKFUAEQYa6FpQaYIGmXVlWUZCkeFWYeDnSpKkLvVgm2Mc2cmpfezOzjnCPsnZESNaYcx81VOhNKMfd1RoDM9VUoJVmWoFml/evXrxZn+xjFOpmezJiFzX0NoXHZf31X//bv/tvfvv3fuf/tzp6Xwq8E+G8NOxOl1hX74spCLoVsJ3HHrleXDAhYgQprKo//L3fvrr30rzdHty7+NLPfvnimfvPPf/whWc/+3///jdNbKJWbYOyS7Hmfp6FuDmd5nLS7svlhalIgSIKnIVc0SFGvZ27Qlpr1lvaim3klDkLOQURFBQdQmqJiFoqhaxiFVpjJatK5c7I6weiFacogZ2zoVyZqHkXCgTMXNUi2RlpPu2nsdE5RbToGroLz9ocKk2PvAt1j2ZZimKMrCqUjCHg6XxW1c1brYeHOC5r205Pl7hy7DNPIhQVN11WtkhMIQqUViaoMrHa01SbeQThbVSuS59KSWzXt6t3VWwaXA6326jVs5ksttDGPj6VcfBFtW1zqomJkO5NDdyZUYKCFiQCKLC4H7f5VA6+ZwkOBy1p6lemnVWbLS5mMSvlp9jb1IdyVjFzsWbu47xn5LIeRDdtUVmrWTefM/raIKZSPUjvSZOii3IW0lRTTRghoi52V0kHbTbZvIWgHw6n81nV2NlkiT28mydYQoHTK1SWXpFK66JkRkZ4S8isXNTJ0tR91Atf/tkPv/yD0x+/s87aBduxN3g7Sy8P0GYMJAwabIYJdHXn3A1mreewoAoWmsH7rKAMiKR2E6h4Faln6shcAwfXSaA0XIbcYebaLTvUaRTbiyJFnwDTy3KhVDQNmlqjhs5s5tGYM43ksmrbpSIiMWfKdRbm7Wz9squblTWDCYMFNFuDxdjdyAxBH6pT4EJDiQgEDlDKCfWm1aJKzASKYLG0mpV7w94qMTXtSIWIlmt3MXGGYL9j0W5vTlAzd4icI0Xi1/79f+/m4/Prb71xc/2o6TqAbbIPhZzmPta+VOtQV9BMmFNUY0qmX1w+c7Ndn07XT04nEbPm6pqZ87T9s3/yT3Ly0A9lUbGLOBNFitYBiBQ9XLHzxImkSxtbnU/R+9JUTtsmqoUi+K1vfpPiMfsXvvT5v/rX/kq3/tb3v/fow2f++3/+/9LqKjDqkKBKV0lMQryYqNPpqZ98Xp+xLLGseugufNYvSFYF4GJtMDpgKKDXSu/tmCZz5uk0G8uYIYJ0QBVZhRIzE5CcEBU1VhIFmSlIkbKGEkuoKjVnVQFQmLrpUiWiIqGr2G2luQtTEajDVMdqD67uu/ZafQ/iPGSMp3qNCkfVlBlSEUUkUpEoxBwc+6fyFLfiT/vp0fvnp08hBCDu3kwHobosrhRkmllJV/NeNaJgB9Ud+2lm7qWmV0sTXj37QIErXU6FhF2uV1VDWs2xmS7mbnNoj0y6yj7GcjjUzNSiRHPYyGh9aR1jP0eG6Q32kcHgascFvbhTZT0cqLJXuoBbujkN3X2fe/OWM1cxm9iwyfF4vLw8n8+zpsErqUZCKmmQbU6qVtYOKlTuovxMg7qa5K7GQYh2rTkybHGFHG0RZrLGnBHVnLOAmmtrW0WM2ZcWMReoqYzaQyCB1SwmEmROQMTV1EYGROec0vvn/+LXvv3Wj+vJgEBAS7QoVcyUSk3llOzWglmGrovFaD2ugoSdlJ0XRYRqY4gSCdWVoMnIJiJm1JFQNoVYMTSS0lMpkkCbPZmoeVAv0Uh26EmFowhlH3sBaEvqkW0x7ihAtaQEXgVGgzWIjgicY8bcJfaNQFNlU12su6NUVaQUdFRCTaW7YsR046izpCxyhGtJqgsZxd58nXWqrNaWwiIiqiWmJjsbOw+aNbSa9saGfRePaGF6cb6eOe140QKYI3/p67/4a3/rbz7zwoN/+z9/4y/+2q9870//+F//5v/UFaoQlGE3cd2ZtaeJqlBFrVnX6bVh+kWLj+b1zVOKeuutW3eRQqrRFvGzyGTQmIQDmsqJGox11ePFsuVU9glE7nPfBSqw04nFplJKaEorP1c0MM6PP/rxO7//B9+8uvfg5vrj2yfnDikpJXZGo/qsMBLmogRU1Wi9cHM6xXZrtyqKi/6gAcuq1iBiN7Z0atbGynVd5lQkuq/tYg2rc8a+lUO431BOEIBolKlFroCAdzoHtKbAglb0n/bNVibyrlpBBYuvqj4raKnTNNhc7oKrzbrdv3f/ueceXCzcGk/7tY5bPR2OS+ty9Ha73czcdjq0mw0HomZXWSa3nAWeQcvY8rxtZ4HelUx0is8gFF1KkyWEQk276Lg9AUrXbWZPrECt7fb2ZJuxNWF0dUBUj83I2lwsC+u6YssSrNqFWBQz56GJ5O5opG97NJNmDcRPeyxzG8o8mqtrriYr51ksKAYgYhzbWiLFDRDvfc6JUhCHw2pmgZkjFkyg1tXOO910jN1STD2Z02FIJdWsVKn0Ga5rIJ3MzAJZXJf1epvXT5+8+NzDAmdOYUnW0g/baSyHRhSzzBtZy8x1XWZOpyDqrobAWSI2ZtxVx51nmgqkHt1eV9SM/eb8dH32+eOX7l989fmnf/yezFr26kR0SUzVOSTNPEAF0LIgteDe5b3Tp08nc1VblKIM4q5OOgRE+miVTSCpY4pQXZsUyUEpHdbOhSWhLgm2ChNSk6VD65zzgalVilClbVQJLiXNmMYbQxRIttY0mQ0FHMZUU65tSkPP3kBWjsE5uec+NdTRTXWUmcmCWkhStHg3Mfy0ZH3PqLtuzVSyqdbq0uWYIVvBQDaZmjrC1NXMu3OOzlVhyJE2p1Kl71uMEU0NpMEKTsq3v/PGz/IXn3/2ZbFlbqFBExcntdbUpNKUnDW2cIk7o2ZvqqctR1+PT5+cIuAXl12bC5tYGEVUxc0gNVybYRkhKgohXDHJZUk5N6i0Y87YzufI2cwpUcpma2H08AxePffwz33t69/4vX/76IMf/8v33mdfP/34wya1+HFiWpGKotxZZ1X6pEywoHdTxiw2ZhkTyMgYH3eqn+RwXKofdl+0HY5tyYoREYJuYdJRq2cd7aQXXWeWdqprYsgsoZexNFUSAyilKxsMDkOVViVqaiXrLi8jttadkOgItXOWzaHMWpos6/Hi/uHexbZdv/7DN2sMbhDvc5Fr6v3Gg8qBF6Y+PLPoTZipcRSDONdyhpVo9l3PJ0Sy9I57G3O49YOotJnFOPqSLIDIOphdnzcpj4wJTFXboh8P7eJq30YZw9BFuusuw7IUOLBF2plSUl2479uhLbNSRZ2oZDZM8/O+HV1XkxLenm9KsfbjOM/1uDLEvLYZMXde7329Z9JxPUPP1i3LNBu0ud2VdaKZl9NdJ7MiBFSVpatQG6HCBGLHsjTcwQ2zOQdM6AQNaafTk5l16OvcR3AcD+3xx49LnC43tXtBfAxg3M4GswWpwgIrC+raoRW5bWOGIWa4LcthnefTXdtmUirThZn7Tz5476UXXjg/vXGXV//cz//Jmx/6dUaUFihMltDsDl1WVU+Wluozrzz3l37jL7/1xo++8603Pnrvx0Cph5QuITe2CdHyOJQJiLo7JxM17a6LBLWaSVsww53K2QVJSdVQnHLOCGcbqRYhBwzQyiX3zjTaLIWaMqq8pFrPauYbjr6WyQ6QomreNKPUVhxGzDnHyMw87aLp7mwZ1tQ9tDR1haOouoiWKJIToqcsqXlod4a5ZndQgUhFCt30LiaxebriovRuB8a0BVLceZo3VEpbRFuJNOGbf/Tdb/3pu3/w23/yZ3/l52/eePpb/+I3L4+XI6wylbERYaIARDR3zwVaJTW3wvbJpz9818Btm77cWw+XXbyrsCqZ5WUsh4at0TqDlKkZTbRi2HI42tJmoOnmk/sW86wq3ntmNJGVNaOPij/zq7/ya7/2N1966cU//MYflSL7XthUFMrETinRLDRoC0kiq8xSFFlWWolUErB2l5kw7WbMikKdbm/yete27MvNqdnlcpxqqfAmwdJlX2YnFiizTe2rpKuX9zAWRxZ3QxHTqow5gZQOhlZSOsFi3rXoSVO0RkFUiDQV2/0u59bQ+vLMA3L/0TvfG7cnFCmArR6V+1kET1s+1Tgse5dlcTkjYKHSZtkuOSxbuSVW99kxzfoQL0rVPvedu+tUSpgQx/7kyelquT8rUGnN7NBouIxGQtQ8rR/WmVxLC9WAaRmR23561vpc9GY7L3K5eN/yHJnuLSIhCrGRqZ6muMwqU5NKlaLgsJBp6pe0JAHO81YOWZbFFKQYbnlq8PPNaIfDnfUmY1/aisLpdtfeF1SVADiPYb2fB5mOqtWbg11GYtLVij3rNMfFoSFuqX2CaDYz5u2NKnztKuHO1JwgxQpVY9s4i4gBbHgS11Wl7iKyenctrWFqsix+caHm0rjCuE1tRlETs2lbzF/6ytey5Mn14/XYlpfl4tVnx7c+QPdtGwe1ViYlMyNxbnbnjLFF+jby4Weef/Hlz/35v/jLb73+5nf/9Fs/evfdT/Jphq2z+5IDQBaamhgKXYomJJJlBjV0mdKMKpzGRLQTmL1ANRAqFaPOIjmqS198bwadCClqHaZSD7sWsXuUpmRIiCWwc5roAsKKUkVZ5ZJe3qZlneftqJ2z5jilq7VVm3nrhejeTBrHCANgkSjrhhozBMMto8TNVvNEjaTBxJUS0GnWWERVU4eMYI4xmbWs3tScBpaK2OImePz003/9L36TmFfHA6VgsKoCh7K0WpYzRbPLvLi8txOnLea+vfvGd8gSXc0vmthiEEx2gcJoLqx0som20ECDhubkMw9fePGF5z/68Y9tqIlu43y+fQLSvLPUfKnYI+vq4cP/+D/534zZ/pv/+r/5+//gHwRjhoSFakHXcVezJ4wiNEUpUNI9o1PvetREpMSiiqSwHCVSGaJ0GN1FKyVijhjI4Teqiy5Lv1pUfuoBbXWhdS1GRcvSxUwrpbXNbOXiwOzdDUi+cHy4a3v/o7dnRZlpTrIc2tAUXSF3CtRdr0QJBQTt2NdW8sF77415UpE/84t/6Zn7Lw3Mn3z0k7e+/4e9L9uWtBrx+PLw3GLLcYRjDbP0gkoMdu3aIOpQVxXWgHFM8+M9qc1TK/dZi+1j2tqHIs6hIFwEtYq6iVoPtTmziJizd5fKgoxMc3+AVUNo7IemhdBa1S2wjbmaq3uo7LHlObpDC+jrLimBg/lhaZTKrUJFoSAVbNJKgDZXVQji4ULUJY/7rHLdx3DlvMPSh2XPXKTUrHtXGiBsmOCYxRqQXLur2RiJSu1tOSyRpbfbk/1mmyMi1mM/3luUHimwi9K4U4Er3D0tsZgPiixyGtMakWWFythvntzEbo7MpGrouqzrcV0u12WVdogWXaR5aEo/ZMaYdfzM/bmdL565+MxXXv7hTx7Zp7O7QZCbVmW2KMsCSlAssuYYAhirrf1rv/S1r3zptceffPDdN3/8p2/84JMf/HCcP128bFn2yACh5pmNWiInTTeZqEKTu9UGTSdS4GLOimKt5QGYBi0gJXVdKVTZRdMBC8tWIsN3s+LsSQ/LqdnUDlyKYcSo2dR09ZUXW5xMq5VZv5q15ABjRO37GLWnNIc1+nJQx9KosImDWsF3DbJXTioLWqXjbkeLd61mqiVyMFm9n/dtKp3RJMa8SUqzruhOV4BAisImLCp1MRW6MwPiplpThDtBiLqMouWyLuviBzFTm5tq3TxOpEhUjdx9q11qSyv21UTbgsAypzSoGlNNmov7My+9cu/hvQ8+/NjZpSJvNmaamaqKCFligFyFri+/9to//T/9s7/6q7/6/PP3Ymwq0u+2x4iKr5lJzIJJphitUNNIEjqlBL0gRMGLRbkLP8quuiAFJIt+t6xKG5XKgXE75u12tuOyirsuJQ2HjuPeNvFHRqd0XWtmhzdZXSohw+pwPD548dUPH31aJlB3VCIBdayNXdgjg5p30dBgeMGFx96P1q8/erTHULTPvfLqX/v1v1zGm6fx0Qe3/4s/97987/TBp09un7z/Ts1x4hlsvUDhXrNWmF4e1+eWe0dv0vW49H59uqnxuM2d14Kagxe+dKi4Npxvro9X9xz7ZdNMnBhY1GFTiKzVj2JYcxfJLXcnB0PM+inn0owWc2+msg00S2RJj7lX4OALi00aTVIRqimgqyaQyNja8QDHVpC9Zux9WWblhSxnHafcVywRI4ZOKUlom7fzdLUeIaoozHHVfcYs6AzCZB/bnYBRYAiseaRXUt2NReZ2GvteD33p5vN8uisCQtBNIOWQManFRVMUBeiE3KWrqFcOCHTRqiSleDFzQRXnqMjT6Wacbjbi/REov5De76/Lwa21dnl5dTzck566n7WfGRevPscr8ye7mGRSAFNChNl0NrSYMtauj29v5s31s5/97D5u01Rbe+mVLzz78iu/9Be//s4PfvT9b3znh++8dX197cAQ0BcBOCEgGisqyQRdxBSS4a60C1S2NqdOCXAaPO9lmyJpjJSIM1VqmiUG0G00iVm6l3TQtSLPiguyUZgJtGbmoOzMXFGglsqQnm1fG4cfxU5WY9sxZ+25K9ITvfHQzeQuq8coKhPu7EQNsDJYLLMsk2Iu9tyz92zDeZ/akDOTsUcJjnSjrCCpUU1RegCjahWWZJYphJRIdS7ay6AzK0oG/EqXRS9NZOkQadxzSKfk4d5ylxVSwipjnhlxVpPA0u9TWmIs0jaLu3WH2/lG28PWF27j9jyu97NA3EwVZj+NbCOnyfj00aN/8I/+XrL+n//1f+WVzfVcJiSQpKr0QlJFy1BaTBpRTIlirOklvRBZkySkpThKIECLBACNUEH6nVFEPVpmZaFOpxQVnDeTp3XPww4hcINqjyoMcaKZ4s7oLjoLN9enJjRDmFcOEgpX7SlSGgIjWYyKJERlimoan479dt/UFunrB0+e/s+/+zt//+/9xre/8TuvvXbfWnupPzw8+uDxh++wUPMsy1UehcCxXR0uD+vlg2p9yC3Gbrtsjz8h4+imbLbIGDvDfWzjal0GtgdX98cMOSzn7VxlKDsujIBVa11L4nS+nrR2cWjWxr71Q0dkNGbtm/eC10Rfl8g5WJbni4se5MfjrNSmvR3l6fl0XI5WWFsf2J+eTrK2Lrkb2XQtqvbG1oxPb59UjHW5mKZHv3ri00yPkZzp/dK7F2ku55jn69NqfWo1hxas9apaTXeg21Gy7YypcWVep/Ont7djjvuX969ziEvzdRvXLUtdVLQLa85FFaIiMvZ075QSRldMaQRcXBMkAqQWqtzK3R2HB+vFGQlhjNh31szT9UfXn87TyP20+eLH9Xh5ufi9qxeee+7zn//8+SvvvffRd5BSRbbRSzv7JKv7LCBp5W2z09Mb/zyrjllVbUypLnZV7Yufe/XLL732/pMP3n7r7Te++877P/rgZt+HH5vvVrt4FXWpdkaV5zK17lKPoKktMAD0PGDJCBS1yYi5sxjeTKyiKcrGDcrTZgFKLbDgrVImRFuViDRoKyFrilCMJkOyU01yVZuuar4k3Syhdh414xobbp7avsLsyaFb89VMAGJBeulssvWmmjNjnkuGSaddPPNwf3qdj0scRdyepLAcWxM3+mxiWzkKXjlRQp0iougihpK7jLSohKOZ8Axg8aW1JQ/WrA/dd4yn59Ok6XJx5xuSORVdVBb1fY5C3Ow866PWFzUd3ZHt8q7ueeSytHsP2o8//ngbp6JZb+5tcVfFLI0tR9/j8aN/+o//6ee+8Pk//dM/QUw33XKUCmCJlCqTSEuEFJZCdE1hn5zUNGiWROWd6chdIVBpOat0NDHQ7iJqRSZRASjVaRBJp00IUANiN4/HY91ab60vyuFeZhdibSJx0Kw1GBQ9lFzJ8aM6XuNTFgRiws3TXRQzUgtdsy+gZ4ZTVj9nxXgc3Fuz3psKfvCDd/6H//5//OY3v/3qF1/96i/+vH780Q+/+QcAVC4SNUV788PxeLx4eGgXcb754MffvX36VBKiirnLop9Q4evS+qI+Wnia3+yR1o6LLZb7vOXlsU51z8Q3Ka2MfaKXTJjuOz1CimoeYVowkdWwZ6x9nRm3nAKuqtq0Sppai7HVoEDox8MFM9wdWabrglZSM3fCmbMUIbRMq7p3dSk5rTSjQF2OEnsFeusCjVDdx3bZuq8rrBVxEXWa22h6pc1m1c22qOWMRLlCqm4/ebw9uV4OSz+0WRuazhyJrUmBdYpRzdQA1jRosg+BLIMipiolahI6garhAmhVhReq5mQRTiCZNGi5i+NQbCH9uG17v8Im85P33jvZ9p6t3i7epD1zvLTccH81kXGzuXiNgTs7larsXjkY2bI++fgJYRhzdd+QU2kmRvektfby8eUXP/vZX/7FX3jvh+9+980ffP+NH10/fTrA5U6WkHChwqCiq3JGyyz0xJRKTGOFiNXadg4FHwhO3aeqltcck9wSdys2KXkqUtGqdauU0601E3TBrGraelWHljVWzmbpvpY1OZ6QYdObtVoop4V7krXtlVMS++1ZlWqre/clzbmNuXbp1RJGweI51UUY2+xtlbZUZuRt5am3Y29XxTtsIqyoSngVWma5liKVdLGpdQSZMjNl1EFQDTiY2mwmu9FqztubOU+tLd5Uqu4q50x2RCIdJosnSmLUtu2UZCyrLWYypGaX6137xdVpvD7mtH6xHJfVTNySZdloYDzVrPPp8Z9887dpiy09KjNhggSAcBGDI70AE6UqgaVUdBm4U5RIQUlJwdGZOmy4iogpbQk7mQTEIT0AMkGZMDGWlXJUGg0KEwq1bmu//bRrT2Vbo7VlijWVLtDZXOMp53N9uWftfNJkQY19oSqyxHv7acIBEE4pKKqGGysn5rYe7h1LvXVU/f63v1PL+r233n3zzbc8Y3E7tvWcQ73RyrXnOSfPt+ePHn/0ozmnoxds4qQS2LSsUHOeMfuxHx94W9G5wA4c1wdfOGcMHo9tMRs7jo7d4uZ69M57F1e7hpunlDNzu/HDIVVOWYpWm/SlEzXPZ2+tmo19djFdW9twOp2bXkIyJQZYaElaF/WOsnHaHh6X7XTTl2WyzggLLKbNzFxPMTACFGmeEVCJMS561/NYzLoYKcOhoVehkqmtGbVEZqSaaMnjp+eacXxwZU5hISQzW9etQqN80UqtWWp1510SKEQa0auoIoKqNNo5lTWgEwQzr8sQdJUynnKvGQsUpUmd2Eeexn5GcCBK4um7ny4er379YZE3p5ub066S9vCQ53NbREYHQGaN1Eq1YsPsYazt0acQs4POfR8VkpJNe2uX/XCeyZz3rY1nzR5cfubLP/vLHz9543uvf+v179z8+HqElIovMZNOiyzA2AwV8dNjmVJwWJlT4EBPhAYRCgltKF4KWcwUCy9Dyu6UCE1TFROWQdI8ocIIMaUrFG6MAjig01aR6FCtkvXC57Iiq3uNW8vGwBznud8O2bHJsa9Lu8ziBGEKSAcXhJvsOa+u7g+DRJ7389KWw3qJ1BIV3GW0W4MRUaLSUjm1moojPWVfBelWsq9UI8QarF/5sroM0evT7e312d2XpaneVWPplEL65WxnjXAB5mKLq8xgIXVkyv4pd1gb+5ObmxOC+17N+nKx6rqqaCmE0VWRuLBnlFM4YxwjDGkNqpKQCvWWWErB9afLzogiQqNAhRolKtzgCiZLtTABBx1Ig0rWVEJgJS7q3WK/K9W666wWglAhZ1CREA1TU6gCRTmdbqA3rXwql/Xg/bDYwXvZMr2DLABNj818tyQDqYWS7hMFRIIS6EA3hAQ4t9Ptg8PB1/a01b32TJt+5mUmL6+w9Pnxp59k7Rf3H/hiFlSTm08/ePrkUVaIqAMvvPIaDsbG65v5yQ/fUfz/afqTmN229L4Pe7q1dvO+79edvm5ft+6tWw2LxSpKpkJGgkVLgSQLsgMrSBzISRTYMJA4gwwCI4g9MTJM4EECB4Yd2IPEsRU5HliBJFsWJXYlUaLIIll16/bn3tOf83Vvs/deaz1NBh8z38OFjfU86////QI81CvgXgQdWsVgDoZgZnFvyTQFl+CpmpusxoS6xLxERCFGQmx2PHZLUgPSsJH7mK1Vd3Qecg3fzYcuACPtWztLuR+6xUqEpz5xYA90Ne8bBdkqeRpSbqqrNOpN9prYACpyRICWIIAKuUPiBh5lMV53GiAk4RYSimzqx926zdPsdXGXTEgUEDoddhdTGnseeo8WZgxcACujECH2AQhGiQBLlYFQbjx7DggUJpJmrcjuYeYFMRyW1jSCSwsMIuUu4VImoxBnLwHQmrtiNdeOMGeeG1THIQHOrs/P3/nu+2nVPX387DwqjAySgMLIEBgDCQPMLYqiBdAgsvzBF1+tfjtjt6+Lcazv3HohtjpZvfG1N3Lf11iiVAoerV+l4fS1/va94+/88DvnXzz/o5989NVXj64PL4BZIEOgk4OjCBkAmCM6mBCgt4UzYsfLEgC+IfSA2ndhdQwv5FrCjQxbZrNaXQIiZRj4hmPMTbFpRkaiBk3cATKzoluAICMII6a0eGBwn/kGyAuCAsa69LnOxXwxm/cFCIxlNRClRNIzUdhew4JozOOG8stl65T78TRxihThEeDVoENOQApk4JkSKFMwAgUTY4oQB2bJ4BbIwzDmvOoBlEo02G63TtFxf4MAuDkCwBaUvvb2m4fYvTpcufG0m5iIxTOTG4KrALuB1f0nv/uPtR3AaRiHzNDMKjoDJxCLSpiQBvM9C3W8JqMoBlYTukMbvQGxphSKZEbCSs6AzaEADO6MsaABiTtASINAqDk8+xAMSIGkC4SYCLiiLmEoGODqFjfviOxC6AaBDEBhxskNKCLMIyQCwc3UokwHL1uu67tqvOpeHnYGxNIDZlRPDJA4KVYXbQAAgiwAEY0berMRB0NtrV3wftWjEo6QOBPlDoO7Hq/PvzzsD4IJFfp+6MLn5TBfvxIn4rVafe973/zlf/5XDdOL7fQ7/+THR5e7eXdO6OaV1GU51BX2SFWDyrIMfebaou+bUM94sMQiRAsqt1CdwGnJxFb9OnU3zraB1Js6eCJxM5JA5lMcoRXRGzuPpQTA/Xa7Tf2AgKG+wTwzSKLUSiT2CkEEmdiruDGhBQFIKyUPvfcQhPNck9HxerO4EksgNCiOChQZ+WAtes4QtQQGcuD+8jqWqd+sI2MDhQCGFPjHEgFXswA16ADNK6BhIBNpeA8DGzi0JdQYEMDdKJwdiATJd7vtZrUm9QJQApuDNWvuWEPbngiACAAc3DEuHz29+Olndn29Hvj8kyu3w7e++/Zbx9JKO2SRPusSWKq5Y0AgQIIWHIBUAzrqLlv6vSeA+Sz3Hhp/eHGcoRznp5sn+fUTeW3s75xgz10lal4Iex57Gm9/Z/ONb7355MmrTz757OPPHr58djW3SoynliePgtCj9ZEUeYYZkg6JmjsmR4uMnTGohAYeinmgJFCsjsYO1gb3QNeSigBFEoCbQCYPmBVCAlytEEhQj0TuCkmZGjBJ04zhafCNYe9QAbTv+iFJB0YWvljVBa1Mu+op82qdE/fSSxhVzJFrVW0xHh1hSm6MYSknNacUoOBqgQRObL1oQEwoFRJxiAeTk7BoVBk4uowQSjFjO1xNNMOQV8I5E1OAQ6jqMSTa5O6Nk6uPLkdIlWDBQgwQ6AGNEDjCGBQH8ajNonJKtRaCSF1412fM7FQlG4opcOo4QIAipyIaAKEuFTr3FqxIRk6gCm4J+8BoCEglBUcQgDuCiyNENPEOApvUGxQMEaTKCINRNS3Ef5wCBMdAciLUSIQIN9gv4BteIlCAA2JAA09GiGAMERVauXy8vXwMBGAoAvkm1F7RoXMBpMYqZr0BglnChdCD1ST3o6xY5+vDcqjeVl2eiSIPDcGW6fLJFlC5G0c5hjwukapOU92rS5KEDMT5qiyX0+V7b3/wRx99dnrUTQJI7haEQsqSscuSFzMj77ue2dzZIrKF1yWJBggoJgpTMdQeo0t0VUMwSUQsyjclTzfS6CEhiSeBZtPei9wcQ3bEEFgfbdS0cWjmrutR6/Zgp0NyMOijNK0FiCB3navW1pAw587UATEIB+yxo4pevK1EHM3cBEhNMWzeTrlfd6uOaLJGF9eXGG29XhGhgqab+HgAuwkyNAlrCo7JIlokVDRzzhUzZTC4qchAoDh5AzdEx6Mj6YZEnB68cdIqktp0KNfXy7SYC7aIUpaI8EDiMC0S+PnPPnn62efZ9WxDb75+urvYZ4cHd47n8A82r73sls9fPIc5omarlWAONEUKxAQ8Y83EC9qrO9xx4G5/MmX1SJblQu3y1eHhiwLOqwy3j4d37g4P1sPpWsIbo2Nmkrdff/Pt17/+/R9effzlFx999PGLr57utguVuMPrPczBLg6ZRldJGh5GRAbqECkQcJkCm2Rio7AeyIK9hmgml8b7giWg4+YpkXo0A6HWoHkooQCiZcSIFGFSFAk0BNFYexV2JO4a5oEtkUUFRtkwNQlpQq0U4GpgV4cltKSUVsy7/knYYXc1dkPOfQLAZOwOhI3Y3TSTM4I55sQtgtXdEnAJNEgBmpNwoIx9P+ZgdwwCPsxw2C99HpSdElAn1cyNMsmDk6Mr6H7/x5/2vty6s3721YW5cmCfRnXH0JtAAiRWhzzQcd7sjOCA82HxaZu63oc7Y+6ErHl0RAN7bUmYOtYKthLEPCyI2EEGjFahuctAXsxLc3dCIQCMqtBFlwMLWBAQCiOFNyAET+Is3gIscGloTuBIBJiQAJMGAJFHCjAgJABkgUAJC2x2o4sM13BgFrdATyzxx4rTIIAsDBlyRBCpJ1PFbAkoESQHINEIoU6gAaelLatONulku7uqdd62OQAItgaWQrp+zJs+IHJQwylRqVhrmYVzcMe9DcRfffrVj/13zn5l9ek//dF2uSrzwZMBJzQECPwb/9XfTZycwCMSBAgJcZmWFDzkvuWpo4Slm8oCQwJCD825c8dSak4WASnlWnXZL+t+w+iNHLvOp/by6nJ1+0gYbdEkqZfEhI4xt3J1fXnvzj1JUp1DlYlmtZQJyoIpUZADOjhVlT6rWkdiDNkghBsFhVuEOPpSgIGFY5lCxDCTKoBvL/fm1g2SKVl4FgmyP+4yknjE3CKL7+d9rXoi3EQRhSIjg7tzSqYNSaOGBLlH9bpe94+/+nxzuvnut77++KvPT+7c7VCWadYa6PL4+dNtqQjSqmkzEk5C5dXl049+FjoNGxltee+dd49v319My+Hqcr8s15c9b6YLOTwvfC3lckmmzVWjengJC7Sc5TK3s1/55vFZX1rrrjme7/HgubikJH3fGRIlV3Wyba90//T46/fWb93FtYRaWSxRb4w1mpb5xbPHf/jRp5/+9MvD5bzzBShSbTXIGVKDuUVBZaBk1jNpbLcoZiyhFIUAI8CMvIWgA7WZVdXJiIANMTGNmJUaMPaYg8gEySCTVAk1SCiNFcE6E3JwRCMG9xzgvqhFgs6bGru7OkY4l6U2m6pqjQNjDgvBdHZ0JzJRBylu4Cc0A8+Bbt4zhTYByw5LWLiLokpq7oKKBiJDXvVIjj2Smyz+4uWLQFaWBLjpeuxprxWDTrp1J/LV9fb0ztm/8+/8b99/773/8P/yH/+N/+L/wSxH43G0KNY4gMIdw9GHdU4sszJb3l1tp3pFAJnG1IkMbJIGwD6wpQ6ym2oU8M6IBQ+KogJ5Mec/3szM0zQpuCF4RAZSCAF08woe7EJBQU3hpjyOzogLYEPKBdQBEISAKBxQkgtENKiYPIw8DAMohBEFTAFRxGBS5AiRsBt2e3W3KACEQl3uJTKDhEeJxkzMORAiapQiJMidZ/DWCHPVpZOxJ3HVCGvWArGFN44+j4KCUZNpDYukA1OtfnkwBOyGNQ8xdFlm9Kqc+n09aCzGbgaCnZclYMH//G//bS6RIiVOEK45u9uNkidCjE2sYU0WWmGSJA2BpBtzDq2EQqkD98VqbiEAgTYtE+VulL5MVTrKWeYAqcSZ/IbUhlbmmTAjeT+ORRXcrFnXJa11Phxu33twqErkpGZ0o6gEdjilbtHmQs0WN+Chq6qi3uXkWMPDQS73121/6KnbrAYLDWAMzA4uMHmhgIEzERQDa9OyzNtpepCHuSPk5M3cCsCSB+pyD8phNQLV/OjW6VePHl08ufzlP/uns7UXj76489bdxHT16hUEcgh1/YdfPLq6vAxwUMvIbV9ePnnckd67e/K9X/z+O9/81vnz69c/+OZmPXz4D35r+vITavTJ44e7A51/qrRTu3Q6WPNQKogNqzbSuQcdUN44e/2Dr7UBkSWp0RS7Q7HLpdvWXoNK5pS6jvucl+pVp7KR/puv3f7uO/m4r5MTCyEttVRstZb5MD19+vyf/fgnXz2/XHaXAVoY0oLq4aKgIo6B6G3rAmYpzMFbIDaBUCddMBxjdCOnFtC0GTAQWx8pBJxo8C6FIBmHQaKJLSt1abhKwQYYkTi3cMMIaAkDgwI4WebACkVjSS248RJQO2WOqV7Oi7uyzb7mLH32jZykhIyA1CIfDM1bhz5UIHUlbAnCljAL6MxNEoBBtxpBaIU8ohTTy/OXPs06dlP4CfYDyCJ1JpXUr/v1xXb39je+8W/92/+bq2cH9ek73/7Gz37yk3////R/tqXp7DorEDt5UBl6Ph76qOEVAbr9Mp3vL5Cgz5mH3As3DVBChyV57vAYVgaD5hgQVJdGlXQEzQmqytKArIWqRpiqBpvaRKjsyWEIaykWBa6RJYDQWpgHMEnc8PeR6CYIHMrMHXQQ4aBIUREDHcH5pjZsgcjEYjSTUG1I7syCLTSsQSHkYVhjsAMiRM4QhNPsXRrdouGMrEkTWxeCjU2MEnpjVjVs1hMnxACYXCtpz71ZIFpOcOhymK4cAODq6lV4SO6Ojk8TkwQriGNXmmqYZBn6vD9/VXaXKaPYsqCiOvAqFYCmZeg78AiP0DYKKziI90w8w/78Mh+fMIBrxeRAEWZNG2cEClAyi45Hb27o0GHRWrE5oitkkNQNS1mMIOcOInUCVg+cekQcs5SpCchKhsP+GrvB1RgwCUOzoCRMdWnBoGGBoAlcWwqqqlmYAYBld5htuzvq8yCdqRq7IeZAYlJTBHJCQ21LNcrChB5mtdIYzrUWosbJB/B1H0dnA9iwPywKGCjvv/+tu/ffeP7l41/4wfevX766ePVid71/7cHdV7UJyfHpUSNsy2zT9b17J08fP9u+vCLHdtjnlH74J3/p9Z/73sPHzw5XW3j06P33v3HvnTf+6U9+f3fRps36g3/u53796Y+4hEsDAVBiEdPW7I+5awjY9i9L2ZBnCKAEnkWGTLd7qjrvFn9puj0MM3TX3OfNejxdlXn+nc+f/OTJ+M03bn/3te7seDHrh4xBOUmHcuuD43e/fv+ry+efffLi808+e/Tq4kYHDnwgRHYo5j2twFRZKpRgNA+IcCagXtQkKMACnSMRMJrOSVVNPHHgAjpZrIEQQFWJGIgUG5hkzQmsShVJ4sQNEt2U2TmYzYFC1pyR3bOQQiAy29HmREaMRsYN21LLtGgYCI2DdCBkXe6dSQKIUUGqSEpYzUIjOSRKIf1r33gt9mU7X0NYeFvavC/L2HXNYeSBAJobAWanqL6P+eRs9b/4n/1Pj47uXj75WBW/evTy7//Xv162kMY1wMHECIACLQQklRoZuRea2rTYgZG6foQclDuIyEmup4KOGgsY7QOZ003oZkiDRL9PDVI9ahFI1nWNicx6dPBY2qHDBOoWCm4AHJEC4IbXnjAFVo8kkTUM4AZJi4xeyUmoQKhbghADwuYsiATsGu4pcbPswZIdQTAsLCAC3b0iYko5UTKHBsoMJhGRsOsRAyKACVBQ2MwgUheCLDUW8EaYnbBgjRwAxC2laBmsMntKBcOCWb15yRmyDKUuVlV30ffJO8RICWEck1PCPh+2l/P+JRF14y1Z1U4dUu6iagJLHXYILSysRTjokEAUzKFRlrFbDf3GQaq1SZc1tATizsnoUA7cS5j1kso8ASKJLKBonnYLMl9uF6R0vt1tTo+PTjaJAiM6wgWAQKqhZR4MaEw1ApkAiQzbUkfiuVbcrAuouiUHQRFwB0KmnFIpSgzT5bYc5tVm4AS1GpEIcphr1FnYwghYHWYADDKE5qZuEVC5Qjgj9FkG1mnvk6ReQbQw5dv377//zW+llE93W3BUx/Hs9te/9b1/9o9/c9PzejVsr6cI//Djn14++vytB3fHjpZVXl7UjfTp7Oh73/8+jMNBA9FO1vLJj//Zi8ePV+vxqpNHh+ff+sGvfPCn/vnf+Tsf2vYyxD01QnGoJARZzFUCyLFZpkABdeQyN3ALJkxsmfHuqrtTeenr+TQ/m9LUum3fE6/6zVCl/P6jRz/7cvUL7xx/7y3lyCIQw67uxk1/a7zbrW69/dq3lx/84hdfPfv9n3z0+PGXhysmCOalclCgICNjC2dkDLSARIYQQGJumVFRqrJ0mHDpkaaAHB2jHtgU6QAmQKQ8RDIBM3MO88iMneZqwUxI4ejJA8kmihmgBzTq0NuA3EMaPQOBYQlGIhxPwHSstcxay7TMu53NbUxZ+pH7NUqv2SI8o2cLR5JuzNVbA6VudXpksF0OWlh3pldXlzx2BZBQMlLDpmq9iFQIMB5zU/h3/91//1f/wp/7t/7X/+Ppcv+//9/9H7768snd1amX+YqaknKIAB3J0FlyDAsQ5nl3Oc3bIW9WkCPJYSo/+FO/+Mv//T/9sx//5OPf+/STxx8zQQsveqXamvT9YRw6XJ91xRoQJYcWjsxE0nGgesINUkSGAnWvB3FwJbKWXAk5QoCyYEA0ROwSN1UEQkQkBhcBwYCELmEM1iK5kpPcKFQ5XCAcsDbLkFNOxZq5BkRP/Ur6SljRcwRj9kIBiBlDgwgIOPQmdcfEAJoAESgAmbEBExITsVfqch+qgCCYKFKJOqCJNbWoyolWyh5eluXgNgFgz2tZYt8OjWyupTXL0nXjcaQjgfXQhSAAo4eSq87tADLOpeUMZi04ZclpMulwXicSb8s05q7j0VGXqmtMGKGUWmUKh6SafZn2nNbT3I7G7tade7t57oh251d3h2Nz211f3D6+05pqCudanDmIagMWjcgs5bCEJADOJFX8sOxx0jSkMtUECYPZ3UN3Wo5Wqwzx7PJlXert4xODauYJ0Uw5aEN5gWCIorqiJOYqGJhbkBAhTQgYtWVB6VJO3ubmiWQcA2RXlrv3v/bt73wnANx1tR6/+72fm7SS8xtvvPn86WdfPPyj9Sp3sjKsHts33zzuUd3o1t0Tqnb9dNfdu3X61uswrC8vL792//7jh588ff7sb/3Xf8sb37pz+zvffP/nvv/9kzt33nzvrc8/u8h9Ku6wB8EbrG0EY+/oikszEDi0ncuGxbOCG2BAuENzS2wd5ddP4PVjv671SWmXbZp3wnR7HI8hXf7uo6dfvrrzS9+q948E2v0HZ00xqnAyZx/z7Q9unXzju2+ev3j+8YcPP/zxT6cLY/dgNAiPApICkrQQcY1qnoTYsYBHF3mRZqgNkCGgFwNjj05JWTXAWNaRaoCZhgsCVWkO2DkJaIqYCBrFsYIhqBsFW0ZA7HTloUrsmLPj6NBhW5gMgXOfMjGM/TrSfJht0jDfH2Lb5mHNXZf7rlNnoBSjk8/cLKFhKbXdXh9NL88P4LtpboQ9i0DyQGOPgECqkXJiCHUhy5YH+e2/9/e3T7/86qtPL853d+/f7bRcvdoBilCoxzgmGbq6WHasGV7My+VSpetSl9Fhr3Lv9dt/7a//z3/600e/9C/8Cz/3wx9ePHv5//6bf/Py+qkmZI3UyqwVavS+0SiHTjZ51TkEtQC0yDUBCXfBCAEN1zkniG2rXDXbotrC9Oa/r80MmZTCoqE1QgciiKQVMIw4IQSCgToSQ0rOoMBpNFoU1JwLkbiaLh5GmCRtQJKSAgEHkVNzVkECNzBypuirGaJShBpFFBZFCyUj8F74ABhAwBDeArFIeF2OTSDBAspIHaaJ3LB1aWgteZ2sedv6AQ/ggGEOQdyth7O+6zCxg0uViKX0LJCkUEhjToCut9ari2mLEKC2Xh9b0DQX2qzq4itO2BZotIAHcgy0X3YkueMULTScuTsex4Xo1mbl+2mLPotId7RZrZgkWYml1FqsVJtB1rnBnHnFAcRpKsugCmHNHFLXd32zskkdsViDeihG2g15mbcWuj46tkO5ePFSet8cdwDmkS3UkgoI1KhtKqADEAtUNghr4RTERjotbWqgkSOSL6aquZtUi/nocnx0597t8faD129CDYFQ1BBCIAD14vrFsr0MK3U/X22fP/ricxzQV7wYIYt7jMcnly9KMcDV+uTkOBa9enn+9OFjm+rds5NhdbTenL317Q9uv/6mE73zC9/5yd/6x6fjejkUZCRM5A4SwBHgTqA+ffDem1+9+uLp+b4ERBpUjcPFAiOZ45IQGTERHXd4PM5zjX1Lzw/L7tUJnhylFTzz53/3D9IP37r3/TeaOxEDGQMn6cwUwkNyvnP3/t27v/jzP//FR5/95JPPHn35bJ6X3qgDWDw0KxGGD+ySAlQCw6yFEN3clMxuZjrnyFYDsCFSBHlGt0Xjph0QlmBmck+D4U0lCA0bxYIRScTwBk0VwA3CSCKguBP2CJDC2DOB47gu2noByTTGuljVsuhU6uGq7NOU0iYP2PWQU4QDsYs5NN0v+TQxcMw8Hzytj5AwudyYfxGyQ5iDEyFimytSv2ZE9n/6h7/PLMPxuK91KXtKzg1HZGTokizoLBKIC9l2vzCtJHOlwziuksNf/it/ealw92tvHPSgkgrg1VQ4jVZnRhQG5EgB8+Gg7jpPuGrgGN0wcK5YDJGxK8INQnhItRlph71xBU/JzEut0AIiQgHdzIEk7EaX6wwEoMThxDOkoAByJsdQcEfAJBmCQz1jQgJr6u4AKeV1ymioSMHE3JgqCYKBJQYJDCRVk4ziIBbNwIUN5xWPDIgIXqZOsjcD1sYJrQNtRK3olIC5agusQp5FSxFIeTiicVgzLW0+tMjUsbkGkHQ5OjQvticRiaVC9dRna86ZyLHMB+RQb6fdOjtWC1iMcw+A2nSTN6AFhd3+mAhdljnltMyzWeWUgQSByn7Oq2x1DgkMyJRS4kItQJSQqGcPwhiFp9L6UUyLK+11l1dj/HFMMXrmME0RzLxzG8bN6RGh2dXh8tWLp994921sfv7yOvd5XCdTNQ8kEOQQOizTJiXTIODqjh4R6uGA6Fqqtg6EV8Ph6mKBzoLa3LCVMpfdXH7hB3/ym+9/YI7INwp1cAPwNBuM4Eu7ePns0+nVs1RrRQtOhL1A34NCSkYZyKY6nb5Bt99+K3c49jSMfcWe6Zuf/ewzNZvK/LXX11//9vup6yD8ne+8k07Gdg2Ssi5Fw4kIAJ1CrUXgVExB/vL/5F/5+OOv/tlv/7OHT5513WpIEgEpGCH3EWQObuwWKH1HfrzS+wNe1u35YvPuNLpbwY9/9vnZm2fpeKVRc854KKQlYaIQw8y8cdHxDO/9ymsf/PD7Dx998eHPPnv80eeXTy46ZOzQMXJzB1QLAAkEFySIuOESWBghc9Wm1OUUQZ6iARMKI6oTY8Gm1gDTDOyQCYCsDc6eEUFImYkqGZgHkbEjtsEdBGaTIOyD+5pUBMIHxERNM1p0BClWA2+aNN9Ny+4wLdPhcIDUrcZNn3M/3JgTS/UckHV5+moE8eAGkRmZGYDcnDAAnALYgU0JJk3o0g/9kDBa82I1hzB0gLWB9+sVs0jVAPcgOxQ1y6nnQOJ1Wdqf+bN/Zt7W3/y1X3/z3XdPbt978LX7f+M//c9CCwslJyQHJmaZ3JhCHDJ3S9XWaqoIos4Kw9B1aEQewRScKAH2wQV1MUiSrMteD4TYd+hel9LcHJw7ZEED4EpYsYZXIQKPRBDogWGACGJh2EAiBzCAmRVAJh44DSCaA28cX+bOgUzGbAHIAk0rZDAzdkiSEWFxIWMJdvHFNYVwEBPdRFfDIgAMvPKsjuwQ3BdKQEL9LE65AYlpagF9wpQDu3BttpgCCBKm1Dd3CQPucgUXEkB3ayMPVUwjCMgoaEgzGEO4tixUyrVwx5z3y74jIXN0BCYB2M3zSDmnLguxRdElOfgNhBXc3TOBLjqXSVI/5I4GXKbrq8uLB6s39nYQ6dbjarfb7fbteHM0dNJqc2uBah1F4O7lSzLr12O3Wr/25jvb62m/3UvK6+NBPSSvtChBRLgdbGCO2iRyEWjm0tzNHBAcdJm7JK+ePb6atid3Ni3Q1Nu8RMRqffwn/9Sf+eYH35LEutRwc0/eHJDRQby9fPrw/PzTp48+Xg2k6ejF9fliyzBmYm1CIISA7rC5c++D77z95rvvfvbop//gv/u1d45vrTfd197/+rsfvLvU3fHRrfd+6U/ce/ddcEK11Wa4+/UHz/7x5zmn6Bp4YOUwdAByCvMBhz/40Sd/9q/+i29/s//617/x5WePfud3f+/J46865houoIkA+lzM1GsASySlyDn399Z+e1N29vLgqwmw6fbFxYPbp3NxD662JCbqUoAyogYCQCIx4OOj0/ffS6+99mD/Sz/46vPHH//4wxePHk9zUfClwyWCNdONI90RhUBBgMIUwgICBJ0EDbvMixYCFBnFEF1A1IlMGzqA84ItRLMLF4EAFQUiNcaA5IzMDRdxUAxjZoPEZGKCLoYSHUGnbMWgIFNKjLHmYdUfLWXa6bKoXVztWOaViFAG0YutPXp5FYrHq+P5xntKrObVlJAFiQRaKx6YOMxhsQNoSy7KHBrIVuHm7cII+NDTVG0AXCXU4np9GMacE1MxxJ67zfd+4Yfbw9X6eL0/bGU1LPM1pyBMoG3oxxKlArBzbkSoIN4oHJInd7CDOxW1aal4tVpvhmGgxJ4gAlJCM0oBDgzQJTJGFCRdKEFeaoOb2pRra14o/f+LatNgKYEU8yAABCK3WAQCAjBxVYsw4SHnPjEwMBmERnA4WEvVMbl37m2GibFnJoBgxwoRqeNmjnbwRbl37BNgkBIqlopExFKaB3IIVqTsHm7grK4d5VVkU6+obV7ApXl4NEeDjiUIjYIMonC49Hk41Jn7XFUBlcm1QsaM7Jd1Okoyt2Ub5cHZMRdwAxAHJAM6Ohmbqu6rlSDpSCgwTUtxZlPoU97kvkLLwNUCTcWRbi7Ao7gqIDYj5P7O3TuuOnTDxeVuHPtNn5XHUZJCXG13TFG89Yon66MqwH3OiSF4Puh+29KwwhxLKwi+xCI8CIlqAS3NqIm4LaGIxRKDJ5gP8/b8fJPyhz/75MlnX569du/u6b1OGX1KTPfffvfBW+/eunNfHXWp4d4s4AatCT7vt9PVs5/++B+V8uLO3ZO7d16/2h0uP5q2L84JUk2NsHezepjeefvdb//gv2dTe/ns/Ozk7J2/8BdPuv7l+aOr3dUH77z16U/+4OT2yXfee1+0Xp6/uN5t33n366+/98bz333IHijgxd2JgskgIoh43acv/uCTf/Bf/b13fu4tovjhD7//jQ/e++rRFw8/++yzj78wWFYnq8QCNUc4QlxvSxQ3jwqec6bb4+E2xMTlCi/q9qQeVnI0G/EYxm6JKVwATB1zRgUMQPehy12+fXoaX7t97xc++ObzZ08//fCTjz778vmry740DJsliBwtAJ2RPRkDsmcGMsxMSmAR1UcLi84AUW78qhDhHUAty8JKLAjozYw0dR7aFUwMQcgGCLIwBqRwAoXKTkN0ToigYqaQnTGCSZLkaOZsypZQx44AkpilBtN0mKbJ6rLbl6cPPw9vD47vYRbKSwZAR6CEyOjRea7RsOdis5I6BqXwWpGFPBIBcD8rMKiQHOehNlR1wAjSy91lZOrXAyzWdSsiKKr/4X/wf/vuz3/3/W98/fb92wzwo9/6rS8+/zTR4J6bmhKicDKOMAqZ2BsjqREBdC4hCpQ8lqVM51NmGccVb0buMBgIpSczzNp4JUNEBWTMfTAlngGiQwgPmEkc2AMQCwoQWABx5xEdE7p7eALMPV/bbNYAKUnX5yykCVIxcxZm75DARF0TmtcEsHbi2lq6QS8hYDMxr53gYFRnwBRkgRkqZ5eW3IBIMAsXRSVKZIyO4ZQoQT6YAkMvKTetGA5O4YnAAYxDo4KpQBuQpafk1EIbd+yAVXEz5iwdRg0OoiygyaLtlmhhwjlldMVwDTAklq7MhdGJ8rgmotqsRPQHqoyJHbktY6Ym6Gao1DOSdA2hFu3GFN0wpqNi2mo9Wa3KNHe5W42p7heFOLp7ZqWsCPuIII7kmbu62OOnX2bz7miFCGyKDiCBidwKmpN7YuHAcNcuJi0EcX29e/X86csvn54/ew5hAQi555TRoM51HOT9b72/ufMgr0+04Xa/jL3kYCQUNB7l6uWLD3/3t9nmuru69/rrt792R0G79dCtjq1cLHXyIZPa2erO2A3f+/k/dXJyhke+P7zaX756/b2fi67bdESvzq/2j/78n/vVo6M7rBXqzF5g2WI9vPHegz9cEZQgJWgEhkiE6BaCgGix6ob/8j/5m//SX//zd+4ef1GMx6Oj9em777311lt3vnz41Yvtq3HNvVM27oej86Nycbnb1qKQoTrBwoKeZby/crSHn3507/4bQ3+ciZnXbTHNolgQsjYjjgQOyBYBrhwU5sN6/eY3vvnm17/x/curz3/62Ue//5Mnz56YGoaCsAc4uxECItRAkEbBFD2yWTAIM7BBkHrHYjlAAcE7rgjcgBwUSxNpbAQQYQiUNDd2hzYCWIBRl6ItWc3BDziKaAZiE3MmCWJ3J0F2SJiACNC6WCVXSMBDOjoFuyqHpqW1ZDzPC0myCAxOFhmDURCpJ8oABq2SOGc3tFI9ibqoa2fYC5KghSRmxczo0WPHdHm1PZT59snXikvD5tF6h4xU2vRbv/Ebv/Pb//T2nbvz4Xo37fphhFZJZNYIJDEjziWDRYteUKVDBlAEMyIZpKfoctpur0qtYIIKNNAcXU5pDGKu0N0kl5IFdZKmXjwoW4Cito7z0kXJ0F0rJyBzs9bII1GP3ktrAZFyAjEtcziQ5BAxMAZqQdqRpoAgwkwVAtHdGIF8IEuMbdUWZydkVKwgOQyWORst5AYLQS6IOY2VhLBZTGggsHJHFiM/TNOlus9BDpFRUsucUgFKgskSaENcgN1xjdB5mJpI9RLWEg5akwlBAgOs2jA7MVSvrdUxdYCuDsYsIl7qEKJTMyXu++PbrBjaAlEHTDbvxk1XgwfmBeqVTomTNRxSRmYDIBJK0ZFcXFysVmOAaFMEWeekpQySGrTm26W29epMMLLkpTQCGvLIRc9fvUwEm+O1zrVX8a6bsTEJtSAlQ0L3KrWBZZOf/M4fPPz0p9Zq0Tll6jkHFUEU6be1TnUCtu5odXW4vvvau8cnt/f7CqDuxXjVIPcCiPz4yye7i6f3bq2u9sv73/9mHvK0HJIQOmJIt+ourl5NixzHyde//8HP/+IvK0rRFvP08Gc/fvDaLeqSeYDJeHRnGAaGGmqJS91d9JJeu39/On8pqwobr2aaIyICDCPEABgVFc2lDbLAr/+X/+AHf/7nz86upkNUAYC2Wh1bcCvGm4QMRGCit++fmiAV8wJNTZulBoTh5NSlrvrFoy88r49Obp2enHa5MwH3nHpCNWBogOGByCAYzYQ5AAA5OlnL8c+ffu/bP3j/8eMvP/zZF5/89OHFq61TRGek1QKEAEM7MQviwJZ6dkyNDKMk9ZSHip23JbQxYsZMTNWQNuCEjQlBEFEx2BOkVhbIBMAC1gfBnBqCkweINXbiIgzKg4EPUaGK4RB83QfjSV+LpX42Gy3XaOluTs1r85ibqi/TDDNiGjiLIIqjBAEBAJtXJE4kodSjH0J36pSHUA1FYBrXYyesrXEmJd3vp8N2fzIeCRNWSwyVW1XuyaO2setA8qtXTzvBPPYKsKZEEJFRA9i9xcScJbi0GgoUxJHEs2FgksBWbbag1CfiwIEikVulpvtALLM00chdGiOJOwp44rEKNoklV8sIlqGFZLdQa3acj4az47Nbdz/68KOb4IdxqvPBWiWm3Kd+ncEhHBXcbjAPbh7Y4EYf0gtSpoYRoqGpU9OouOJIlGplhwQIDIkdAa1RmskDpz64eCrADkEB0zRr3Xm0QMAIQOE0NkQFMFMwDyUEaBxg7A59IEQs4KKmkKC49bzKsUAX2NSc3UO6vk4FjMjB2ObSqHlxtqbz1e5oXHVJZjPVhTFZ+NglsCZrKTARc7MQoeOz48M0D8PK3Rs4MBuEYQTh6uS4LAuZemYo7cn5qySdjGNrFpxMPNxFxMIAvC5FUvfi8YtIOIxpadYNazYIMnCv2nrqwsPIgpqC6rL8+n/zG48+edgf5U1PuSNlUKgJhcy9VowA10PM6+5Id/Hbv/NP/sJf+oub4w4RllaiaV5lK/XpF5+/ePLlOIR2enL7LPWpmaKkcGhl6aVtRjEbU/Fo88urZ+e752dnd2qdPv3w97FZ2R5+6+//f3dz/cGf+JMjDRSwm3ZJ6HC9qCCiRyvNl/2h8pjKDiN3GAg+kzmEIxh7I2KKOEp9/Wz55Nc+/+W/+kuVL7eX+6vrg9ujjjivOqokA5qXUqPuFsnD2WpNxvtWa9GyO6A5A6rVSUJSVp1eXZTz6+fHR6dnt+6A9Z5q5BSq5AiEhh5ZEiVxMXdwjoAudxVq2qzf+973XnvvG7/0z10//NnDD3/604ePvoImGDcGZUyMs8rMDokzEEe0wOAIc0ljx3IyjMO634zDwLRZjcEEgEFo4WPOjHbQJdNmyLIAMoBoPYCbkRBhg0BfrGDQIkwW/WKThKu5WdOyYXQLPEwIvq9lcJqWohrKWNZuw6K18VKt2bZe7/YwypgSp548IQAEIYGQJ0pUvZYkwjS2JkkW7LrT9esPTi8fPklEGGoRF9sdS85Ho5bWU64ZlghhXhSJx4wEVoYkezAHouCKDopsDsAElgPVAUUs0CC0gwzMzKvMwTCZTV6jH4mAu4hESNnL0qpiOiIArWWpWtJEyYix64Z8QFsPmj2FJUpgKRAwufkMKTt1m3v3V05niS5JPbi4T9ocMacj4l4jJck6NaYiIq6O5pzEAQKTN5NEi1E2RMAD+Vl/zLMU3y9RKqMhqQcHbKjnKBSGaBFtCVHrkZGwEthcd3gz6EQEBHFAtgrJDNFbBCiIm6IBCUWGqU4dqd242SkNqj7Pl7dWq2hLLRVoJGbdq1CHIh2wcdhy6JIAeWsld7mxrwduBhmOS5lYpKFQ05Q3cyvN5xVzvT6Mm9XRsCqlSWDRxboMIMgk6Jm5G0YkWrxJx6f3bzXnXW3YHKAbjo5EkrsyhrjbXB4+eTZQGterHmLe1gYWyZlUQAWQEzYwNzOqPdHPfvrxq6++PDnuilU2QvBlUSAJYEFpYYrcEAyxTIdyvf1ke/3J5+9+4+vvLXMb8krr8urzzx99/tH1/lXXhwcc0SYBBwRQhHtzrL5ALOF2NB6RXgXaH/7oH1w8evjBN79Nkn/0m/8wc1ye09HZmPLZyy8evf3WNxS0lsPzzx99/vTJ6clRt+4pJZsLzQNBphZ/vDDjBRAJbpDsDIhBVSJG3mx/7+p38u9/93/0i994+/2Pf/b5pw9/xpabxa2791srrRoisbElD5s5ZJ3l8fVVwzr2g1cToIUQIUYEJnSCevXq0fVuPLm9PlnnnBNwj+wQjUDBLNARgAmJSBcChETNAAwH3nR38tnZybd/+K3PH371yYeff/7J51fbbUTKQQBs7OLaoR/fWh0fH9+6f+ferdsnxyfDus/rMUsnwH13408O5HD0CLDmHXelNQYi8AbGQZZRzTJ33DAF1ViELTntMQyFzNVrF1jRSTBaCxfEygHuuLNWvPUNatXFGmJM88G0RfGXh4NN0+HiWoG2rZEGAVwvh0OrViGWoNYPgezeeXWoQbji4XiVd+xgFVzaATDy8YYB3TsoYMzUFfZAHIzQxJAqEFsSMDC5wSY6IujgmF0czZAXd0oyJMIUBkbAN8W/3fU+MEmXk0XmrlQ47dMP/+KvHB3d/tHf+vXLyxbJs+DUltRQiy9lkshJWnJIQQVJkFeMRUBRMMA4prqsxiM77rvdFAaHeQKzvh/51rqWINM+IHs4cdPgIGJUCAlJSoHFpalSjmjACehrJ5t9faUaPWKixZgqSbQCipiysIm3AJxEOIYELbDOZQdRAwARARAJMmNYdaQwTonC3VpLxFpdfU+pGdUKJTyLunWwGiRaTIfWCClSN9ViUz0aV4AYCOYgIrePTxCzsnHOACh919DCW0pDjGjmhK6etDmAHUknnHDkuemQCKx2kChJJZCUI7y5JQdvWmpJ6wGQMZwMckqS2eelEYETBorA5XTYv7xKQz5ar0NbXdQTVC4sHJEcWwKeSwWikenh519htMPF876DaoUDqhaHSDyyy6KLO6Y0Jpa2mERoKblLdWkf//Sj97/xfsD84uXTpw8/v3z2BfYtAM2Eu9X+MI2rKPMSnWCfFm3NLQ/HDXYXV9es+Npbd2+57a4u/8lv/UZ/dApuCel62/JZfvP22ZPHn58/e26kn3/xs3vHJ5fXV48fPnzzrTcp5c36mBelwBygTLU1RUgYGUAhagSDEwZF7+gneTz/3Zf/7eHv/tV/43+4Ou37F5LT+s1vfPBLv/KnGePHv/uPHn7xERbFHIjhgbbECItxnJ6NTiMZXk2HCGJhwkD2zGxB+93z7eFytT66f+u2E0cEuXWGGhws4SGElDoPCyBOzMjBwchlmcdufP+bq2+8986rV+cffvrFJx99cvX4ZQf2tePjB6+/9q2vv3Pn3q3VZuWcs7tTBCV3qwZNY6ktMZTSgpQHKlUF8z4KOFqYBTCje0AhCGraBJJ6E0gN0wJmqGAWQhTZIAiMgIyTZacYyI0g1oh9aBeo4UQcCMAswGRe/UacgwFxUIvouohmy6yzLh5Nl+WwV/WC82Fe5l24eXh/NEYt5Xw/b3d+cX7SjcloaoaJ2CEFlGEjYUhIweBZs2FMCRmdCJEiUCyBY1MnVnIjaAgEniiFVZRE0rHBdNi3wn3mm84T+bgeh7/+b/6rv/Wbv/H4ixf/6r/5V3/z7/7j3/zRPyEpm5NxuV6YhMhrq3YwLhKW0iiecGLzHIJp1dDM3NyGgdPKeFnKXNrMhF0/OgUxUThCY2GXTsPIASGatcTY2M1JmncUFaAE9MhfPX8SrNYRuKBw4tpJmgTaAgt2nJdUgbBLunCoE7XiWioCACIAAEJHMFAX1FmQsyu37JAoFqjj2brLw/7iZXJuwBVAPGx7fXHr7Jb06/l630ny8PVqXApyl0BVG9A41OlCUDCCUXjoWaM2NfecU/XmDghk4c6euoE5HTEVD0KjxdBBjgatgZQpIDMRUPEoAl3qDQ1qTTRY42m7f3T18PV331yvEqE6Rsd5f7Xdvjpfbzacqfi8AfFBlnbgINJc3YJwcU/cf/bRh19+9MmzTz8eBQk9kgGk6gCeHJ0NR2Lk5BGLtajKm+yuvDphx1SvPvrDH69XedPB5fOH4IUT55T7xPVQCsL1tl5f2r17d8iwHlpVBcMm2N87ibKfdvO82Hz5cswDiLx8/LhHOKTUrU+unkydPmnL8vDZJ09fXvb98Nq9d+7142FYP3z4chiPlo3RDrlZ9j78ABbkbIuhUdys3Gsg9jUwC1vEqa53n+rf+Y//u1/4V777wx/+iTsP3nn9zW9WoVB7+5sfULbPPvzQ570MbAhQ660Oo+H+4ZPu1u2j+7eHza3aYplKWwwDgyUznmKukfbXV1/sr2+d3l+vT5gRVIGEFRiTAVdUQAYAKC0DGoWKrfoULbATBop7p7/82t2f//nvPX74pJN45/4bMHSM2EvyJJAwzWXf2mFu19urAj6XlhwEwcxAxK/NQzuWuLFaAYR5WAjjXAtyygA7bYrumIDHZoWoUVDRcEJJTOYC4lGxSxZEAClsSLw4FQSUngiNLFOUVqnvIBiVFlcQysHgVQlDpINxs/a2zM79rTyejCdMcOfBCRruL7f7afrhD75Pkee631+88qKXu/2svt1etsvD+av9szqVcs4ztIUruGEEsjUnIgpC4D4Rh+6xJGI059ARIqUcENVRiAlp0nk3lQE4RRhyHnL12Jze1T5dXLTvvP+984vtN3749njr7tuvPfitf/T3Prr8GRNG9IFG4KptIoJDoUDoozmnGHoA4h69F6T1cDRfTLVeBrQ+bzgNCNFnjIYKscUA9EAJJ5a2IfHqCgYJB80HckNak4haCE4UCpGARshacVtn6aTrUJuTN0kyN4Aw0tLAl7rEzbUqAiBAhNOAIcgdWCDMFkthtDl/70/84r/2r//r/8X//f/1e69+C1zJYUAXkSzM5EElNKUEvEn5ctpKl7FBDjns9xAEGijkyKHRDNAjOxMgB9xkrQjIG4Yt11e745M7k3Og5ZR1XtDCCNAjEZVlQeIkxMQl3GuVQDN7+eLF8dmtzenJ2b07NfaL1R4EhB4+e3Z4eXX76ChSahSGgRAUNHIGhKUVMKekTLi9ePH7v/0Pfbcc9xncnLFBaaEjbzBCAZXaZAfQVGQILgl9XhiAy3KwsutYk+BnH/3B/bMTVnv16vKNN95Y5gJqnUi4t2W5btPx7bPM9uL5xfnl/u23vw6kSfh4szbOT756tBnksOzvPHhtN10e59SP4+LtxeXFtD+ft3Z12GPErdNbzx9+odHIoyy2XS4fP/ry67ffEWcxxEBFVGLn5FFC3ANYUas7eAS4Q6U4wn77yfSP/p8//nP/y1+VTg7LTN1Rm3d9373z+vu6K58+/LDVGVs7llWps7BcPnl8pHbr1no47iJJbWk61Kv9smgdsU8iCJC4L6Vdvnx5dbVdn602p7eQMim4NnIzCmHuHYiTmgMCOgiLCwSGWsOQ6WLxZg++dnfseFivctcPaXx+eXV+cW6t0XauGMgiklOSu6f59nqdmTCHGrkHY2AYyaBNbwCmbgtJZk5uiA0SQsFSpxYVAQyzA/HuMLUwJNRZOcihtIilmrZote6uXJEO3kqjjO5egL0pUurVWw7CroMAABAGwOi6niMUXXIOUohQrUj+7MmLk80ZShqOVo2wAQ0DD4lrs+EN6hJkgFhcIxYMrd7mw3w4XF3v9tvp8urV7npfJpuvy+VUDjqjs/tQUhDWzvpsllE0o3UdOySH6zoHgzA61a5PAkCpPn/6yX/yH/ynJ2cn3Sa/evqy34zvvffaz/7gpz/+/T9cdyu3hSNxwuo6ptSqAQBCLHP1CWdCBt6MQnPluhyt0qu6aIuhO9psTkjw4M0chJOBN4JkzhosbBDZAzBCLYE4QeXIEUMEBjT3HrlRSiwULlVWyNJaR7x4GFEzN8AggcRt2YcbAAQEQEgiZFHoEMFqYRCknoyGMf2lv/av/Yt/6V8+XGyvLubqBrTcKBdkpNwyz6Z5MVnn2tr24pV2lLsumpHDydFm8pL7wZwOy+7o+KQ1bUvjYZxrHVKCCAneXe/How0gbtYrFlSrLKhWug4YQ6hboERpY8pzWTxkmqbUD2GeAiLiME904H48Rg+IZtVa4MtnT6Zlvn37bhZwDzYtBJWQa00YS1hj7xOJ4e/96Edf/ORTX/bD0DtoJ9kjyjxhRbOyOR33Oi91JrRjSaaupNhT6nqFpoqIGBA583Eez46GsPVPP/o8rV7dPl3/3u/9Ud/jd37u57quO7s7Gvj59dX6eHV0dgoO2ows7V/thh5Xp93VKyXC+1nefOP1/fm1tqW2htVfPd/uLqfNneN3331dvEovFfPV81cafv+tN+pumK+aA6mYBhEwziXAgAECyIgN1BwwKAiALBZmOZPh8Mj+zv/1b/+F/9VfufOr7057DcnIsN7w/ddeO79+cvXyaXYs0wGpXR2uslTSak1z2DgOI8bx0dhfLZeXu1YKEaU+JcCBcSLTaPuXL7bb66PT20fd0Zg7D8VmkQQQHMCJl7YMKbuTlrKdDqXuS22EabUa1+tMQjrZ+fnFtj2Gge+enaSua3Psp1YPE1g0b6a2PRyEM858WOZm7rb0XZrrTgiRwcDQwWwZV4M1SykhwGbMIckxxj6vV4mCjo7cE2j42I19YJBbtCSdtnA3bQYUAcW0JQstelDdtmV7vdVi5DEflrnVqSzLEmp65RiAZpVEFrUkuafrLJiO8iefPe5S7sbOPXHHJ8f9ZhwFAEoVEahKiRBs5GjMqe/7k+O7bwt5CJMQt9J8qtfzfDXNly9ftqU8ung1XV7rdr/q+ucvX+0PS3Sp63pctKnmPnsoiLD04gwGJykv0+Hzff3q4d/cdGM6Pvr61+791j/8tc3JMSzap9xXCoSZWauTsWBSwa5GY6jou9qWq6U/zIGHqsvL3QWLHK2PM6dSjMEEExFGFsBgxxQUaOEYgcFZoMst9ikaGpIXrSmlhoCMUKGoBTIgApRwLOGVvDErhyg6ctHaVAnCARAgEIgSYYdGgS4EFl6NTOM7H3z73ffefPHiC5xRy95hRm4tEjjjf/O3f+2Abg49psXq0GdYanG1xEKku3kcVkvUMW+qttqmrh8QBWtATuAAbn2fneh6vzs5OWbGpZYyL6vMoA4I0qWlaepHQqZFEbhJcMJpWhwCzDYhIbzVwkjIJBlbnde0efH05bRMq80wdn0LZUM23fuCQ2ZVAK/gIkmvd5/8/h98+dHPyn6WHiFL8aUHieLaCnpvDTGpSgNmAx+xH7zX7lDYaDj9zi/83Jj7UCUB83YyjHdv3xl72u9fRfiq763RbrqQ3AGkiHJd9PjsZLMekVNAXB12h8vy2U8+vPtgLUGPvry8c/v0/v2T6ao+/PCT41WOwOvrtr2YL3bXJ3fPju8cbdYZrKJjLUsDuXXv7nrM7Yntfjb7hO7e9ru2TK6t1VbCBcxbq0gMmICIEhEKDZxQSNToKpe/+O/9te/98g8unz2zsqvz5Ucf/tFh96Lsrtt8oJB5t0/SQGdZb+69/YOTr93tNn2SRJjAYYl4/PTq1as9SxrHRNKpg2lYqYvVSinz+uz49tHxioMLQoMQIgI7HKaOO1Q/7HfLUpRqN/RZ+oFlvr7cGg5Df3p6ko42r15ePH1x3ua9Le5mDOacHIjwxv8tqIEsToFoGOhIGiUhhnFzZrabVpkbatMcEIzBwuhhRTCbuZEZKCNJ9BqQMjGHeww5EZEg5DycbHoS5dStxzWgW6tjzjl3UNQYUs4iEuH7adnupxZ2OExX11vTChbCmXqx0naH5Wq/EErdL3MsFWvP3HvqU2eM1HWJ+HTsUQy7IVCyoHtt7sTi7rkFZApunYBZNCUGhnbdFPalffnw8bzdX1ycP//qyfNp75am3TaNyDCwI1mHiJVr7Rp7xgLVAfW6z7E4iFI0c6XEsZCtcGwWHuZoDYwYYMy6qJYaBcwmCAParDercdUlsFa9BwBHDAosRikCEggJqRuAQRZQY7UiUVwBEltgRPMSHEDMnkExMHuqGNUMkDo3BSgisnht+4PWBSFuRkIWYk4YPGAnKYHrDDZpJM6ghyC7++DN27eOPvrDD9UnBzBPACSz1ySUDSEhUQRo6jNrUnJPsDk+K6Vq8+fXl92m2/QrYqnom3XHaorAKLBoN3TeD6puGA4OSOaSKHOi5q3Led5POPSdAkGICKiv+nWxBRnLtux3dcZY5w1J64cMNDx++sr27eTOKXUmVc2rMyFBqFOohzs6Bb746Mvf/tv/7WaVTFsasyS38CwdlEbonAghmc+GBoBMijgTR9+lWa2LbCFUE4sX3ztnyZ0AowuEbk66lBgDtQ7UcWtqzX/y8bP17eOVLlpY8lCX2ZcFbXn9a/eXdgAzq1vE091UkJduk19eHA4HK00lwenXNiebcbfsSuCtvj87vdPIWrE6H0qKTtYSC4PP5hiIlgAqEJpjRKFEgIBBoeAAhhwRrF1NliSf7Yb/z7/9n/G/1+4+6D/+oz9QWy5ePJv215tNx+PY9vMm91FsmiOtx4FcrCZPCThJsBAh3H/9dLU+evX8wrYLrDhYOhFr1vEwhy9tfvns6TKtz27fYUgWgWKZDBivry6bWYT2fR/YhdWybBdn4DycHCnjTz/+6tWrC0NYr9Lx0cCbFRkI+PXcymy6FLfpJn2jEQThzcmlWouEyaJjPsSNrTogjJEwoBGBBgAjASYLt557ROqI0K3LVIwSC3rD8FobUl99vtgt5xddtKWxgpcwg9TlLFoaE/WpB6IgW3dpzGkYhtzno8369PRoNSQmQB44CflMNFxcTvWwK/vl2fWr63KohwZzLGF1qbCfStMn5JyQUk8hiURYJBMPOQ95g4TVIHmKHCTkDmDKYwCuBvnurVs9emuhYfM0LXvbX58/OX/58uXu/PxwfX0x7+fqihOHagIgsEFWgTobuThSJdbE4RBWZkdU4psyrOQM5kSMOQNj3c/hMQ4sq3FJqXrNCdQVECSITCjyzI0SWSMQKwjmhYQaGHGSyACh0SQiARoTUN+jE9TJGxNykIcQCrgJh1lt5WB1RgIIvFnk5ZyBTVyZSANYLbjmRKHhJGL64qtHLx4ZiQMgGhOAUZHCec0BQqCAbs2UGQ0IObelLTgJywmsKBekvH91tb51nHKe57mXHB6GYRlsOnCfG8JSlhV1kvhQJmHd+Co3MS/IYMvM/Uk1Jdb5MA2Bq7ErLHaUbgNcT5MbdZujFvPzJ89baWd3N4iKMzijmWI/LGVS1P1hIcM12aMvv/hHv/YbiXG7LFlivVrvy1YjyDpJx4GTcLu62qaRu3Fs6r7UnFKP7Fq8SQGK1iK7gQsMbjaEAwamEALNSTGwRIXFBOpSP/3o49feeu3k6Ah6YqKw8vFnnx2v1gTYwq4O5cHQnx6vL89f7qch9+FI59u9FWeGSLxabcahuz2MGoukhJ1JJ8dnx4f9TqfQV3On7KpipsyM7CaYPDlA6RA8UzAgMRsBIib38MaQIZxGvo1Hf/P/+B/9lX/jVznp/uJ8nQm7Pgtb8+1ut3v+vE/p7htvr07uNNXA6tgxCLI78YBMPQy3Ug/Hj7+82O0mTBIpMfWEtiHsBEqLen31fNof3bm3Oj6JWpfdspRrMEqSA6WV5hAsSbjX8N1uf/38PMjPxuH+23c10VTm3aG9fPRwmXdLa1MzUcbSmKEFFqw1QXKWRrXaFA0QkgcD1nBkAfQE0WUhoUUrGiEks9ZlsEq7qXEStdpJ1yWsFAKRkZVwihh57EiZiIiRhDD6zF2fxG2pNXOuyEXbihECr3aHa0K8vnZX1XBMDDgklL6XTkahrhs9YiA7PjsZTrok7MCr3Bs1sxYz7qayhWm+2tZmF1cHbbgs8/5Q7RwMoIVh4r6TNfddTqmXlDAC+jQwYQ1lx0ZYkTbjyZDs5Ozoza+/VRwrRdttd7vD9WHXrtvly+unr16+ur7eXR2yMjRnA5HBuYZYh6gI6N5pAHP0KVzDPDxJiOCiANCPw1GPLDU00KZqA6ccOSVvVAQIsVsIUh8Emio59mamKTrGRGJVEbBHE6GDMwCCGohghgbqTFHBiyJFFaRZfakBgIGIgIIOnQIzQoJUAkKDgzKmCs2osjKGELggqpoCBjVARwIBoGUphAlVmVi6zEBqNr+6yEdrd8wBAX56enQotdsMZhXm2o/rRpwlrDk4RN/XkNKWE+kQabF2tjm+POy1lZXkUtvQJ6RctrOHIYmDQhq2+1mGlQVOra02R+Ci03T58pnN5ezereRhGoEMjh2kadtSN5bAuZVc2pePvvj4pz/pgIxg1kUg13LocTD1Ms9KnjIwU7/qYUQvpnUCCOE+jObmLZATo0bMC6+TAyBydRCstU2tl8uX5/04ZBkswswM/MFbr637lTVRkAZe2/bo7PaTR0+H1FvzdbcpEQCCqC8vtpAxE/ddilb6PtMqD6s+j30p5ep8uj7fn9xbPXj79QNNZamXjw93trfYOZxQHY2RAG9snk4MHYJxoDk4cAImDQaD5A4BwImwB3vQTv/Of/Rr3/wLr3M/gbb18UmDRgbr1Srdu5OFx02fMiwwb/hIMgyZgKFyIEZyM6+rUY8f5OXpLoo195pBEieUkXOfYOpomcrFq+c9AoXvdE7ivXAtdVEXSR3zweL84qpM29VIp8cSedhe7J89ubw+XFeC1bA6HdfDye0AmlV319M812aGNbousXCZFiQkcfJUzd1BPSIA0J2gmZ5uNplpuWwdSgNb3xpOutT23sliHnVhdmhl8kSzR3WazRvYAXbESJYImzGIE5uHByAZGjNP5oqYkPohJaIkXMzHfrXpgaXvWDqGzfHR2dmZY764OCxRVEufztHDgKBhFjGxVZ8zdST98Xh6/81NXg8KYbNi0WVutdZyKLvD4dnher/Yshy21wXTzdyAljgEKKcjzGMvMnZNm4hQwt77gWnMHsTr1ekDJicQpjrVaVn209yutl99+fz82csXry5fXr9sy6FPDMCKIdkHFspSZlPngAwCc5tD8tH6qMu5smZDbHnJzoTHIEGtEHmUzBsXb1gkeLR1UodODY9a27suxahLR4JhsChpDVhRJ0RIHmbSSMwyhYU3ylObPQwgECACuug5oWAkzw1RA9yNAUMxMDVvAqAUfuMJoYwQgQ0AIVCyYk/9bErCvYxg5bDsFejk6Lj0adqX1Th66ARaB+7pJJap7XYCmcaumaDJbrujVFebERsmxZJcsmDxVCKOZL8cci+cWYuNq0GXpc4TJbguU6fUGViHB6teTTi/fPIkgd462yz1MEjvN5t1RwIDwFYVakvT/OwPf/rZhx+iuATVYoEg7BG633vH2K+4zU0waRj1ETunyoTAXWbvgoyJQ61psQxmqMFJQgOKKQo62q7Wk9VxU/cE7lCqeupI+qfPp9Pbp0erk1KKoJ6NPeMAHN9891tfffb5Fx99cnGxTV2cnt6u0FvZ3XpwT6rN0zQej6f375aydF2/0TUpsetyfR19V1tJwdqckYIRgcXBHQmTRzNwp+ggoQIDEhHX6ECSoIVpCQQ0qSIxxCBzfvzbT46+S9jHrfUpKIl0dEK3Xr/bdQkJx80RjcOwGnPKgUEEEu5m4W6mGq1Pced4dXG+7MoEUaFJkoQSQ5JVAunTrDDttgKc+tzC67Lv0rAehiB49ux8e5iGcX1y60xj+ezhJ9NSbq1P7t669c0PPsA+JwIwtRpavelit+Ll1fbli1fkhTshkdpKqc3MsnMENYYKLSfogawFyFDnOmzGe6fHWmM3TZtuMy/1ejkM67wex6uXl4nzyOlqv4ubrUtwYgmyGxKcCwBpoLRoxAQErlHbAYUEOQz1oBC+uC2OL9rlkCiIwTExqzdmP+42Ea1b9ygpC/YZ82oYcd2lNfS4PywOBwMQZ3RH1L7P4N51+ezkBBJtbh89eOPud/pMEq3p9mpail5cby/3+8v9davTvD9cW7pq5uFEiSWPxyuBkH54480HfRdwWEIy9ZFZhuOeurTZZCr+9NnlbntRrezL7tmTJy++ev7q+fbV/nDYTT6paglrjGmDMoMtENwlka45cFij1BgHhw7sfPd0P0/NrAOgfnaJ9ckZoKSMY46WvCgAgIlGytNyTSwBhpzYwz1ULcIZ0NEYkZHYvewPS12QiBDAkQhX0o1Mi7MGlaQQbtAqI4I0dYGbDwOZzTCUAoIJI8IBRcuC3I1DatogZJqKoqecZ4ZA6lar67bkCNe2OtpUtV76zXHX3PZlzllYs6WcVynMqVnLHO4MQCTj2LemENSEwL2Bzc02fcfaMcFhugqgtJKMcjb201y/+OzjRHJ8chxRe6dpXowxBA2A3EVw1rJZyf5q++X5V9CxhCAEIa7TIDFHkJPV8KSJE1lY33XhTQWKNhQkINVSQcEEWmvkLlEBaiC4EiVg25btuuR7J0dcYyotomsFMZ1KN96+fe+Db93q1/0mydX1rhuOpt3lZ5/Gn/3z/4Ou72/dOn388PO5wK07D2atfYrV8elSd/l03PDZ6fFmPDqqWiPq6igPa9nvtlVLORQLv3P8WrxygsAgCHe0JmRGyYXBAAMgOOXQCAMCJmQHQOMOE4A0UI+oviTq/PJo9+XFve/fc8HMkhm77ggYUuJxHLujTb/aMOUgMDBrroCA4U19qdP14TAtd249CIflYmm1GFTM/RRI0CUXdE4imHsEpgoUMq6P+358fn79/OWL1Ke7t84uzw+fPv6MR3j7wZuv3b875s4sWpBDpWiUKDAxeSeDQhuOj+7euq3Tcn5xUSWGoZ+v95qqNhgRK7k6ojWuNUsXQKoeRcd+mMWOxj67tojEKcz7JJvNMPa9kKyOVudX1+5YWuMgcMyCpcVMkSNFsAkCOQBZoKQB/MbdEAmgg3BEI/cEScK9NaBZDSjmUlrTFNiu9goQjil7SFAYIVh0fc7DyP3YCY1nq+H2apUaeIKCdvlE2cLRiYFV83qQlIeuO16Nb55+7U1moOjU9vN8fSiH3TLtDrtp2W4Ph8vLfW2G3ecPn44dDSn3q7WQlqW6E0jcPlnfv30rr49gykyySvb+d779wXs/5wp7W66up+vn1+cvX+6fPZ8ud9vdfNjvrOGtO/fRIREiuYIzA0Tsrq63yzaYyKiXEZOAhF/bEtXSNXMKkp4586p5HgioW3K4K0tLTgRRAE0IAFldTWRycmv7MmEEABBxBHLKtSNy9kgNKZqLt+5GXmuhoQiQOCXG5u4Y6MiIFAIQDiLd8QoWr2Xq+y7MJyDkRGYzzIP78bghGgxiCaaofYZ6qONwDMGdQyYG11t313WaEsgBvbHfQha3QugiEpSteZAzhNlCjq1ks3kpt2/dnufJKarp9eV+f37ZI6VhtV3qWqKD7AzNqoAFgAGGL3kl54+/+qN/8qNpewEqjmlMzBjarDo7h/Nc9zAZyZGmI+qOztrLab6+Sl3SxQroIVUEjOAsksgtIGEQICG7IxJplYtX092T24fSmg+djMcnZ29//f2jW7dTNyLSXMsaaHNyyzht1pumpblmALWQLNR1z84v9oft22++0XW8Ptvcf3C/zap17jcpR7LokRAl78K0hEe4WaaRdaKKXqEYmCuhmTVRAJRgIq0RSMhE2IIaORESgKM5B0sQUhBUMHSqz/t6QavbY7W5zwJd5i4Nw9CP43B2SsjsZKhWSgQyccMWWPfTFRKf3F5pubx1NIicvrrYX0wV5loVX9VYDRuhPErf3HZtv8bu1rjpR/700aPD3u9tHuwPVw+ffIYsf+qHv3B8sgKvjjJbODExpeBOOsDox85VaxhiREjfDfkMj+/etQTRlgyuEoCcUMKDAqE2M6uqTsSIAycekjm+PH/RXN0SqmtUM9ejU+KYpsMK8tGqW+ZZW4OqGqLzsuKo0DmHAhUHkQQKDUDNJPfNtCGgCzTNHCsEATCvKQE0FGImbywQxU1QUmYKKyAVUAsyKgYtu/2ed7Vjbp6B6SSP69Q7u6wYUndiqd+s25iGnHs/cFL2OcfLsJK7UQXWKY39kIbhta+NR91rTlSWcj1t9zNfX2/3lxfXdbqeyv5cew5PoqAr4e2+XG0fUteve9ysuzWu9sW3lwUtYoize8end4d35D3Y+wrL5curp6+2T1493e+Xl+ev6nTw2Xrmgn49L1Yt86ipQcdEq9wPlUI1OiEz27VoDdZweZJXhEmpdDnfCNlEQOfSYsZEjB24YKol3Cl0V8OIKRw8PLphJbmvjirUSZiqIgOiCGEQOqJQowg1UQ53AHQqNw2eAEA0aV6AQFJ/qGaLDn3al5I3/ZqZlKd5UnXpMggWq730mbrDNCnHuF55ddr06JFR9tPBKfroZi2CUdWXZoq2GYaORBWY+ZQhyrKd5rxajzkRDEbt6urq6snVuF6Nm4zh6GJmjYTBO3YPUogWrWP82W/8zh/83u9GlPUgCMxNsJUEEYtXNGjQkjklxwJAvXe7Vxe7y0W6zjNoDeIajBKSHYCtI1qaz9N2ddRVBPQQEK0uPSfo+zt3vnHrARJX6O6/8QaCWxiAbTpBAC8GVldHw7e+8+15KRFx78Hr/eZYMoPrisZXzy82x3dff+NtElsP4mXNQ0LMrgXrEhWON6ePLl++enF5QsP57vy+bYJISSvXCpoMEDBQlMCpBSMpJerMG7MzIIIS4k2+yAEg3IHDsXMc83j56HD3/burow0G9SfHR0dHnIiSJOnd4Wp3db19cefuWSmwv346iixaUx7G3O92U9flYbVeHfWnt25f7ueLy8PlQYf+KHedJApVm5eeZT2u5zZ9+OHT1dExS/m9j396tBo++N63bp0ce9ViCwU6QpYeMBYoXTfeu3V70gIMErHfT9t50aZupkyLq7XInKtb9QCD7WFa5y7USaRC5LwhDJC4PkyCISkNR2ebnAgoNYPEDcAACFwQIti8EHkEgbpZgLVW66K2tMbhoe1QlqvdZK66VAqaSpncS/VYlKsJEIbP1AbpBby5pqAuJ9JoSfZGNw8gEIQyhDEQIkQvbEbuQea5S8VmXYoLxqwgsFW0Zwm5B8H/H0v/0XPLmp5pYo95TUQs99nt9z42T+ZJV0ySVSx0q6pVUEMOkAZqQA3NpL8gTfUjJEAD9V+QIECQIAOhfLFIJqtIJk1m8mTmsdvvzy0X7n0fo8HmNMYLgVj3c9/XpWQQ82mMJyku2naxBmzCwJIHcd29QUX3FONikSj4YrG8ODk9+fxZETv0Q3Wpg4robjpsb/dztcTt9nZ3JxM7p5C4iRQCiq+pW7YN5YZDmFNVTIvHZz96cv65Pymu82T9cNy/3L5+effq6o7ql3Bxcn17dMGUubbZQjASTBao4Uox+U5kHo+7eZw9Yqy+5K5JOWUj1lLJGg3GlhEsoGfHUua5ijlEiBoy5wxtSCGxp1nEa23AjciBFRwtCakZukYgMDIpDK6ICATFhCGgeIgpiR4NGuXAHR7HA3OInBkZmEacqktmJmDi1ntZ566aDFamfs4cRIWRA2FCd4wbTFWFVy0qhHJUtR0I7ufNekN1RCMCanKjhFfDESZBqMPbm4XTSbsQECGprhpIsYZiAi7EwU1U/+6vfvH3P//z1LUaUlFBiCll1BrJIIKohRiLBvUYQDKxj5OKLGMzkYmWFJCBolHklqCIC2Ay1XE3wmUwBCKYbRa3+4+ffPTZ52ePHnXt+rsvv61TRWRRUYUYoqjWKvv9cbVYhYbAeLFYmtmx72/f3LJh7Jrq0/1H9z787HsKysQxZ05kHhFhFucYNUzL9fK/+q9/8u7d4eVvv7GvpMxJay0G78WWII4UMRi7EiKkYEiiRuyJKDoIsjoECggurszRFAIAmyej4dqnHV4+e+jm6806dY26Dv1+2A2b9UrGAUQO29t5kOs3d8+ePO13vXrfPHiwbFe9TuwCUlLqfvijD19eH4cvnje5CWg4zaYQI+dFd7Xf94d+eXLx6s3z2eqPf/zpernhjGWeAcAY0RM5toHvPbjgNonY2A8G1E9TfziWo5Y6l3mq7hZI+xmJYpvNkYEcqQoJqNRqVYggeqkqwFAnjfMcok1VEKYU2ETd1QxNDNxCZHMHroa1ViflaA7sHpCQBIhSppQ3uTtbnVkEdo3ICmEErGWOIHU/zCIjaD8NpWoVnecyzJM4aGEx7YDY0C1FiJMKRAY0twpqKTSqkADaEKvOhjZXBUSey0jZQNq5t5HnAKZzCTTkWObXrgEDBaZV0yxXbdvmbtnmHMIQAscQSogE8JYDp5zOcl4vTmKTH6UHxMgZaA5//6vfTVrfXN3OYxnHYZIZkfb9ge+ueZEWXbeIgRsInhBzw8uAErIs4upyc/bDHyWpXkiA6bdfvPjyN1+/fffy9nA8CMXIoUEwViWjIUYFwxSa6lVUx91Q99QsT4SoSU2kfMRSxDvAlXZg5dj3JphpSRyEGTvC3ETks9hU02nY9z5nJe6jFCJmYIvWsQLHWXFwYpTorgAQOaiAOQYcNECsVo2RQlxQOw2T9EPbrtyNDHJM4EbMCLg9HiM3MXcokIlczQHFgAwWbTfNMqNgmxTc0Bbn6zzLq5urh2dnTR33474WODs5XzTdUCsQF6s3L143jOneWkWahodaXJSIQAoZEUAAYoT++uY3v/ib9XJBgGM/V2BPYjTnyFo9dS3XAFjblHKMUSAiuBpyFONYR04EhEUqAguNiGAaXajJQXV0LEQQiA793Oblj370+w+efIghOcRh8gcPH7mbqe/3/fnZCQcCDF3XXL19k4/N+fk5k3NIMbRNyudn67MH6+HYX94/D7m45hhXav7i1fPLxxdY5zKJVj4eys/+6F/8o3/8XwLkMo7/8v/wf339H36dGMELoxkpECmiE6ITA5NhNSBmUEV3QBQkBzIFZEMLQBERHV28qHpbu6//9pvNs8Xp+crEx7FM01CPO5A6DkeuHp2Hmz4gPVicv3t1hZGWy+X+sO9WC24iOIRAT7//gxrPvvqL/5hxFd2JAEJE8NQ213c7c4o5v/j1b+89urx89oANwE2KFdUm50QRQxsIGflmfyg7q8DsKGKHfjwexmhWfTYvdSpFdLjbq4gnVsZxe5yrmAsBFFEhnqfSUEJEI4qU3EHcgKFt0iJF89KmxMBuiAjinBM51RAiWZyjEyJXYAjqngmqMxgGQAGbqwTw4DaWsRDPNkSzJkchQIcOu9wBCeL76iTB7nAYpc5zSRjmcoDqyZvjPKeYAdpjrAjWqoKr1ImRmHGJsQpICIMF8qkNNgtHDQwwm1DILefDoZ8nVdV+ZNwCMapbTNymBfPydNk1izZGXizSsmvGJMFlVEGdmpaaZV7E5dNPP2TQH//ge0J4s716d31VCh4PZXu4nQ+77fZWjRZxkWNYtCnHkNsm5hwzE5sX4OBM3E/TR589/ux7T2Wa7g7jyzeHq6vnL96+OV4dB0O0jFSRSTmFpKG6Q6xKd9OoMgdgCpFW3brpSMP2sO+PN2UqkAOsVi0uMyhHp0jZGYsSYdsshFOcqfF6LH0FcRcORF4NJkWjYEyMkpHdQc0rYA0TzOwcHDIFm2NH0DVU1CAQMp5onqQ40jwMbdM8fPZ4d3OIgSBQEQExijTPIzhR4GkaSgR35dFy24zF3f3exSkFVALGxeJkYSJlnAIHGK1//jbPtnpwoZNVmWo1dM8pCgJxAFMjnb0ELS//9rdLbQzU3SO1cxmRpqZZehEzn+sUQ1TwKhXNcnYQ4NBWUnGdiRMjc9BRElLAAoQZWhFsCA+HYykWOKpCF07+2X/133/69OPbXR9DWayWMae2awCcmc/PTt8Dy5lgvV4wwd3d7m67f/Xy+bJrP/r40w8//eCrX70jMHNxcFBiS6whJF0sA3t1g+E4vrvtP//ZP/3Jz/5LgAgAqW13d7sknAAEwzjNHIlNCRGZTFTFCGJDQUURAcAVAZAY2U2NgIDUHB3dVSIghFCh3MjVV28R6slJTpjLfk9S9vuDRj6+vR7H6fLefRvL8W4Qmx999Bgjhxg9EGKKeblcXo4l/ut/+e/K7Oscm+gScZgxhbw9DoHDzd3t4W778WcfxpOuaGlCcjUEzKkNFF2r2DgUEUBzTCGCSKnVAQnxpGEGMM5ASebqhuH8TK0qGRCOx6mfJ5nLYbc/9GNFTBaDWC3TXGWqUA0KuJEvujwwpsg9oRqYOzJdbYd75ydVZ3AMSu9urrpFo6N5dWFPOdh7KjJh1zYYYkopc0i5McLccEzZMMSYu4iCxswuMvcTOmCErsnVqlq1qvOURdHVa6n7cQSGFeZYTeYyoKYU56m4QxCfZ52zByUXDkDMUY0MHZEBuZqMZDVoCKgCDDQjAAasthu3yuPNwG5IjjFA18Zm0Z51p816/ejspLq1kF5d3X337gpcW26bwDnjs8cPl4sNAMdQD2O92x5ub/d3t8fdfr/d7gIFgL2ypDYvOTdNl1cRwVbtEtzAagppsVo9uHeO/KQAHnZle7198+7N8+++2t2N+21vEyUnSABAhNFjgDKO887q/j1eu8xD0DEhhbZrl60DLCiFECRM5ASEOEsKsQAZMzQxtYHND/s7I/NIYo0YEYo7KHNIXEvv7OgWiBegJWJGC7PMRwDR+eziXj8M87G/PFmSmRjqrBScBbuWJz8YsCqctu3dcQvuRgHCMqU2QxCF3C4AjAAgBQ9Y7w5xvSq1BhaXue8PIbRvvn4B4/jo6ZNpKPXNFqjWMiMEXDW2pLRYCyq4QJHddPPy+iuw6kDmPhtisBwizBK9Isy11uIrMRXIMmubAvkkegxNRudWMKo7cZMaIiYDpQGYUl46KIrksDw/vf/q+Zf/4//5/+CDTz692+9mF6bkqI+fPUZyMydABwVHQgR3U+0WXUrZEderz969eVVlalYdM7tYoDQNNk98cdIFVEZ59vDhDEQRx209Wfu9i/ObF6/e3Fyh4mZxUt7u1yFNw9HVAkd1V3cDIzLPwgmhuBUJxEwopuIeKLAJMMzBxeZIOVRyQ3dSdUTjga+/vrUOqzSbdVeOR1QZi7CWJjFCCyHl1QKMyeJy0WBKqT05P7/Mq8t2c06c/8O//LOmwnK1TBFihKHvHWAcZwZ+c/XKtXz6+feKVKwzNzzC3MUuzjDtBmsbCaYupZogBfdQqjapWbYxMkmNROYmJm5aGy4A2UE9BsLAaWr9PFBA8iJV5mMdtTpX2e1vD9M09nUYpttjXwFN6jjOR4pGbkiAiPieF1uHuVeAs9Xy9Kxbtq2uYZxr1UkK2VjKNPe1XAWUqoaIjkiupgTM5oFDagKjS42LRdNsWiFdNO3FeplDbnK7yl0MIYROYkgiNg0H18PQp7GUeT6WshEz172BIJJoXHYJ6jgXyCmINhQnTzOUDkNG7KUmCxTIUCGQK5tmU4xcmFSDGKgp1opz8cMw8N3+ql5BiN+m1lk3jy9IbNmmpmuaRrMTB3/z7tYZgWObm5Nld3LWPnjwYfIWwY7jbne3v7k+7Mbp1c2tFAM4AoecQwpOKS1WG0Bs2iQkIQaY62rTPdysfviDD03/cBiG7d3u+dffvH3+/N3Vdb+f98MkDbeLDp3FTOatSnEgxOBYXTCqNA0yREdzSlxr61wXzYTms4PxnKB6ByKLzdqIxlJ1rhm51K0jLtvlVCawEAHRKv5///3P37ukZKxTf2hWq2aVQLxWY6KGAEJGdtCorqOUVc5F5tvDoV2u5Hjs97vz9WK56MaJJvRNk3PIwzgu2mDOWn22Gh3jYnGUedhfn66X+9vj/u3d3I/3Tk59GA43E4G6j+5eiiho5dqenWNOi/WK2f/yFz//7V//1SrmWosRIbFbaUJEoFJmNA8xlBkAC1Ls3ZtAS1ZN1SmUglgcDbHxTFQKTVNtkqeGOUcO7JDWl0//yT/95+/evvqf/S/+pwrYtm0tsFg1ipZCu931l+dngIoA6OgEBk5AYKCmBhYDqxgy/+Wf/vGf/av/57s3b55+8NEPvv9xu1nGJubEzMiJHTMBEySMea418VLEX79+s/37F8OfPE87Gce5P8ocxGYR1TZgDWWOSo5Y0AaHQhGZwSbQxEwO7q6ATIjYoDtgrWxgYIzSid+b82dNWi9WXVgkUiByNFdGaqk7uXz8yc/+8WJ9cvvdb+Z5582y2Vw+ePopxzwX/Ff/5o+Pb+8WXZtzyMvu+m5v1QTEFL/97ndPHp9+8OTpb55fceBYnZg3eWV38/FwExYdrtYFpbI7cschp0QGRsgAxdTAMwdHL1IDGDINRASOrhFcahKHwABQo3NALjo5Ijs4h6Je59FE5jIfh2G33R/uDlfjsZ9VKgh5RKBi7nVSESZG6Jgr4zRNXe5STgTapBCIpnGoOqPg3W7qixt7QFXjGTQGQKmuwUtDbBJ1dpFpjuhkCWMk8oZit25i7k4yd6scl6vzdhWhUpdiSMToILVMJjhN81yGYZxwrDLbTgTmMohDQDdjCqZ4nIsjMpQJqwupMNYaMxdUAXW1KMiQR1VkcS0o0TC3wGh6oL7NkG2tnrktuQurxWKTFieXmxRS4ADRiGauyNY0y+X56Wq9CuvV0jHupsmH6fbq9u3t8bgfZegHmywtKUKbU5cDNi1mXjfpYbe6vd6aCzWIRAEig+y2/e27u1ev3z5/c/XmxfO3u5tZJhArpZjN7BVood4S6dkqR04VMG6WXcBojQLuQ21mZ2tmKIyoKAWVJp2KIDlMM7f5/sV96+vzb38nZk6D6hxEBRGBwjAfNotNbhsnqFbMNYHHdDJWCYGHMmEAMwX3Ny9fQQgXZ5e0iffOLol0GobYtNX9qEXcGIFD0qG4Q1Wpbg02sQvLsDpe3Q1v7nxf7q3Oyu1Rb7bcRLNqtcxZmocpL/LqdNN03bffvXrz5rta/Ldf/D0iazVHFHYGadldCnDCGAhBKjqMiS3GVrXmllLIt4cdM6IBe8s5apjFKjNyQDG0uUTTLnXKdbu9fvXq5eHY/4c//k8//OEPbnjrBdotQcqbzdlq3QCqAzm6mjEQuDsZEBAR+fsqmM/ztO/vTh+cf/C9jy8fPo6MiphWJyEmdAghAnAImVIuZpQgQgCbP/z0ye1Mv/qzF2pGiERiOFeuxDaao3sw8IAckCKJuDgAkxsZ/QNOyFSjsJEpi0JPIZAHh0KONoYwJexsLjNBaBdLrMqhDQEvzi9Xm4sQMq/X648/IzIMsWmWWHk4DP/5L/7m+t3VZnGSyM9OVtd3t2Smri56c3X1g08++PFPv7ffHVpiIyPS1RTmq+M4jXjW2jo7KCKm/N6MZwUkEkcHBEB05uCACMaBAgUGBIHKgVhBx0iemY0NkUmQAF3BMUxuIGgVHXLTQLsO0eLyYg2jfSz1+uZufzhux6OWOlGphmHCNiRkQsNxGExxe9w7ooOfXWzcCwEsFuuH61XT3HHbjjL7XBpob/a743QcxcQVcDJRB1SoHCmgE6CCKXjVstvNYtsdmruNxZuGI7lHDyE3y7Ou61aLvF4t2pw355cPU0tq7tCXGUc9jLux1nEqWnyeKkV28Tz7LiLEFEwRsSijeoLC4AiAwO5GHCavlGNVKFYja0dUqx10amBm3+3H9vp2uwgdvviua5aLLuXFYnOyWuWc2cu0v3t15UpgxDmeLpYPTlYPHj94+HHuurAE++2rl6+u++Ndb8fite6PwyRlWq/6pu8P42rZ/ex73//y9XciBmZx1T1ad88+ffpPFOZj/+rdm1dv3rz87tVXX317u70psiDPTYqURFJCo6mv+7ofcjgJZqnVGCWL6KxgWC0iVQNCiiGClBiSCJozxJKi1TILiqEHnGbmIARn6/WCQl/FFFNqMAhWmedxMA2cU4oZ0HOsWtOiuX/xIBgQRTcYZy0V2GWVF6MbBYyJd2XOIRoCsjKjWNW+zsNh993rtqfz2M6HI07ScHOUqdDcnfj5/TUlm2UkwOPxGHGc+pui8d7lvZtX11AUYyg6N4EcCQy0WmjIdTKgGIAxBkwN6aE/jti0YUOkRQdHBSeafSqV0AJRCBGITeQwFm3jPB2ub7er9elf/cXffvvNtw8/enyyXF2cLmaIYmGxTOM4oGWMWNTazJGjqrojAJgBAjCzmQQKP/jxH7TLtTjXeU7M3ebSDMjB1GupSmmZFo15cnKxGIKUY2pbMUgeDbwmdwdicDCMTNN7v68lAFMKwA6EZoSoIk7ATITv5+biQZjRVc0IklkFm2g41ngitWhDq0XbnT86XW9Ovvrmt6MfT1pAKCiam6VqOd5ev7v7ts5yNdTnr94uVk3A6fzs/t3uVlRFVd3ubt/94HsffPa9D2eZy2yBIgCUfn+4vcLU4v2TfNZonbkaxYBG6u6mGBgIDFFVgUlNibgJrOrCBAqRsJgiQQixiS2gzwGtzhjQiWJIjMHNZ7EZFYpn7EAFEDUTMDraumvFdD/0t3e3d9vdbhqOPiZmJQgU15AQgLvF4djvir+8OiCIlmp+qI9hHsdHi3U/79/eXAWKHzx7ild+eDMpiKGDqc2urorOgatNyghE7hhBkUDBjQMCT6YCEEWtym5XDDQwBGTCgEAhUlh1yy4/XJ8sluvl8vRk0bQ5BhEp5Wh63Pfjvu9KKbPVoXdimBVrSbzwYBrAEUImEcHYgoNZ9VnUUYjMFsyqNrSwbDkVt2lWJx2n/uq6d76j6G2KDedmkdcnq9WiWbZNQt9td9ubg4FxokXXLRdxuV5974PL1SeNjOPtcXcz7be3++Pd9G5/W4GP81x//oshSKa0XMUOid8z3IiaTffs7OMnP/wEqo7b49u3d198/eLFty+url4rw4iUYnNGvBuOMIr58YjHqTcNoV2saoRIIQliSGKFWVLKWgoauFcJgIlJ0R3JGf8f/+9/28S2txIa5FKtBkRuFm1hC0CKgxQliW0Iom6BYiByY6LdOCzjoo6zgKWulXGkmCEgoLQx9odJkZbdAqYJAhnS7t3V7vWr1GtrEcSLIYIdx23cTBfPTmfrVeYyzkT5OM+qSuavb64Vm6mXN19+zSLiMro4YabEhmCWkpHLUGv0zBQQQ8xwW3qVuOGl6qA0KTpUbzBXcEOPQQgdmBxCoCwRBGl1dvmjn/z05YtXdzd3Br5YdA8fn3/w8fcfPvrg2dNH56fnWmC/39/Nk4OlEJgjQoiMOTAxAMrxsB/u7oDx7N4DM97d7VMKjoCI7s5MYD6ZpoAJiDE7s4GrlPH53Z/8d/+v1ZVP03yEg6l4KW5qTCBKjs7kKsGSVnZyBAUHdSVGQ3MzByQOThXAfAIKqVJFJm+lPPLFJ01ItdN8draYa/n9P/pnRdWp3r/3UX88CobRrZ8P0343HfU4QO9d262Z5dmDi2Eod0OvjlJke3f15NGDn/7kc5c6FXvz9sbQ3r683b7eNjHl084osFomhoglcaLsxAZmicGRGdWUGMkAVGMgJaiG5IRShRwIQ3CvyEyOROaMIG4IAOrBQ2VQIh1KIieA4mrR1YQEM6dZRVWL1r4/9uPw7vpuv+1nkSJaxvKevTSWaazTZCDzTGqTEKCS2/mqO7vcUMbW0tQfnr+46mdwsFFqDAHc3VzdlNygVgLHkBwXjhQJAWZHQlYWY+sA0BScHTFQdHAHF3UQBEOxktEjRUyhArZNd7JcL5aLi/Plet1Rxy3HJsT9YT9LP+6tHL2U4yDjcSoABApVUNQZTUhdYZ5NXAgsEI0qLfGGc+/aT1JIWVOt0XAOWYgIKnswB1wGyszYLC5PThbLtOja0/WaSeqo1TQQxJCbdXuyXq9Pu5YjVDgMh3dXN4d+HIbpahhII7iepsBEtF5wm9HqMqYUyAMUKQsOhjDP5XAc3lzdPv/69d2rd9tXd4OWufQLtwlNWAmgWrTITeImNCVEYO+gV6FRkDSu16fKcv3i62F/qDqCagjYaaV2sep9b7UsgCMhaBGGKtRGiE3SgUSqKRimAkqu8zwKUkmuYLv9/v56iYmGelg1m+peQFdd1091MKGIAVF2w/b56zyVDmJVcXBwGdGaTSqLw7u7b1icQhgnMZOifnZ5impPu+7Yl6/efokixHDerXb9MCE1hG4yW5kUCaFOalapmQmphTW4OcK474m9snEDmMI8SzVnsErQZABjgI6ZXfumbet47PtD07ZtPPbbw9Vufxxv3766Ot386vs//OHlgwcpxMPd/s3bN8CYm2bVbVLsUstdCsQ+zGOXmicPz3djfzxuL84fsK/ubndmWqe5aVtsExHn3LlMUgQ5A0whdaZpuTrBAIKWnaW6KQ4TaE7uBgldAQ0Rmve8UURwdwInQgU3cwRQ+IcnVZw5GilYYAeYBSamwpoc2gaTH67f/eoXf/n9z38PM795/s3tu+cvX7xa3r+X150aiS9L6lpeLADOLy+GUnf7XSUuAuV4vH9++v0ffCYmFElniZG/+/bdu+vtYr3I60Wp0/bl27aEJqR0vg4bVqwhMzq4OFJwtfeEKmZmDsVnck4UVS0GzqJG+P7MR+TV5kz5H6rN1aqJRjIXrB5iAJWKQbhRqwwQGBGAYkKsxBjD6clicX56Noyyvb67u3k7ElfH3kplX6aGJ3dDZo3sPaMgv5r13VevVpkvVmeP7l9sb3U89gHVwc3MCZwAjBAVTWFWJo9OTgSECMToqEVAKtgsMSATFAAXACAWqBAYEblwiimQQ2AHJ4Nhd9hfb2cR0cjBmzYsF93ZarVcr0/vdevV8tGjMyQBh36axuEwHvvdYRxHr/1UgSg5B3HLQdEDtVozACKio4kjOYCQckrR2cxL4FCR3WuZaag67OubqzsiWzTxpGnOlsuTRdecrb0NAD7s7q62u/RcI/F6dbpZ5icPHy7Xm0p2d3u7u94dD/1xv707HKZhIOeQeRlT0yRoqO1y45CAUjwJ69X56cUPPn9WJz1cHZ+/fPP29au3z1/Ot4fGDVDnMspMd8PEENJqlXMoxhVCiU1GCJEzRg4twUhuQhaWKr3bVAJyXC9idixzFWUV4nm2EgpabEOdwebatBEzzNUZFwQurieLlZsCeggZZx3G0mSS41jIu2U3VIkx1v748qsvGxEmGEsNiDOOIvPd7d3JxUpM9i+3Sw+LeyeBQz/Nr9/uYxcf3b9cqB+GFyFTmWW9OqWiEZNxdSgatEgN3taqRULGAFa54XGwbG3VUblFUHeYpQbUkJertqvj/j24zt1rrWK2zg0KzPN0vNpvNqc9h7BqaIAUF4tI1u//+i9+vj451VlM5Hb3lggQggqvmhVFnkGljEXlyaOnD++fXtw/MwIUvX/vqa/reJg4Y0BjU1dzAOQojPvhNnA9u4yRPTQx587hVqIVlcLizgqsgAzOrgnYgBzE2QARDRyIAdRViYJhBiq1JiJ+3woO7iJgADPIXuX2GGOYvNxcH0vpv/rtL4Ojaw3JY7e4uLw8oo37UqW1kFK7yT5fnC1cyu1+y5F1lDJMTaQf/eB7pA4M7zf3v/vdtzfX+/X52XKRTWasVsdSduM4Y77dNxfL5cWZAUAEtuASPGAkFVWwEDgYFHyvfAuK6kRk7gDsjlQ5YJzRsmNyHhAiEUVwY7YwzAU5ghuBMecGGnBHrS1BjQzOVaCYdbFdLGOzSKdnCx2Gq7vt7TClAQ/zTNGBGyhI2KOHfp4DODrJzC+OtxN4IWfW4LVhGk3UUc0VlZDFYxNyMkdwBwLz2Q2oRvCo7u9JrO5EgAzVFMzJDVydEqIiMEWuUhDZrQSGEJgBmFQUVHW/v7u7eqElTk2j7hdtvjw/Wa02y7OTs9Xiwf37z57mIjrM+2k+lnEe9+NY61TmWhnmhDLWyOYY1hzcwgziQkTKDNQkRVapiJObeCH2YsYShgnKXO62fUTMDTVNs1x061VsFxvKjed4teu3x6PLu4YXqW3vny6fPjpP+SEYidHV9d2Lly93x/E4Tle7G0hdl+KiieuUmiDGHjphoZaa9Khd3j/7fvnhXOqLt7c3X3/31Zuvhndv6mFqZCkkMvd2UFeecsRNDUTRctudN7Hd2cFcOCD+//7lnwiqcgDEAO7VmSkQjccDmBalZtF162U/Hss0p5wBNXIki8d+SImWobGAM2owblM71wG8JIoIaer3FsM8z4ev38zbaRWjq5aijflxuPYVLM9gu9s9315lkcZpSvHs/j0GWy4W0HTDcDePg1KYt/yb//yrVUujbM1DhDDDVAXGQZgpsJlKUDU3btsUG6i+H7fIrSOYa44WiESjQow5IFSbJUIBJIiboJpbkIDN6b2nH3zv3eHWzALg5uz0pGuWOUBIAITmiK5eVWA/HEodx/08TuMkwj6rxf3uuNqkH37+2dNHj2fBB4+effTxh7Xi8TCYVVBFIovZKZArWK2qlHObUpr8j//P//fh11dYfSz9LMVHcCUPFZDYmQzMigEgkouYmwbIFky9gKZEHswFQQwALJC4zlaRMaBPXYFnJT2gk9Vp8JFExnGK3AUKy/VydXpvwjpRWFx+OJd2nngTu3aFm/Plu3fX5qRFRGSajj/7vR+tN4syWnFLOf/t33zx8tW71ea0XXa1jqSqs1y9eOsjNpUbZzVfnK0WTy5tFZwBgTkEIBAU5hA9VjJzRDOPhOrR3AkqOTkFIaYws7kbqhl4AqEIpuBO1V2tNClLNcCAqoHJ0Qi8ijqxsItU8ABARWadxyBaxfpZDof9cb8/juPhcNgfZmKcRK72W0OUqmQYOU5awT07kIK7iRd1MIgFDElFPEBN0UshRKSAChIjk6q5mzLVCFy0myjNMWUdI82JgIQFjIFCjEmKRERHUQCEKG4YDQGtmnOoOkchcVIjFK/TNFFuKHC01SovIZ6cnZ/dOz05Wy7algDczGEax+l4mMdxGqZJzOcqoM7CE7nTTCiz+iwYpBarVRwUEFw9A6CROKNWWyAn0sgcOKaGR5GY+GyxOVtt8iovm2Wg7MQ6j+JTaJuT9cmDy3snpx1HO4522G2Hu+s3N/Obm8OscwOeOVEbqdGzZo0YODMHfP9pWsHQZ5F6fXd8++Lu5dcvv/32y/3xTqs2gmKi2COH5eV5bs+uX3x12L5D5y6HcGRENS/FjZQ4RzYEwnCxOD3MI0cE4Lt3t5wgNswhzf0RvY674ziXZx8/1VoEkzm6+bzbNd1inI3bOJWp6Zpa69WXL2hXVhRhQnJILlK0qLYLXj/urvrD9a6edmE4ls//6Mff+/H3QcrXf//FX/7855//9IcxtCnF1/tXFgXaJpY0HmWSCugphbjkWgoyJjQDK6bA5oFSos5jIYvNcj4MOiUAdwOOrlAxE2YG6mqt5JOl4MyPPvxgZvIlfXj+pMu5jYmbHJA5IIXIEBFMrcokZmF1PosfQXyYy83d1ue7/b6mvGja9O723ZOPnlYZv/jibxab9v6zTxvCaRyxSClFrIjXyNYlKpWPfXUj5pRWiyO8JQd3RkoQDBXQTU0BSLwCuhKhGCNSigrVzN7P26spqJozIKaADgLKgXiG6iY2zmzAgUXLst2IDsvTFpxTSKFZDEU1th998uN8+eQXf/vFqmlC68vz7s3Va7NQJzXCMvY//fFnXRsZPCYk6v7+N9++ebvtlier1aJacVUxLS614VJmqxU1soXtzd3e9fyTx5wBQ0WE91EegRKwGkBAQHCoyGgawADN3R3BnAsxiFRiR3dRDILuKACIFAObCmNUd05sJkrO/1DyAHBgYDNDN6qqZBY0EK44LNLG16ur49207l5d3XhFN9R52pUJGM28iGBEU62OTC5ayDgIm7mCoQXAIiCoSPBeGAkJjDFoiCyTBak4eB5xMSyXcL7Uli+//Wre9R6cDd1MTSyG5CJO6ASs2oQ4leg8UBQ145A4pDBXJxO2FEI0M53FdXushxpe3w36m2+ArF2kk5N1u8z3L89Pl6uLB+epy1D341CGfuqP03CUbMOkhMKNY0GagBoOBjJiVXQiNldmLFUYGQEUEMFnkf1RGnU81Hfvhm2+Ck2Mi7BYrpfr9XLd5hwN5WZ39/rNFQcOGS/ONqcn6w8/+eDDj+Jk3u/3N6+vrq/3745DHWmPd8y06NqA0OWwamOkKCF1KT281z68vPjJTz7pd7/3+uXrX/z1L99+99aOk5XjBPPu+W/dKFZHcCUsHgMrNtAcdrtmsVL3qjMwFS1zyBjb3HEpBdHXufMICk7totQJ1/m0Ow1NOI5HIGpSA1X7CqJi0QabZ5HDcTy8fgd3IxARVigy+SRphsDEuDhvKs3PPr33y+++rbH7b/7X/+3J2WKeDy2sNj/4MYBfHQ9WSWofl2ShyASirhxJlYGkolYgjJRsAiSkzEBmpZ96V3B3FfQKKhJLNexyi+CKDu7RgCSEkOLal+fnzx59cO/evXaRT9eb1KTjcXRzz5GMc0Bxi0HRwBAlsVUsGmxulHC1PkntmU9b9dd322tX9Qm+/NUX9x88OB5uf/4nf/YHnD/66JP9Le7LQen9OL2WaZYZInMDKQkmDmdnmxt0RgwGs6mgAAfG8N72gERI6GaGAEQAHi2qzbENqOBIZNERPNrkIqpuhR3ovXxHSyopGlWzytlbMBuJta/DfiyKaXV68fZ6u31xbGKLAOcXy/3tLRQX0xmhjscPn9zLLTv4PBRs0++++eabb1+l3Gw2S8Y61VFKBedpLIgBsSC66BQ8dcr1pp/iu+XTU12EqjUFAANwJzYoChhSgOrCiOBIwEwoLhy4Ini1DAHQKyowm6ojOWIEIA5FTUQJeXYJiOiubpTYwEE8UDQr5LWJdNSkQIhICEaCZPfbe3pqy/WqP8zjMEzzrmxnRDRHB3auCkTOjqJg5iESIHkE8skh1hmtQkjBc/DZKliMUgJlq83cvA2nU84QOBgfmULDBX30GpVZCAAVEAHBsYIHcUnO6Kg4B4VYU2Ka2NHnAE5AwYkpgPsYakvE1SraiAUQkOA4lf3rQyH6uy9fLDGfte355abbpNOze/fOHz58EMh9nvrt1O+O/XwcZdLDYYbggxeSeZVCFROjatZyhFGzkSKZg5pVNzaQgsixAkRR3cv1sdrLt80yLRfNGeeuXS/WJzk1Cnp7fXv75u63gdrUnawWp6erz3/wWQrpbnd8+/bm9m5/vb0ab28CpynyHWEMDXXtIhMlDZbbkMIJLU/Wzz754O5m+/VXL375N7968frKB3qPb3TvEVRlDkhe5rlZNGERzKspU+AG+ND3eLR1OnXG1GUnBMR57hEaV1qklQvOgtUxmYPUeeibvCgqMQWEylju3r7F3WwcFF1s9gCuMJdKjDfTddZzhtVpt/69n3zvJ//ojx7cW2kZYmYXg85/8KNPVje3v/rFb8B9E5d9d3bc3ipXUWJFzly1qNSTxUpccEAIkhetKY79QTyHnJjMxXObuiDmMWEiB2c3QnIMubn/8ZP7j+4/ffx4sz5pFjEyZWosmCD2w8SBkjIYICNGJkfQELNy1lRjCOwAw1TaFMFXjx/56fl69/r6OA2vb+76Ijnwu9dfX93e/jf/q//2YnWeH957e3XrgzSJHXMt83tgfD8eQ4irh+fVNRpGQHaA6MojewgGqjNiMMRgYIQKkohFyQIKV0R0RYjOWB3mCjozetUWGFUNBEiKchOiuh2PYxvVoU7zVGcbBxpm1LgqTd8tHjSMq9O0vd3p7BGyifh8eHy5eHi+mMfjVEKXVm9fv/vy65chtatVwzz142CqIC6zoXgQndzmgIiWRZwwKtnNUVYNNetiEhDdUYmRNTNVM1QKShyCoIsWN+eAYsUEgYICqasTuklAAiZESKqDVI8RkUyVyEFjcFXw6pJCqiylzoHA3d19wWEyFTMiJno/Fg4TwuUZXVzSUMZ79zdvrm++e3N92A3TVMWSkxDBXENDnQVFKsRRlYtNAbEDhsSAhOQAajUCD1J90tq0ujpnIgsKKjhOM6Y+LwPv3KwgRqiOViE4sbgBEZlDLVCtVkBRWmBkrwJcDNggMpt7diRmgBqZOHAlcVFwdAOi4MgCKFqHg0Xj407/7m++daSL9eLsZHVx7+Th/c3ZsweLdlkO9TjOd9u7QWS73/k8AfhsPJiDldSqm1XEWaojmuPMCqFj5wxFXA2xVAH1eTsed8chENN1aHLomtDli667bNYhpqLzm6v+1Zu3beTlsr04O/vkw2effE7u082rN3fXx+v98Wq/7w/X9Qa65Sql3LWCMXnkGTWGcPHg8uzR2Q9//wd/9+uvfvWf/+bFV1+VOiAmdAaAID5hgoRZptItc4XSKrLpAGF/vGkShXUrIRyKZOBusb56e71oV4xhPvRzocVyyaDsEM/WjJHMTQqobb99TtdD8EaYQYohqplaTQrh1EzLmzdX69OHb1/v2fDyZAn12CSKzf1Jdofbnjg+vLivn85f//ab/ji6oSG5BSTElAcZZjX1Sg0sKJJlIyYgR8IYwNmROVMITT9ckUITEyMRYsopLtLi/unFoyfdcv344f2L83Ovpq7ojJMoKCJzjJkpsKL4+7PLrKbGoLbI+WzdadVhrEh4uBoDwmrZrU9WZ4vF65urV29uv/rq+YP7mxB9Olz91b//1z/+R3/47LOfXlz689++HXZlfd4FarU6mfbHfrlZxTOmLtQakHpS+gf+l1MVY88qAEwEDiyIaOr6Pq9md3AGA1QntVBmsh4qzJCo5WyDGzoFBVDmyDDXYpRi9lm3d9tJ2GEZustmuQqm0dimaZgLUtKCUOFi2Ty9f17HvYFA0824+O3X1xWW6y7FVMdhkipSRRWqiQOAQyCaTJUwVw2RXB1Aj693q/WCO66CETkYEIGzIZMoAEQQq9WkCgQlVXICDigeEiNT0ZqQ3LXMyjEJKTlTNVUBBBIrVtUNTAo4qJZaAN5HhTVgCGCBDMDGYQwxgZJzHW1mV0CKwXgZHzZnF/dP59v+dn/Y9ftJBZy1epnm3odxEJnnNuRIoZTpfakF2OtsLFl9IlDBiZZyduk5COUEsxsGVxvHMedTo6NoqOJQhRkgNZjCDJI4VXKsBYXGIJYxakETc5stIJqCImGbOJqpkXu04AtidSIMmEhE2FmdQOeZ5zczZETiWSS8vtndHcffvXxHQYnl0fnlvbMH9+9d3Ls4b5dLAxyHbX+33fVlN0zDMAQMg8yh1mYRA+PUT6i1tzQOJbATgJkkhWBsTAVqDx7Nw8Hl2E/kryl2mZbdqlt05ycny66rga+nafvt86+/fKE5rE4W56frR987fYzxMPbjbv/izfXubjzuhn1fryPGlHLKy5yYOLB3bfzHP/nh73/w2fPvvv7jP//Tr758DWohcIicA5OLO8GxH4zMgevxuNxcpssL0Ln283K1LszMhIBd0zUhcg4hLIbDQcYmrLvD4ZinNncFmWzSu5c3clVXFItbVKsqdZqZgwEKgMjwR3/weTU4HMehH3fH/X7Yn2xWzqjmgWPiHDHNtjtZ0uX56njcdidLSHZ32IGHWlwhNBR3pVz1/VlKgQhirEg6ms5Jm7rqAK1alRgyKUrBibBb5weffPDgg3uXFxel6aZZdtPclcrEMpapjsBuBdsQuoiYSd1TjApoYF0MhjzWUCeYkVPIq6WnmKn67W4bOMUUlufnH3Y5Fw9jv1oliFb2+s2vvxh3/Xa7/eQHP3368MEreNEfrhZxcfv89pe/+PPHT+99/RfT06cfts9O97/chlCUqhfEQs6gpArgiAHd0ZxM3DAEUqPoFQ3cQiLDqMYOOus0soSMXgoiOJgbDUNpZm2aDt8bgWNmp9z5NOOzj3/cnVw20KDOgDxvCUJQNxOLyR99+AAcLHVMuFze+/O//u0w+SLHRQjDbgegUNVkVBfA6BpEawhuZZ5EBoyuxAoNsI1luNvHZlVMkZGJVcGgGjEhG6G6AXloUrHqBBG5miGD2IgKGdDNjF3RiswjKaoHA1dTkUA4Gow6N0DiOMDE6AgoDCLVrBCqgZKbuE5zdQuOpnWqpSLGzWbpqEScM6wu1ptNd5jW+2kU86kKKIDKDKZjmcdZQIehUa2mDh6mWF1mdyqBKkBuq6F3+TSvwsHeCbwn428fnT3cXeHN3ZDb/v6H+cHJanszfvuyB2r2UzXENbfozlXd6QC+RGRFEKEUVIwgzMnIBJDG6GhISE4+uwcCptg62/vPzyCH6mXUFqmieQ6zj21gsyCav/7u+pvvbgJYRl+eny3P1h89e3B2vjp52LrT2B9NZbftd7f7qUxV5+VyMUzAAB0AaSBSp0nIiwAAE2TzMpuZgpgoADBeEdzdbVfbu1evn8fQdacnm9Xi3nrVxSZ7vn3bX13tmKztugcPLzYPLzb3T2V33PfDy9vbu5vDcTds/bhvY9s0667pOCAirPmDH390/r2Hf/vXX/71f/rF7noftJRSymKxNDQVIY4QKC2ylzkyWdvUWa/fvDs7PZcipfoiNsWVgHalDyF2KUYKs1nbYClS/Li/uT5cb5eKykGhUDWs0jhNMo9u1CbKvh3682XniWHRjtb++z/5448ePfn9f/TDcbgys6zdSLN4AcbV6cmn8WTf9/3xgC+pFq1DHfuKiJvlyqWIeLUw13nwgrMYvu+Jc6TkU+lCU82L+71n9z774Wef/PDz04dnUuvN9U10RPD5sAc1cIgdU5SE0IBz4oKSMQSEQIREAKYmiZaAYFBrKZFS20R+sAwLHIaiZT70Qj5fXq7nup5cAZCa4My//e7L63FbQvjxJx/tbl7nFG5ur//df/i3n33yyWK5wKF899XvHn7y0fDFVfJmEmcsEEhRFSuiBUyg9F534OaKBU0LmQd2dwYFZEBEZ3Qf6piZB0inkpO68KiDjLf7ZpFXqzWwuVlF7pZn3YP7cX2ZYgdTIa6TSgwn6Iw2E0yXl5uqh6nCza7/yWc/+Zu//s2720Nq89km7N680gBARtXMsVZ4/w5ABq2FSQrUiSmaIqG7skm5vYUF87J1VDMAQI2Gjq4AiK6VkIoKp2zqxGRawVUcAgQvwMyzTA4IAFUNTIuaARSXGKKqohQBF46kLGAIYEWJSc2KmqGTSmByCoRIBB1Eifnd1W3LwdARiAgjB3dZtG3TWlEZp7FOY1WhecbFou2yum02G8PiYFCYrM4+jn6cfDvRuB8GT5sZltNxlMJICMSO9ThcPbx/CXZYPuKLB/DgtPve5x/Lv/nbb1/cDqE1DFGdHR1cDAJRISQyAJCijEAoVRNQl11CBDdgjRyhYplBEnJyApf3XZMuRCdt0NlsdkvoqDUTKpgjaNUR5hrj4eoGr25+/esvFl1zcXLy4N79y/sXZxebp2erTz76cH+cDmPfH+7y7jhOg4UszoKTFS6u2oU6q09o1ZgVSNwINaGBmChaF62LNM315vWb3W3zhilTWq8W52enq2WOIR2H6cvffusqoYkPN6enJ5t2s95v9nd3hzc3u8NQ+sNt37ZdbJqmwQSrJoYm/94f/fSDjx/+3V/9MrhZExuZZ0VfLpdSNThaym4pRRy1bA/HLiZES0iGbuotswFkTk0X2f1wOCwWm7mWaHR4e6XvbjeWkkOdi5OKVQOTRMbl4nKxuVyns1Z83L175zM2IT5cLIrZL/7qr+Zh/slPfwhYi+6r+mzVQtctu0QlRJR5bFPOqA+fPnv58tXb6xsQbWNG015txqwqnD1ADZ6niZxDcCplouXypz/64Weff/rw8RPDsBtGMs9zbdk1EEfKSAqAiEuO1r5fWBAjdpjfR/dA5gDMkcQNKkYXJK2FKuRAJ6sFEx33BRhjbMZhvrx/73dff9ffzY5e1cahvnj9Zt/L+Ed/cO/+PZJjUv7+5x+dPXpyevbg3r1HL19+Q27cBbkuDM6MAmjuiMzI4OSE6ICEBARejdyWoMH719M6NCmZIaTASRBKmQx6CxsIXGgOGVIJgS2AN4FQAoTZnRen0F6EdlFtIhRXc4oUuNRi9XC6DpGmaayvX90+/vjzr15fffPy5aJbbdb5uHsnPgmwFGFxcUZrQM29IFRwDxTIxc3qPHJozJEK0GjQj96QgkDMDujFCJGQCgECMSNLRQ1kpMUiUBGpquLqCuRe68yOYGiIwZwQJhVkEjVHaAirFgOIBgXMkRBRZWZCAlZgcBuPx77K6cmqluqKzPHi/MxVtFYOTIbV1YMHIlQLjF1cadPtpV+OcSzzUdRnB3UnFNeGQdm28m6Eu4Yxq66owblS2SkPxMrImVEjzHJHcdrch325xV3DHPpC3//Z/c29zX/65UsSZCUJ6K7uypqKoaFESi5EgRxEPBQhJYqGAiyowZQigRm5h2IaTCMaGpqyuYInTBlJfK4oBlVIKrtXAJtngAjUYgMpVMPbu912f/zr33wRop013ZPLR2eXD1YX68ePzklk7Pubm8PtfrgbFbBJKL2pYFKvFRwxWQHk6uximIEpsnItguo1UZBSa+BhKtfH6fX17arhbtGl1fp0tVo1TSV/dXt3db3DNp607fnJar3a3N1Od7v9tr+7Gu7akje5GUoT2pQyX16s/vm/+Cch50WX8nZ7W9HkOCxDaiCWthnGqY5FprJqO458t79Zd6sm5mkcw2oJxvNswV1CmGzKelw3zZuvfzddXzUlI+Y51zKJzDUGArfe56cfPb14kPb9m7mUY69TL5uUY4ebzXIq9tPuhy++fYNmjz+8nwixumvNOcWmmWGYpnJzdVvEY9Ps63T2+N7JxcV3z1/KLFxq8H6SDJPVKG2GAK7g7BPHxeb+2We//6P16T1vu9k8RotDUdGSfN01HaUQ0mBHBwvqgIYYMDcIntlUCxulyNVNDJw4AACyVQ8hGfgkJVtg5EXjrLa3O5PStWnZdk/uyb/+0z/rEogUtcTU/N1f/s2bb7/+2R/+wR/+4QfGx9Po/fXrCKlZrE+fflL76ieuOwHBilWhqBgxIwdVZUyIpoouCEYzWVhFjRD2SXpLDSO5WEUkdCxVTHBmUKoFDqTT9uZK1rEqPbp3WcqMcUFp0+RF6+gy1rkgd7lbTTrVcULrAzWqcHs4nt57eLK892//zZ/FZrleNMNxN/RjIFcZSUAxOCqpuqtaNVN312IBAxomRDSoVREAZp/6m7A0xpaIAKOINkwIqGIIVkVcpA6VKBGjoJopuSEWB5NqYujECi4IAYENECk41VkUvaATEAmAozqoGxMGADYFLxhacW+7iIaVBZFG06xarRgAMarMFEnBiUKVwsHMzYGBw4m13sS2pEX1eRrGYSjKCiH59Hx4OeDNcpFWvNRJ2jgcyg54iISKDbh3KRjxtgz7+YqcIeI4691uO0zjerW+//By8Us1xRnZrUYQBBwQs8eAIVh1MnEm5iBCNZZYFYs6MUKGhJUqUDB2AAc38AAQTSZ0TZhdo4jSDM5qbkiI0EQKGEYTcBtlGGfkzM6AborAgHfH7f5uP/3yC+q687PV5dnZR8/und8/uf/4fq3UH/f94W439vvRZg6DIzN4BbUwqYIpC6hUItxPtckRTTlxD9PlZr1YLt7dHd4cix0mfLddNIu24dOT7tFqE3M3zqUMJQXKTbPatIt1OjnQm/12u5/sYMNi6mTVFW+7GCKFaDj0vaEvlwtyGIfZiBCpY7S4iKkhjn0ZL85O6zTuxpLbPJI5OLZJjSzApttIv795+dV4e0XI2ITaHwjIDCqqVAnEEHFznq5vrryWq9e7dn12tll3iY+7uzuwucix+ubheh7H3esDrxYthYSRNQuqAoLZ5cVFcxwOU9+s2yZnL/UpPzkeptoPyU8Wh/4YylAtdAufnIJVgo++/+zjTz9vT5YUuKrM84gVtNZF26RlSDHmykSSlTOTkFbk4IGNMCohVA9I6FoJOFgQI6X35SFIjo6mkYpIZE4cNYSMYcSJMre5e8wPnn3z6LvvvgvOx76UOAtg265+99uvY9Tf+/79B08v+ymMtfYm5TjlGZePL26/+5pxr3FmhyhWVTSgIzHohEKaAuioswFMU8G88MZhQkONVJ2ZlIoEQx182JtTnnCDSBwMW27LcOj7xfEw4eZh2y66gD4dwAp4bLo1uFoZt/t3Z+fNQfXu9i7m/OGTT//tv/9Lw7RYJIehzn1mdzNSUidTQC9S1YyAQMQcsMyjATGGapzAQXUKFrCrleBYCLBXiIyMNMEY4mxAjqGXnjGkwKKDKSIYsidGABBArLG8P4qZOIAiOQWR2a0GDAHdQBCTCY5eADxSAHARFJWWgpmKskoARHRoEo0oYoqIAkaGDKyGRWpmAYLBuIUWrDqZkxNQToka5C6HHGv143h8ffN2gNt1B+wk4CGHTMuYm3fHK1frKKWwXC8X/XDL1R3QkRchGtuhzGBlJjuMEYLD+z5yKcERwMGmmbVJnWN0RrAada6TOSIpgnrwmSmIaw1BEV1jyxowsYGbAPj7NbgDuVumMCecxBolQiR2QAqITKgu2YDrNAIGiBHJhkquIzWQwOB4e3W8fv3uq6+/Oc1NbuLmweUHjx89fvbxA1E3ux2Ou93t9fYgYSaDTmJxD4zgXKsRDwnJoJBhA/zg8ekHl0+ur7ffvb16vb2rLtvDtt9rf4vXMXe525yuLy/PE7e7cSyyX3TrxeXyg9PIN/27t4e+n4+zXqyWrimkFO7m/WK5hJrGqV6sT8pxcoRai0sVmK1abNrlcjkNBcIyd6xuxABAmIMBDdMuWdi/uB7f7jpeMrPWSuZaqqunFBW0qOOihSDNunnxvP/Fr7/7o5+ddsucGE/Xm8N4pBxj0TKPuT3ZnNybfCrYEyWVEZk5lvVZyot7h/1wmCZLwdXbLndtXi6X+/3QT4fl2foBPanTeCx1vN2b1Q9/8MnTTz9enZ5FRAJYErkVymHVLEwlVEMRCREEEFIkylgFVV3Vi1cLygjBuMxohohForM5FpGYs5kBGKGRgwtJJEoJKSPMQGEU4OXq4dMHd7vd7dVtdV2t1u1icXa2IaIX377ZcFicLh7dP7n9zXfmcnN9O10dfvbxD+/+8rckjgJOVAjcQsAIBOLGnkxdZIrgGGwmsTBDq3Y04taBCDxRu0hpy+XpTy9/76OP//5XX+ys5NWacugWOYelKDUnj8LivM2dTKPKaNy1y2XFQGrbd1c5DCZhdwBwfry+94u/+Lu5TKHJhvPt9rYJkRzVyV1nrQruPjOSmlUp4MjI0zQFSmZYFGIAiJ67hUc282EaJXjEGNSci7EUdQQij+yI5IbmAYqVbIDOABEctIo7Ro7glYLX9yYVK0gGBGYGiODRTJkd7b0itaCjm7n5BCUg5sCeI2iKaO4QgchdSBsAQVFQ8Jx4QQokQyR0VaTCasgIQBVQwIBw1Sypwe389qq8Cbx3IeRcpHLKaJwxPr38aDsdQmwebD7IWaf5QMwUokkYK2SNoLwFqVqvvjtq7QgwtfPZQ+66GBI7pO9e3fSHqfM2KwUEYx4Dmuh7GwMAsAgAKwEwBoRqauY9WjZko+AWETKKuxswgqUYiQ2qIKG4B6RkgBRiRiWMtXTEI0A/C3kwBmY3qAFx1SyzUNHam22/en739fPJYfP4wcPLi9PT9ScffvQ9iLt+1/e3h+1u7n2CMqrGmDZdk4OJzjp5a/jk/NHZ6ULE//6blyaOUIKpu9bKWvWun17vr19fvTtrNmf37y03CxsPRwup6R5crBrMtzeHvh+e3+1XpT1bSchEaJZDrlJRsEuNBU7MoNJlPsyTzmNs4+2wMwsbWgfGcjyuF6uqBlVWxLdv3tTdsMBlFCh1BCsEpqBAXspsbsL05NHjArpcnTTt8eHj+/0w9d1iYD8ey3icmxAihgYbp/ry5tsmLAJpWrZpxbFrqjBPLeyPxLjARa/KgXG2dtL1OrTrQepaDRAEdDWN9dB0l6dn9z960pydhJAYNYq2MXDMlCDFUKsn8BjT6KYKkUytgIM6AXskeG9gBpJZ3WJwgWBUiyIjMs/FACgwiY3sIpw8NCZOBK6uo7RtZo6rk+WDR/cPfZ+68PTZw7aNi0VQhzrH37149+JPvvvf/C//h2uaXzz/Kse8eXJxN992T5bHL0fy5GbQMHgQFEt18srX0HmatCAxgBBy6ppa0nw7GAIaARpy4Ib+iz/4o5/87HupHC4e/NG/+tOf55N1s+wiB7E0h2UMp4kzlh7F0DJiijGZ+tvXr23umwaH3ZaYl5uLqzd3t9sSmtgtw2F3TUAyKzgWtQqmpm5KMai7iqAhc5jGIqIUHcjDgmNMyogJBWZRMAWo4ERNTg6gjiYWGcitUTZzQwUmNy9gAWM1l1rdqnsNvDAzMIgY1Rzd3s8PHczN3NgdnIwxgKtiES0UGCOLUb+fr262d9u9H8d+u78eBgxpzTmv8+J8s7lsLu6dhKAgRQTBJDGZzeaukdzBDJyZGXjWgGEux+3d882a5hnKXELwlAIjT1F0GoOEj588nVW3N7cpuXtEi8sc3xMXJDQNQqlzEVifLxexlXHKqwMvq+ckAG1ofvKTTdnHF1/3cqgMOKp6aIgAtIJWVAwhKqIqmMFoLoyxAjolj+isXgN79Rk5FMSoGdQULAIlZ2WfVT0TiVe1Ct4ggUAxA8/VFUoBMA0SIrtpQYeI6rZpmgWHsT98+c1Xv/vma4x21p48PXv48P6980ePHj37gCd4d/tquz+Mx2pqow4ccxMiz/L8xeub6/31ru+3/YaTI/dWBizssHBMhAfT/X57c5gWx8NqkZ8+erSidT0eF5vl43vnl+3i+Zu37w5121ezKSTFw/W+25wkinM/hJRGmU9y66xa5sV6vd1vdRrXi5ziYi6WmpzSCsVNSnGToT/e7TuP667t93sTAVCnYqlaw7WUKvNytXQe7m6md/Ob8+Vq/fln5/c+PmtW9z54Mkk57ra3b9+o2mF3exxe29yT50qsECjEwIjezDRyDGBA4MLuEIyw63LumrPH6XRztuwWMu7/3b/9/2T29SfPVuvN+vzMANCBIKVcQ7AQAQkVPORAYIj2PgoxN0dHZK8RAYkdGcnMSHK3ZIogc5VyLMIGq3VnCA6uqgGSoao5SXCtQpUyRgqzzNlouWwvL0/m+vD1y6thf9eljUFIKYNDFf3eswe//vnPnz16tAKYJuNcDtOBTnNqFj6PDsUDuKtAHdupBI17awpgCCPMZBq9TRgr1zlLhUqAVrQG/fizT//wD38cY66IP/7ZJ7xe/cc//4vD3UDLILnl9iznHB1IsYoZ4mrRQpF+uy3D9elJLKpaJUUqMhZFp9g1edpvvRSDqIAiomYiQkRsVAzqrKgOCCI69FOIObVNByk4mBMguQFSBWIpwhElzpPtgzeMDAag6AAzaIgoYuj4nopoagDvZ+BGGmqpiEDv50vA+P7E6OguAV3BjFOpDmSERcVy2Fy/vf3qm2+/+93bt29vh2lmmLPOSjYRF6fGCFBHqhjo7PLe0wf3nz08efzofpMWRWsgJUoCwAZBEQDAvLrXUL9+9+W2Xi9SouVp7Q9lHBHRAZmSkpVq+8PBGQ7zHqcqekDQGNwJS+ZJq9sQiWzSsODF+endzbv9eLApUpJFG0Jbmni8/+jDDx5+9Ju/fPHizU5jpjoHAI6G6Iyk78W6ioCupgECOaL4xMqRqgMXTwApYDBCqMnBkicCFAnqwlhdo2vmrBA11qoeA7JJBWADBp4NSKjSTESNsondTUWbplnk9uhV3MUPt9tf3+y/+PI3KYWT9ery8YNH906/9+FHpjypbLfbw2FPQMe6vd1u30AvXk7Osowyqs0Q0IjV3rdTJnCLNLvp8Tj0h+2+f/jw8qOLe2UYxzJulvnR48v2etjdHOepD023jMvNvh+amExlVoIc51KY6CgeCDWmuXpMaRimEFIVZWICSSHoNL96/qaDeLY67a9u5zqqqaqITdR57LDbdIgpEA5XL7hNJYjR+bK5/6Of/kHThN3+cDgMH3786Qcffwzvs0OZ//5v/uLXf/0XFyerxB4sYa1TP81D1cpkTQQ4a9Nifd61y7OTTWhyWJ3kGKvZ29/83WZxssf53r377ckaau0cQ0IOGqIgm3rO1Dp4YFafAGswJE7Vm2roVpkVENTVHRCJAwUGQMCEVmpchlgDEjK7gYIqqjknshyFzC2qujsCuFlAbJsmN3zv3sl2uz3udgh6wnmzaEkqSFGp/Vxfvrs6O7s/HaYc2biJjxbTlzMdK6o6KrgjgqDXgLQOw858ZuWqYDpMD9f3c1cffXhyf3O5e3ftlfu6//S/93v59GSxWJ4//KkG/vF/cfnR5z/6P/6f/rv98d3jzz9MaRkp1DIEqMbeLjcFVfuyfff29IRN50AYlxshrhLEuFnEod+69uTu4IPNiOYubmYVBHECdDcSQUQHDiGmkDiQiSsEBHBVN0KKqkIc5rHkJjpJgSFpiBBjQAcHEHHlkNAczM0tIjlyYRdUEDRkInQyVTeXxApu5OToplp9NoeqFsnMw/Pnr7/4qz97+fW3w3ykRIaUOyaiWSO7RCTjaIJRaI0kXA63b/769btf/HkNqfnxj3/wT/7ZP2kICIaqGCmS0/tiOQG8e/fy5Zvfcna3sFisIMZhGA7Ddle2Ma0heJva2g9N5ib7od+6T6lJcy0xLjpygKJadB4SLvbHeSzPXStzSwxNRAp1kAkH6v2rs8Xh3iebd7tdPVR3NGIjp4DqCBxEiRwI3QMY2UHmCk4EWQbiJOrqUMCcKCsERFMXt8CkYIwIal3MUp1gTjnwoG5QmSNACGCI7gEcG1Z6b6YTxICTqlEVs1KNAxgWDBiRS9VX19Or3c2vv8D1Yr0+OXv6wdPLs5MHj+7Pc+k3m5d318d+4N6E6bjkzWLxKIQX372syLVKwIBICbyZhB0psgyH5y/HYXt4+PjJ5mxzszusliePL89a95c7DVe7PTdN4BCX2RR8KB0kQrCAtaCO06ZtkEKkzCgNgyFKra4A1bav3yZOF+v1cH07+azkUgtYFagujmONcR1zDqj9oWJsXry5ffHy8D/6Fz9scjCXJqfz81NzBXAzJQpIfH237YulYU4L4TI5tcvVxflFGykiQNN1q7PT0C4JAKyIlL4/vLl6N9Zh2u+53Tw4i08/ujfWur/ZHY/T/e4hBwRAghhCTOgIblYrJ3VKxuIVCCOSoQsIujEymALB/F5740GkiAMZQTInAjXiiMhOkgEnMCF18BSoTuLI4Bw8cPVgdNp0D1fnL6b5UCbZXnPVs/WyxcCBweHtze7ps++3Z4ubfmALW53nE4IbJQ3RcOZKTOySQ9Asei8G9MvuHBHWj04unp2cPzxfnyyJIcUn076+fXdYnpxWcssmVgmd1M/OVv+7//3/9v/2f/lXkhcZSaees3kliksz9mm8u7oKC8DsjsgQgYGw0Zm7FKD0Q+mRkIShyhQKGrAJOBkQqrMVU3NHggDOyJVJHRwwoKGbEKQRjAHUXE0JgcRlmClFy6ESEhmDEaAqVS4J0QxDasnNvZBqQhRXJHRkUOw4jD4ABlcnx1kd1BWC45RzeP1898d/9pdfvngRnRmMm5aCzj5nEBQ2AAROhjOpojE5uJhFT5oCRkkV9E//4j8da/8/+a//mRgQ2eSG4Mykjk561b8pVFTVuLSWYjhZLFbOxxrL0B9NCJ3Wy+BWu5wcVyA8eiEnCim7u/kRorC4EUZXVUVRrFRrjovdWDNj5kZGeTm8jvPu7Em7LvnNa9z3ijoHa9DM6hwwg88MEsPSnAO5U6g6m9dkroDGWRAFixBkQ6o4gIfogMhuLeXgpDRl5sgK2U3AIxkFEzGjCNwS5mBCXsmQKExlGqcbFw2t1nFt2SNF5IZ8hhK5VXURPAzj1fDN7159uw7p/PT88sG9BxcXn977Aalp6a/eba+2t2I6Tbv12bofdToWGj2mYgaK4BEDqhgOMwSVw/Td/f70w6eXMh3nEE/vne4RQ25XkYN5vdrfnixblXrz6u7JkyeMuOgaJ/mH3PO93DUCQQAjRn/z5rUj3Ls4s2EANIxIiCRWYQoLpGUoh9If9jmtctecX+Y+lH/0o5+OIz773keKhgYxcEqdv591AO73Q0rh0x/89NHTj+djf7e92U/zg9OTk5MH6/Wm7ToDMRdxr9OAOoNDLfXu5tW4v03d+mbs22Xz9OkHzgjmTdcuFgu1igBMjBQwgOME5qrRPYPD+0YoIiJYYCQHAUR8/5+EA0YwUKR+FneKQIyMYAHBpBJEcXAEM7OAGqi4Y2RArKX2+yPMGg0BabVeh7sbtLJu0rPH54HZPZW+KmLXhS9fvHz1evvo4SMVmhyAwSKZiYsyoEfeXFyePqbLy9OnH37QrDab1Wa42xkXccpplVLsyRDj4d2LoY6b3LYNr5ermHPgqjhtt68UTmO6qAkxVFDPlCaRvGrHaSw3W5Xj6emCXKqBMXahnSbIgaPMu3kLxK6kVcAkGlcwEWPwCibVkntQdWZlkSoRSIDAUB2DkaAhKjmIKJCjCWPUAhwBBRXJkxbRyDE4M2BxFTMnJnDF6qAERMQQUcXITM2LGYBrrYAsXtELkXHMu5vdX/3pX33xxcujxK5tyWdyUAEwipxYIJpTIHFT8kAOrhQALVFAB4ukyupgpyfdb371yx9/78mjZ2cv3rxMeXF59oA8AMD19mo3XU8+MickRSdwqMI5n7RtiREOs0wmB62RfWn5Xvfwtn8Xy4BxnXK8214Ta/RMmiY1dIOIXtERUrs0g0XTNk0DHmSaGWzWiUNpztY/fvRo3NHXX3xjBZSzwsgwFJAZCE0dZjUPFgJYCM4+aUzo1gmqQ3BVAAvBwWcxCJbMC8loCETkWj0KspElZnp/X1SMSDEAApIjtQhWkydy1yJ3xd2RgepUdBEm8EpANufaStYjV1RqmQXqq6vrt7f7F/kFUlifL+7duzy7f/H4g4txlO/evdltDxxsyS1Ex7I/2HiMQEytBiViYhErOpY387Hffvr0g3bdRtXLi1WodXJ/T49ogdLsw+rsZD/0TUpAHmIYj30tFlpcLRupVR0Q4dXrVw7l/OLCpqlMc3WDSNl0hKmQsOOrr79b5NWTZ/fOzjcckhg2oZSjsneL1QLMwQER4H1/GbDM+su/+/VHH3682tzbnD80gcd1zJlCCNO+f/Xt7xZt7hoOXRjRImadi4iYVis9Bdtfb3dvb558/MQ4iYgVBVMLnlJkJiRFUnMQQ7QWAAKBqZmXyMlMDRwDoWJEFFMkcneMihmmoQe2kBIBQnVgRzI0ALNMaAwGDOgRySCIuCecwNSrBhvZwWtoQte0dS4XXdgseTgOKSRgWV2u28jzVMucj8e7YdZDnQJwc8L+zqCa6KSZf/8P/mjzKC3W2Dan4xH+9Od/8uSD9XJ12XVnimEEbxYbqGWcp2GYfvWrv7l/cbZof4CbkKhqKUXCn/znX6qlk7RkmrmNdZBmvZnLPB22x+H23oPOoSLmiGlm2qmbw0ngadw7u4OAAYKpiRbEgMERRQORUFUHRhed56ooiIUgNwEZwQbtgSkK5UglVskEwQFglkIWA2YUSAkQ1CyaB9OZUnATI+vLXqV310V7kigQWOx4fP8zA/IiTDjDZAgNBqv8H//jn37xq1/P+7FrVyFKQQkuETWSo0YmRkAmiBnUeZA5AwaM71tdjhIMk1kFQIkAkCH+1S/+sseHk+7W4WwoaRlPx2G8unu9n26dlZjaJqUuzlIsRgDgYCE2oPvAONQhQ7sEonlWhYZbjzzWytxAQIITDEKH66mMOWembIYzBZUZVY7HXZu6ZUteDduMwAoz5bsHH52v1w+++23f7109SakOKRJ1QadSzZ1NHHQ0HZl8njLx0S06ZNTCZOaEBADuhIbV0QgDRUeZwD1KG0NyYK/gDowYpGlTec+E5kpkxZwxJAxLgjo7qzWA4zwfuxCcZ1XQAiJGTJU1WSA3w0lmKDWiHvfXX3/xTbPIpxfp2ZPPPr7/cFifbPc7UB+3c95ZGnin1qvOiBGc0DwRGaD7/jB9883L+0/vX5xtkmvIgZy9liGkzMCrk5MQeHd7q1JPT8+qCzu1uZnHScCC837qj2WYoZxenIo6iqOho4WF/vS/+nw2EdX+6u7p27Pl5SUHjW2YqhFS44ErfPTJD1OMYAII/t47426mtcBPf/rTGOLtdqfuOSd2b1JX5n5/+/r6xe/egG7OlovVEkNGRB0nsaKAZq04X129fvLocZO7vkwMAHNpODBApATgkR3Q3DNBY+DIM4EQBocgKm6CiYvK+4F0CK7qBp5yqGJaCyESh7HMHbg5ugEiIhkTTFqMYnDFOhsBMgMQAyYAUcsUqhbMRIFPupOH9y7bRWyoe/fqXXdydvrwQX9zd72/W55vnj9/dXfY5yaePXiM2Q63W6Va2+Mf/ot/+skPH1L3fh08/8Uv/tIc/vGzf14moWh12g29/P9p+rOm25bsPA8bTWbObq319fvb7dmnr0I1KBBVaEWCAAiJIkXCDNthm8FwhH3ln6RL+8I3ph0hXUghibQpAgQJgABUqO6cqjrtPmf3X7u6OWdmjsYXm/oJc86IzJhjvO/z3Fy/BihMulp2F9vtv/+Tf1urbGu1vD7uhj0ub3fxYBEHB8KUa06pN3fcb8r26uhez4li6mwygKAGM/iqifO02Ws2B2YksurihMIopRoAEdQqAdUIJjUDN/Pdbr643ZSd6DRPWFF2jqG1RSBLy7g6OmtOlsvlMDQ9CgB7ZA8GoADBqlcEI2di3o+3H3/+wwJbpxqxOzo4Pz94ZAzbaX94cEbKCBVUA7J5+unPn/zVD390e32Z2qCLJmtpFAi7CAls8jcSZVQMwSEoKRITx1ANARARopopQ3QLXmewjOQphVcXz9rnm7ceH7uvr6+ex5P2yxefFlhHZqMmYujj0Mclaw5g6oqCtWSoHiAkZHDdlmtlAMYUBoy21r0ygDAGnMvOGyIMKnMMHJuwL1sGxIJAZLPMjiFQ8EKUmhSrbF7cXIUQH//KsWxC3heF1evrgtg5wKDuBedcd2Vy9aihUs22qxyx0AheIWBswIyKUWCBaOYhmLlhFHBNjKwFlNRCBFYm62hEJAYDIwiT1MQQyAG9BzOhNgYFRRIQQYuc3bC6oWVLwDypEApW4FC0CkoGQExlP4/T+tmXN0enp+enZ3fvnPUpYS+70/WrzZ7Wu2acx5pdvefQIlQOGZ2Bbna78YuR9K3z87thzuXk6MBjGWtev1wfnByvt+tF3+7X+zxl7BkEd+ttbBpvOMSkstaST4+OA7EDpoBAk/j++DAFyn2TSvHDB6ePH92dxyo6FqsqZuRujF06f/QQQJEZkadpfP78+dtvvz2NpQgu2xgQ+hi5SbENKEVL2a+vrl5+MeXrcdxPu3jn3n2Pgxm3oSBDt7xftH366U9jH5uDDgmDltub2yElBgtEoECE5NERCJNUcFJCQEd3V69KHDioGxFFSEXVCdGw4ZaEVSbCkq3WEiJFtqwQwSMhIOoIZugJAU0FCoCGENgD133LaZ81WRRlRuSYcqlNe7hYHYYwwmqMq351fmc4vCNh8enHv3SXRw/PH929q5qeb19TC0Xr937/V7/xmx9wTwgNoo7z5mTZx+5w2m3neUQyMNFSA9VcrOhewYZlevDo4Uc/+dFuve9OllfLk9CkoT3GqKpZJhdPERPuZr1eLxapbUPAFGOay2gO7qkjL9NOy2yBwdQEVQgwOAq4tUgiksHBHBz307ibp6vr64urq92crTpVqASRiKAWVvMdzpKuyL94DSEeHbbnj+88fu+D8/MFR3Inq6iai+2X3SBupqVbxsSUNStsa72drq6e3Xw+tA0J7beHXXewWB22vpBr+Yt/9x9/+umnqY+pjVSlUUJkRQ2k7OIk4AmjUhAgQiAgkMAEyKhgAvqGMNZmlepoUJlmRwRntDStDZ3qNDPJerPe1bXZhjEkJzZK1A7Lo8R5t72ZyggAi7hYdf1y0b94eQGxUQINgaEOq2a3vomAzBMwZ7x1zl3LBbmABQ6AwGU2iwLJopnOsVmIQ28FkIOqOMxzASnc08O37hGG9YxH9w831/D8VWZKiVKI6tKFWcZyq6EGVTMbPbXKDCFLjYwtuJoIIQGRVnQFd7DgyIJoGJomVHQFBfWCIRIYKkoIPBABI1IAzHsExsDiRK4hcqpkMc5WuMQFRAFVYmN0NlMHDQ4EOJHk4IliiE17c3t7eXn70S8+e3Dv/MP33l0dnzTLxfFyeXOx/XyztWpYckZ1ZnMzFIpYZX761ZeCEE4Xh7c2RxOXerDqI2O/WES34/PDqih1WiwSNu1m3HPD15vtbi5Hq+OgbuaEKbVx4hsMdHp8BxUxcpeCmo3VOFBiJ6HtPmNsG2g3o17dblaHi+1296Mf/+zXvved29u1qKthNwQkNIG+66hDBGcONVdGNvX9bgQpqQ3V3DUcHZ3N8yur+3r94vZmZ1M9OX8YsLWqatS2HKGEJiTqGBNFQQ8Aiq6BvHit6uwJ1CEwc2MKDIrgSmQBEczAnLTWOlsGMAZil6BBwEkdyMUNXQNG9kCYqhQwd6+IKDZ1QzRIatF0AvfsGtv2+YuLf/vnf/5P//EfHLdLietmcfTl50+/+PRJ2e3u3zlbNIcB7fbFc+wO+6PFZXN9cHoekqlswHtS7EJXSdVVxuvduveIVhHUDRWyzFInMUCs83xwtLq4fB47Oj17a4QmxmFJIKXuZU7ehr7NY5nGG+51cdAKWNvyVKc5cHlDqUFTqhhIFQwM3Z3d3M3ATR3gDbmY3V+9fP3Fsxfb/d5AMigAJScjB1cDZCCqQEDsTXI0crf9dDV/fn3zyUdfn947+ea3v/PhN95r2KFC6+RjtYAWIBm/fe+dz1/O2WwnG+RxCEE0DActxnHycmd5/PGf//KH//4X8zgtmyBSVTIyzoEIMDAFEXX1EMgAGBOhuwMjAAVnoeBJsSK4o4MRREXGGigUJzQyJYguYwan6nXVpXlaaxkNRRHEPWvdQR5KJbLYAFDsh1Xf98tVd3l1XfUKZuF+0S1O+3nt+1FtDlZEG0pUq3cNQy0SKKUueYBZU3t8Me53bklq4jBLnaV6BQqzSKAmNbFRr9Ocn756xSk5Ut/A/Udn6xvME0/oGCIF6lrCvMTalTyjmbqRByq5aRKqMJqBZgYGDEpzAQjBogfIC4hkXismIGicyKu5GmiDgHJgTIjiMHttYoghbMTdoHU2xBwChcDcNnNtKiryFVZCieatNQXBqCLGZEBuG7WlUROaPM+A+uXXT79+/fq9R3e/9e47J93y8G5/dHLw4tmLl14n1xY0ASJ65yaMm4j+/GWYy0gNtKFBj5V5P5UhNeQy7qcU24FaBOUOuPj66uVUS7/oYnQ3qGCsszEVFugaSyn1/ZsFtoJScMEC6oJweHiYBcZb/fAb33rw6D44TONUcl4uF9///venPDFbG8M0ZxNsUnTVFMLm+oJcmcxBct4ljuo8zzOF3evn25QsEKjlUnK/WnIkR3PJmscmQYMsAMBITAwMxKLqAESZ0FARARDIAcjeVK2iqhkTITlMjF4lgzMAB4qoTlCZCCAFZkd3YhVQhUABFAkQHMHRALNB2y80mzM4u0lNSE3g1MRlwIvPX/3tq1ejyfjjX2zW14/uPrh/eprnm0hRq9er9UZ3y0ePFvfab7/3oFtsXbN7lFqlZnM7OztV8Nc3F8vFMjgXKRJQSy2VRb1WHQ6Oa4bzu+ehOZhtaGjRkLe8SAABAABJREFUtSvNea4VOTRNPxad8k5hOjlbzDIGol3ddN3peCsq9XBozPLeFIldtWhhBwAUAP1fIeys6IIXV9effPL5JFLFAkMkrOgAER0jCUA10+AIbkKwAw9ejbgaRBIUePH17uunT588+eZv/Ob3j4+PXFXdkMgdasG+P2mbXsvcJVfMhk5s6PXk6OGrF+N/8y//5MXnLxIOHkF9ihACMrh59AwCFghUAAACsEeGYCwcxCE5BZTI0YjU0BDFCLyEYKDAHqqRijMBBj++cxhSe3l5s1ptuoNlvpi5SbmOELBr4rTbTnS9WoWD44XbQYwtJFoslp9/9mXOY+rSOK+Hvm2jlTHHwDVzSpzrpEXAaBYr4otFB0Wz58q0XA5lmlWtOgC6iW1mgcaXjCswQDWWWnW8nQRgcdiKKc5dA+ohFHNAZ3AEW4Uma/Q2kNfYKChWVGRTc1fq0B2MPQQEjUhkyIhmRUoFjm6eooB1xC3QhKoArTu6BeRgocWG0Nz08M18wBEBAyKZu5lHk+AM1ImzOoOh5AL1zZaq8RhSQJTRJqQWI1cRARMvv/zqs9369bv3Hp2f3WtievzWA7q+vLzZ+FzZRa0hDMRFTJQw7KWcDIeuQk2DTNvNTm5u7929M84zE6qoJzOEduim/b4fQt8FsoqRJ8kMaS65gvQHi4PTlTCQAwIBOprk/aYfejNQUxWfFI/v3OVgrnDnzuk/uPv7ruL/6w1+e3WlELpucDcCAvW+babd7by/yTaqzUZcRFgyMwIGpKY6FPHimFL0ZJNklb3H6gTKDEAeAaEQdILFwR24vmn/AzApEFUF9CyCRskBiRBc0cj+05hKAyiZE8Y3bfoQEoKZCjADEqZY1NmryqS1mgFwRIgUosxjtdlRmybaLKTaBPvme28nRBC8eHFx9/49HmTZB6Tpzr3jEOO8LdzVenFz+/rV6ZCun/5S5Orjj+N3f+c3usNYZsmzWpX9dt+fH2/3wjITuBLVLLfr9XB4YM3i/O1f//rnf3X/rXs3+7DdN6uuZ887mAC9p94xeJ5k3i4HKnmrmlPsm7a/2eQy87JpTw+W19ezO1QTMXVVUycKbwaOqNncEWB9c/3xz36WzQyROaCD1UwxMKpyDUHRVNCcyM3gTWGmkvgb/G6JBDEwUfnpjz/66snVb//e3/nONz8wM5fMzGaBiJsQN/sSQ2Q2RUDMQcKzj178zV88vbqe+xjdqwJzePNN32hkyRlREcFSatQjkICRqVQCjZAEAM1c3ADAiIHMOnZHE1ADJEgWq8Fsps+fb6jnZsEh1SLrUUaMaigJ42G/GFJHPtUJuB26bhUSQqJV20UX1DGXEUJ8ebVporex9woxtmLzLCNhU8TnYgxc9qWU6c2NsOyHHHCzi2UKNk+pS21qC+p6v55z6AJ2DZHbvmQnut7NQ2ByY4kLtz2KWiA3RwSkFChRqMbRMQJyghibPagVDaYD0JtI6RzcJbcxmoQQmpgaABN3DqA1m45EAQzVdIcaDHsY2Li4UfCIGMwUQ+9MQBVh9jKj1BCix4WRkokWJ3dzVGso5gAKOZBHUPfJIhQyyRoKYOTL9eZm/OX5ev3hN77JHN49eHvF118/e0WsoD5HzeiLEivMYTfPy4W2HLTWjHBwfiS73dZ1eXQioAigmne3Gy/AqWuYrBIqcBPYHNwdKpDdu3eWGNQkIDKauUS0oWvB0FXFJSsent7vhx4BAN8EryoxP3v6ercvd+/cUbMQOe83aWggY0WvZd7tNlevX253t1VqCkpogZRBGmq0Ijjm/RyxGyj0TFnUVbvA1V2RYoiG7maKuXpwQ0ZUt4CtavboCE7OGFPTJikSCYuMwEZG7kHJCCuCERFBFHVHd0A2Q6JSKlKYtYQUqYp7Fs1GWAWIQhPjbtyYZnFj54A4y7wcwsFBrGMd2vj+vfPR8jxlDH5w2vWLLiATwDj4/OxqsZubvo+Q28Xy1avt1798+vg7j0rNKiZTTZhOlndWj86//uKXeXsVKIrCwWKoQOd333r5/NU0TU7DZva2b2JSmXeoJXUr50bnXLc3MVYHNdGAIcYhj6EW46Cnq2E/7Ta7vTruS1FwdkZ3FTBQAANTQ5jy9NOf/6RaFmIjZAwuFBhMKbATqoC7QsQk6qQeDMlQAMEVkICC2EwGAG0fadq9/lf//f/06utnv//7fy9E0poBgABW3dHLV0+oV44QzFI9+OJnl0+/utllGGJPIgDoAObmEdzJjcmwR2YEoAjgzK6O6kTMHIDIgawCuiMhEqOZRNeoWNXFPINiaF0dqDrybm3zvpzeWTCYOYHV5OjuCWgYhpOT46QKYggUA6UE5rVMO3cJiaFpkPvEHoL33ZFM2WGac6mualVcU2QrstlsMLATLpuOLBqqErtrzShVaiSMlD2LV2q7lqKK2Owite5gr1tqdy0uMQRABHU3Ku4IkhDRnQyJkqA2MaQQilrtuIcQUhB3N1wwuTcoTg2HltuGlOqcM1TzjopgzJhq0EKBAlMwd8dKEZjIzTOjVRgAq4sDtjGWqojJxQMSoitEYlqAs4gRbVEdPCgEAAQgEKpaFEoIB4rKoWJ4ebPZ/e3fvv3u47PV4YOHp6ELn3z5JLkF0hAbnwChhOF4FRDGMvObhKVC6gYzG9ebEjK3PeTi04zOcdkjuZupo2VBoAqTWuEYEsWgSEgs1bw6KjJWJyuGCO6qFpZHR0jw6SdfPnx0HlMkJFUdx31K3TTu275LMQFp3q+vrq5Ozk4p4W6cdrvddrsxD1rdVRFJRANWilGcxD3Fru1aNwNzBiSxNjACEZB5cEPHQJQcR7A5MXFArI24uXvfttA1bwKNIBlRndChOChSDG8QKZbV1cicDIjAnBwB0MxSCKamWtQkazWkWmWxGjTPWiYCN/VSzNSr63LRqMxt23CiAHy6WHiiew/vD4u0WHQ3t1vzsjrrl+tFcnz/Ww8OlsPTm5uY6fJmfXJxaOwciEM04JfPXl2/2O9uLhYHYV2LkiKYWbx++hTqlNrF5RaJli0G0KIuQz9Q6PZz9bwtsg29b+axDXHZLUTCzR4cadVZgf3r630RdaTqMJfSUUQDc3VydwdHFX365ZP9NEIK7uYAZhawMcAQJqaoHhGYIwoCqQZVR5CWVJVsDhrRKlNVCOgWKTNaovC3f/3X+/X6n/7xH4UASA4alulOExaTrV2pjwdf/+L2s4+uY2wIZ/EcoXVzD9UJkgVjVlUgR1SE4BiIlEnBAiQCgAQIJZODUHIjetPMAmNQrATGAcg9V3Wzhiki5MhcpilQx2DPnr/I08biouP+vUdv3zk7Uaip6bWWJsBiiYFb0f1u3FbwbnliPPRd3yEnxsPF4nL+bKzZ3cS0qkPjEcNcamhCRTDGyaSpSuaRUaNFi6heZvYSW26ilmLdyxk9Q68HYabQDWnoQFhsqjbUAKQ1UhBTxkKcRBEjMIkwQqKK0GMcrZRokWTBSQSQMToQUsXcLrxfiMloTSZla0If8FiP8q59vc55Vgc2M2VzVDQiSFXVibeuwsKCLogUVZwZKQp7UYxVAQECM6hEoqQeQ1Rk1RlwVpKm65lQFSIwVQ6RpOrPP/qsPnh4ev/w9N7SwuPPvv5KRA4x3XAeqwad5iliaJrq2kHjgEQ2NOH19Ua9BgXNmZm4TaPlyNhwaFJQFS3FzUS8b5Y4Q60aogVmyeocpE5ShYDyvOc5rq/mb3/vLM/5Zz/76enZaUotOD579nTRD6bw/PmzD3/lGyHgWOpuXA9tYCmCfHxykLepzBLSAgDmajTnrh8K58Ba56iWYzNUL4aplJwMAjZkAJiqYcKkWiGi08ReAUAxmgIAJQqOSNjtp6wwkRsLoyNkI2zFjRwBCAzBQ2RHQyNidycqIsSMyA5Imk1KNQshZkGMyI2tr7ejChi5qCkWA500tq1EFsvNMg3YHZ2enT48btoGoLm62puLVG/6/s6dh+r58P1HueTz09PPX26++PTLt96/33bLuSoySVCQorkOXRRwIDeqVtxF2K/bFK4rK3YHsU+oosDaIHUoKUnd7dcUy1T0DUJJ2Tdz1pAa8oB+dTvOWdxsmksVDchFFBBIhYAyGqNLKZcXNxxbBQBD5hDJwA35jSLAAnI2UAIFjc7OplgJNaIrEqFGADVWIHIHV4oiNHXL5rMvP/3X/7b9/T/8negFRWLgk9MHT67GjsKrF/XTT56l2DrUQIIWFUWDGhlgUjMUaDhIEGVxB5cUIkR0FG8bnBXdrAnMaoLqZKoW0MzcUIwbMZw8BxMA9cCVwAGisbt2XSNuJ/eOb23eWm26dHKwSOwWgkoBLofnqxBU57zZ57/60d9OlVNYWi4730hDscDN7tVUb2LieTZRSW1rEUuuHHhmZfcAiC6ZJuYYRatCF7tls8yjzu5VDbWTLe08uDUR2iUvICUDcE+AhkTJ0NBhnloza8SBAFEZgTFGzmJMnghbbqq7CjA5MGvkUoRs2yx9sWoCQwmlwZE8uIYeOfFtc3Q4nB+/vJzyTZHqFUoBE0tJrAlcIRsFRKCIpgiuJTohMUjU1HkcyMkFIldiIiDUhJSdZkWjgIiMlhw4JgAIRKbGIRri58+fVZvD/Tv3jofkb3/6+dPdblKWCCE0DW82tys86FIrm7101LSxVD+7cwcQbzb7Uqdh6CIFmDWGEFrWPMk8O5hVK+LHfWySBUJyyLUQBpdCygwqU/3oZ7+4d/7Bydn9xfIAtf7xP/uvwBzASxWITRu7v/jTP33/2x/0fdSa2S0hDJHATYqjM3pEo65N6BQaq7rvaXASMZ+KhsCRMfFgmsu4TrGrFik6g0eK7gYRKs2mChAAQ/UACBxiExO61XlS2zNbExvkqFaLASGlFAzc3N2MCdwUXdnRHUGRjRTJmdFqNCnu1QGcDWDo+jxO0342p5pzFVeHWrOUGbwZs5bdbne1uXP/zjRfFs27Pa6G49uXVxiwGzoT2Rc5ODjujx4nzdfXV48/fMwtWIcVBREYEZWQ8Ktnnwfkxx9+cLDstrv1BDLa3giyHEuG5RAH9lpnc+mGhVuICtN+zwwzTmrQhZRiEk1SmhgdSfdmuWRGEnABAwBQExAAD2YExGRMOJZ5nneEDIgAZG7ABizEHjAysSG4qpqxsKBBw+QQC7PjzFDBUBSdCNndxSxZiM7Fpe3ok89+2q/Cr/3q91vUoOn46Jz6+PQXn3/1N79koRkMHMkiubkJuwcO7uzBgQgAAZiBO0gaEZCVGQnUIwVFVzQgjWjiwcCERIndzMSrMVmt7EBUBd9Y3lHc+8WiCSvgcHDYf+/o+Ormqosddxi7tGoWIWG1XQyUp/r82bM//av/cLsp984/WLahD+WqbvZ7jQHmvBWypgyo3IZFiG2tBSwb64CxVmAThDhlH292cgtlh9e6cb/koIboFhnbVriJvje84qnEmTE1XRdDE2KHMJeq6o6G6GkSekPKYsOITkqFUNmr18YDhoW5VNcUF1k37ruTe6E/JKmVpRnSodsIKIZsOu9ZxMtxCo/P2/2KdzdQpNtlmzM5B4Q5KswzcIyG1SNiwUNkxBoEWd/kJQAd1YE4DKpAcVZnxT72O8OIVt32oEHU0TuAngl9iszZ8dXlbQjd4/Ph7kGvDx/87KuvZc5d8LBYnKX8aoFmVqBNGNiqT3mqblW0zLVvO0QihIYYBG2qotI0rdfJZA5NB1S4p8zQGjq5uq5vbxdDgw4M/J3vfvezry4fnnjdj69eXR6fHPUHPRH+9H/5W14cPLv96ujg+J133wGQPO5uri7A5jxmrPjqdvPk66++++0PDdPLF6+OTw4hJdYmzzIYKwaZMYaGvAEKWDWGUGECFtTYRwZzIgJEjo2pa3EHBiBkADdHEJGsU2QjAK/moEW9RK6qjQKAq5m5xhDYA3pARFdwMTAgYsVIXN7Av72CmAduyXB/fQvVyFlUJq1gVHMGL12PUGsgXq4Gn+frnIe+bZdthXJ4tLi+HW9vx3E73txcP/7wbQj06sXFwbI7Ozt0Gz1GGeeG26pqCuAOZBhirbVzcjWoSJTa5enuqutCmyCRiKsRRwbEgOP2YiqvcaHRY4+tic2OpgRuwSe3MomqVwPb2ySRqnpyJwNmfjMpCsQOEJgDk6sTkKoYgRjGRMiE+AbaiQkISGVWdxQwBwKO4NCwA7npBGSgjggeXejNpBeClwHxycc/dbXf+s3fHnW7zs/HefvRD39aCwIk8GBo4oUcI2FwojdDLOMcwAIipKBgxEYWMDlR44qu5O4UAAkIGgD26q5mAgpq7i7F0dwZg4gZYaJgJhwUDatCEzgUGNdjg3TQrOqI2sa2HQjZJO+ud7XApz//ZF6XZZNKuSne9U3XUhVx8y2wuGEAD8xCsdbag9fAI1qUWBV11vKqvt6NLt5kDtQGDEpYqBIFEAqOBGI1J3QptM57Gx2dDpqyGg54RSGye3A0FU2aWlOHSmwNzgGRLbqiIzFFRrUowsJQh1TO32sWq7SZpiwoIbaROzib8y07BloYWlts3N12R2ePzu/YWXjyxcvEYEOaxecKAZCK5lIMzBxaaLuiOUHh8EYFGQkQQIFnswhOpsDBQBLBENkUyCkpiPoMmj2QAjBhM0FoquhXXz9rHU9OD8/u9Pfmk8tnDrALdb5OKQgE8QDsMpcUm9VwMK4vyzgOXcfRQwITpRhKVXAwbkbxOsoyLhYnJ+88Pt2PL6pVBRETEPziySfvffA2aTuLXbx+cRSW85Mv/5s//bPv/v3fWOiKpqOMw8OHj7L5y+34zV/7ljnJnDc3t2bq6GJWt1vzitFeXL9UZGo6T6wSJDOAiQsgGjUz1D668BSVODa11ghM7qoKIYBZQJBcCCEmElMgAmVgLDZXrdRy3w9oUKdc5hooUVVwYDQDVxUmJCR4o8SjoFQnrxiJonMwMBJENXAxJ2ooyTSTQ9+0ecql5CxVi+m8ffjw5OxsYfuMfUur4eb5VaEO3I4WodQ5tj23pLNt1uOw7B++ex8gpDjUWcqoQ3NimMMiTXMVM+YkNt59dM+8cU67fZnMJUPXnu7GYaO2WHXFa621cAhNC5a86mZe+wJn08O0DBD24BVY3VuvzJSLSrHiPMGYaR/bnsy1aIKECEok4IhOhn23PD46u7h4rVpyqeqhaQ7ICRX/k60PKbiaCsZK+gZuDECWGgarXsWZikoENECjNxplRENhndQOqH/y6S+6RffWuyeb7e3f/MVPtlviNrJI416dM3AAZnAHrwjcEoYUHdhQI2t4A78nZQK3BhHAnUgo1FICKZhTNQVwQBTBSOYI4oQkmp0UnKFSw0Eg81IkzVrGmnE7TcNwNHRHIbSrxYq6UMdpnCaV+sWXn7++epn6FQOZepEpBUIjVwePpE0yY2fAUEVAzVCrsYIQ8HRT1pfSbbWFSByETAHJgSBSAWIP6AjJrCK2DNWB0VMABSlTfr1fP/dbWPRD3532tEyBHKw1zy4hYMWo6mQawYHAEdm0wwhqqb3lYc3dASKctqtWplx3k8Y+nUJszbYATdENcRXZwb7ZB2774dE37rx+ebPdSOR2kbpSRmws7QJSUrfJbWYXQCdQADaCCiEFAUyqFpw9JAHFQgS9ABtXAES0gBGpqtUZJtTAfszeus6EP3/5xaP01qN49uHjc8vjxY0ErDjW+fXtxaNH7/SJJ5jW6+t0uJzy2HRN25NaZn+zKeEYKbNVYShaDZs+6v7q1cVu0TObiRoguOq3v/XN2adaSxFnS+9843uK9NY33r9eX/UH93a7cRQ6vHdfp/2vfPcbw6InxNv9/r/77/6H/+x3fl21XF9fXr561ix6jPD8xSsEXhyfFFFXT9EMYJcNpDah4YgI4JVMzUQIiJRTQkPMJl1qXBQwOhowUkTCUKRaLVYxctd3AyAbqWMmABQrUDCSuxMhYyADcHQ3NdVatTrFBBFSYlSdZkGBnKsBdX1fJ9vs9kRmWudpMiMzVBOAcnQwaCnctEAwztOmFBE5iCuoenJwtKtycLbEKof9annYrw5PwdPhydG0u/CpOhlzDAhtSnWstYBYIErIUYI7enDYFF1Tnr1t4wqxIKmKhthyCKgwbm9D63vNdapOCSIqJoWU0Kd8M6mDFkDKZs/nlxjHZbMkiFqU6BAMIKAhkJkBRAoPHj18+fp5rrMZOkDRwqZdamLbGhNTQFGpxVDMkBRVSkByEEfRyGJEkFwMHVFBQNDRXa0YhTBNGhfN5198NMPp9np7+WyTmgWIomGA4ICG7qiAGICJggMAeuCISkZuDEGNKM5MKUEb+/0uI2lsWdVNq5hWUFADFXUBN1fzCggAWN3EEcxFYLZmf3x8vxEuGTd1NJHT/gTJUyd9ArQ65hsn+OiTX/zis0+4XaJENzDCnexZvSd2lCLKFtSLVjXiooJkM5bKDvPi+kLGFzVAW0IJRm6IyOBUCIN5iyECkEMFESAFUycIRm7kEEMUdWIQld3N7e1lTmHVnR72sS3j9uQM3/3g7Y8/fbWmEiF0xi2n6El1Bp5P7y1iP0/VwGwu8yw511q1OmCdK4UegwgVKDgVwRh202bRp1hZLC9XQAybUa+eXu73ZcO1r6mJrom6g16A22xeK0GcBBgZRBNAi1QoihMwRvBZzSLHyKYqrg1wQ9Y7MEFW2M+ULVOCidiZnr162cX44PTO2aO7m1rDPOftbvvg9BQ1r3cSGSLW25vXIVFqopgDkrlSiNlJJRct4M5ibdNj5Gl7cSZndb0RhcViKVCcaDeBYu+Yjpad3+b+IN1cXj78ztt36TuaA4d8lHoNevv8mtz7ofvq6y//+j/+9f/xX/yLm4vXn//8R5cvv6p1P+epanKQmBiVq1NsY0qoOItKvp36o4GQYgHROcVg9iYqWtwjQWSIXqvFgpiCDwbFfKSirZFyG9qWQlRwd8sl17xL0AEgIAlRGxlFQRQYxQoCVAAxDNwEbBuaW/BtnsA076QiQeNAOu3XbiPHdLm+Ut2pqgqQ1rvHRzz7fh7dZbFcEPHi+KBuczJqQtxM26zpvF2JFR/K6vQEIeUspRaM1q0Wutuyk5grcTek2bZScLy5XR0foHgljdw+vXmVVulokZaRCKXajEAtdWpWZTfKlUoZIp/c6RF8rnFWxFDbBqzQWOeW01R3r3ZPrutl7DzsraxLL8ehCQUCoEY0ADLnYsX76eRx+/p5CdI7OXU2HBwuYDDGEIyCZ3OIjpqCc4hSSnXRVd8Bhte302bvkVLBSkCsGgiFDYsmYzAXmw0FqXn1+dXF641bQ7myAVBUUiQMZEqkyAEa9sSIzqzkysnQO5YeuUBskYnz3t1jACtlXwMouDtnFq1kiobFrKqCKQi4BVQMxdQ8cCF7eO/8/uHD7zx873a//dEvftgOoaouHJZttulmLWAN7rfzJ1+9MBgCLZwVAgCjKZaKibwLVCPamDV7RQ0GjlZhMrUAcftiqpfU8lG2PTAlRK5kGIU0ABRGIiZ3IzAopCgKFFqASgaoTEApcoXMBZVbR8oy1Rd1DrpawO//0X957+TOJ794WnQfjuJup+O4OD1ITZdXd6U7qVY9zYEUifxme2OG4ho8MswJadk3M6hZY9my1IguWWDgJrlD4yBtDzqF6+2O52hktzVrlkbk3vndviF2wtnnxoqpG9daEFwEwRAIHUJgNY6mVMFrdEVIFZlBe0ALR4qT7G9tn9JhFzg5bra7g9Xhqh/unhyFlnGmhEZQPEDb9NHHqda5aQ4KerKATshopoHEvQRVR+8b4uTI+ujRw2UbAFnNMFjJvNl7aO/euffwcHUQONLtev0f/916vfvzj/729Pytzc0u3b+fju4gNn/57//s6PToN377t7/46gsmqfm25KtpvuxbUBqyKpo3TUQyAehBu0iCxVWoOhNBFEHMWAJEIGq5KZpLBGFhjwM3bgjuwhUMCNE1ijoigSMauBmA76a9VGVPphQJQwxEACqmsyNSMwQP01xH1RQaAk1426fFOI067+soJQslatp0c3lbxk3XBZHJataq6hJIzs8PzxbD+ubq5OhElfb7fRPDglNdAipVUUA7HhrZTXORkNKQBizSehDxSUA9Qug3V1fctJWqFi8Z2FOyWvclLdoi6l1zcOc+89C1DbGLWM2hXyzVLQJsttdM4l6jQVKeOe0LAXLDRa2Km0N8PW5erj9dl1cKDNXGilLwIC4qu1N+syolNGTcwmYjX731zr2r67LfSUc8UBvEKeweHg+P3jpyDS9f37y8yFtGUlsmOT1ffuP9tx49uBMTX1yu/+f/+cc//+QCU+sKLIV9Dog5yu0U3VrhmQvj7sDW1WdzSrMaYwW2AERmBuoY0dGdhRgiQwRlIABSM4ZCbFobBKqYdSYgUgVV9WpeXYzf/KOaismbmB05ESohBoDCVR26Ltx7/OhgebfrjpcHZ6Ll5dVXrONZe3TElGGajPu4mEXfPjv7+ukrBq+tM2KPHEOjFAqCscwFrKKjKBayNnIES7sRty/cp7knN2BHCoQI5BwIMYIyxIAhvsEfEgbw5DF4EohoicAtjDOrW081ABNDagMaiVMpmK9z+B//7U/++I/+sD9Y9DLFpFvcQCr7rvKhCZqVFLjbu8l23y37kFCkJE8BCJEh8iwzRESaER3R3OZEBASp7ShQM9judv/g4aId6Itf3l7uPFDTxqZPfYsUmKpb6ELnjAKcGCuXghE4FzXJDlrNAc0BQqAGAR2YoroblAA2MEvoKgrMTgQcbbpdj8tFf8p3zxZheXLYHJ2YCKi0sdnfXGhdc/TddtMOR0Bqilne7MEzuUCVpomLNiBLYchN2oYajcbbzeVu26/uP3z87aPTcw9AIiL1q+tL3F4+++rFi4+e3ZRxHujRe9+YaVgcLD74xoe73fin/+p/bJpwenzyi49/BDbdv3uYdyjuF9fX0+1E1pkTRUdSYHR2MaJiw6KvZhjSXGVJPLMOi2W+LQQMLkyKPpsqUKymRDNDIGMBcVA2yqMo4BvXe98tUGSeJg6uhAQICEDMHJx4nqQCcGIm61gOWqomry4uuJoCQOJh2W1ubvJm38WGkW63V9Mkc43o3rEcH7SqlQaKLfXNEhOYlLlWoP7LJ88Wm+7x47OyXTftELsmNl1okrqUWsU1hVakcNN99NmL1bC68/Z5ppz66DPdTrkLrRl9+M3vf/nkskMlakJoqk4la9d2IXUmkvfXXcOA3V6qE6iHkls3TFzR8lhUlUTKi5tnt7pPvAxmWsooWzWuYerSwsXI2N/U0PzqenzStjFvt5Sx9RANklmYr3/nt97/ze/ejy26DFXPXlxsP3nyqmxu33908isfvpUYdvOWjN6/d/DOP/+j//a//zd//dMv2759dO/s/XfvPXh0Fxn+w1988v/7d78stR0tF9kNxg1GMI1IxupEbBgc0aM5AoIGA8oJGZ0dOWgJaAAkoCFYQHQll2oM6qo1A5ZiZh7YZivZzUEdwGuwyQrD3EAwD4Fh1PLowQnH8dPPfnpydHSnPfq1d7/5MflwZxmJxUVRgiVy77vm7vFBnqfXm7Fre0E1NGI3VKKohYKl7GRK6GzUBI5UwvblrY4tSXXPiMDQIBCCMQZGNsLswE4ETk10V5bYhkaBRtAYgJ0ICdENGVgCM5kCqKBXD0QcwT7+28+efXLBy4pHxnOwSqcnqW3LPk9ttyoWOFCIVGVe7yulGluI0HIJaBFFjWVfRyOHBGaBgSEE01JqCEZI2oYEOB8ft0fff/yjL1/mG7u7PG4XC4pYa769vlkcHPehTczgEDFZrIFjCgoKVbxMs4qpU4yRRBGiohsZmpN5jUXcGg2DgqtkpRT55curYTEMXQzVsVitUg/aNk83ZbxpBzJmn4kNBGcXV0FgY3Z1HRIvFk1ELVb6JiGKAV1dTtvX5fOL+bf+3oM7d++rzSKoQG3Tx9B+8fmndYq8PEg1hWTz9vrkzrCd1//hz/51GxoUYOL96eHd+3eGw26Soi0N2B6DlPm61C01DXATmshtjMDBwRnMI0MK3lABoWqMqe84tVgrM8WEABkJzCk6ExACBlJARQez6hgBAioCGIABSojoaAgzIRuau4NCLWpggYFREKqhbfb4/PXLCoEsYsI0NPNuX253fQhNG7b77bjfK2gl6LxxkbaNVaWPfc52eX3RtM1c66bkabuDxKvjE+C+bRIFELXjs5NhNRhCtsmxumpirO4/+NXvz8rp/HSe1nT7Kot0i7A4HAT46Yvdk9dTGw8WfQLweZxT8mZJWoWM5jxxqFKlOg/L5TbjbYGEGrGUkkVoO+8ubr/ycN1yRqVscwahKl08mmQdatfQkqAx21ucN+NndwbvYNkdc/cWfvnka3cjuf3u+/f/wffuQ93dXk0EXYjywf3mm2/db+Ah+DjubvIegLFIURm7dvV/+t/+4z/6vUsiX60Gc9nkDB7/xR//ts3rP/urC+ShACpDIhgwkCOwuKs7mBECkRkEgWTEgZEBmlBDAFBQNhRmJ5q8qqKCgVRTcTMERSBHKK5ShYwczKnmWhUI2YoiIXueTu91548WQ+tZt3/5kz//J7//jwKF9z/41t63V+PNpszOvjoYkBqPuW2XJydgcS+SC5kRCiq6oxg6smgIqJZIGLC1jJdP1jgyIgI1BozOkbFog1QShgihICHUAAzuBgCERmkE12Q9AGglN3dqHcCrs4oDECAaa2BvTIPyiKt4Pe7R963S6uC47fqO4oA+O242O8DgHgJED1Tq7CWEJkIM3DhlJwcBz6LRG/fJHc3jer3tUsPJwW2c9lDBlSLFGO3X3j/fr1V3NmMRZVR7eHKqogoKb95yCqyMhAGIOTojEW9zcTEwdcZsFZkRPACikFhdcGBPQFJCqApmmKd8u5/bpg03r6/6ZZc82l7KZs0pIQfmGFuqLmSKJgwOiOY6TuPqaBk5I2jJU3QIlaz64vD827/2B7/XtWpeZGYCRpQK835z8eJit8mmcpMnQGSGSJV436elyqKFBJSda3/gN+tXhofmBuhTqhwQGcp+OlwuKYSOImQJDRxyLJGm/MbM4zufi3KaHOPcL4ayvmWDnAESEytTBWvcWN3cq6IFYMIwuzl6RCJHkVl1RxQRuSEEgFzNgQNE8KRRg+ekaujbKY/77BTNIkYduuWcx3K77Zw5pTnn/V6sEgNE9KlknWXOYlrRWD19/cWz07OTftmVeUxt8/bb91YHy2naKVrAJpEedEPiuNntQPZeMkGo6DNgPFocL87P3vu1m8sXX3z8JzC9PD5dSPCbV1tb37Y8pBCZLU97AFstjqtTIK31MtOtZOlCs1wdQkyb2z0wdGx52u1Jv7p5fbt+lm1t+Cb5rwo+s/UcAmGh69tclu3JAs8RdcxPGiw/eOvd89VRk0L41eZm887V5ZrIv/uNR3HebHZrpCQwR42yE2qKIqjtwREhuTCGCDpTyegXd09SzXPdvCoVTbhgJtn883/yhy++/pdfPH8tkZplihTZGnUyakAwI9RobtK4RQdTqIATEbIHixWhkEXBrlJxhJCpKqqoCCCAKpI7QJRJDR17Za2+Mawo1nrvpB46sN1wYm9/sDg5SomaLqTry/njTz8dvvOdGFoet6XsiQBTCxGGLubaLxfLqorM4rDZbGZVRXdRp6pQgYBiUKhoQKo3L7LuIwAQ6RveEWgihy5IAcrVwCUlK6IIHCjlagwxOJVQAgmpOwdzHJ3dZkZ3DEAFMBCwaY00kifCJkOOrQCTbX3Em7c+ODk76se8aaXJMI/jFKBJiH3sAUw1oxlwFiwcF7nU4LTgwWZJ2ALNUIuVcPPilpe3iLHAZHUcs4rp0XA8pKP+MJToMisJxZjcDJ0LA6MFEzNhbtw9EHoFFYgeQ4CoSoqjZ+pQsqIgIQhYhIQKbu7sjFjZs85k9Or68ni5Cq9fvPhm/66STJvb6tr1yygIrk5lrh7J2ISJFHQab4JUxx6d3e1ssTAArFZcusMQuq7OmQNzcPQkU86zQq2mWmJf3SlJzXmI8fTusQDurjbTxUj9sjugO49OV4f9bldNR7K+WyVLpWQf96MVl6KRHERDaANijWhqBK5ekRKqGZHVSmoxRlgOdb9HqApGxEhkCGqV0ECjkSk6OaYQXSySF6zFSnAgckOfPUShQF2GMBv2/bJrRp2nutdxv6/gCgvVTASr49Pd1c3u6rKN4B3nOm3Wt+OsQEHLhA67qaSEc3VSbVObgPqDBSQ8u3NM7il0m9f724v1g3fu39xsdb49PehS4jJvRXY1ZzdPLGZQq3qQRbNomuPFYg/cZKXQJETsu+BwgKFJCcwnrfMwLDl0ZplpuppfiBeQYOoa9PZ2ZqUlWSmbwvL02fOnz79MS8BILBicxIywkqdEqHUHAZvORKTEAWzc3j75+9/91jdPTmTci3Lg8dFR/+7do4Ao+13ZzwSBjKlBh0rakIowgicFMwItxYwdoVJhDp6rVjN3Bxin6Wa/OT5cnj66/3/7v/6zH//0FxrSnXvHi+VqM05/8u9++PmTXeHW3QC9OgRObObFpFEyimoYtoZESgahOLiX4rn6xApopGwGiDWgGSO5FkLNKoUoOiVsZsYGufj08P3TD791zBy3NyMN0IU49Pmjj/7im/ce3793h7vjl6+fZtgvF2dJScfqMnPfHPKJ3ey4icOinfcTYxpL2Y1jiIcd4u3+0mSWmpfNnd/4wXf/7Z/8aR6dEBoIrgzICBhcAqGykZMLN+QK6oQYumQMMQSgypk8qhbAGoEBOmJXJILgLmyUAhgiKlQo5GbYWFHwvK/yy49+efyDXzk5PrXZx1pGmFHFHLqzO8e42lxe7n2rGamNDg1kIiOgtVKpbjYJClVUxFx3VRUjE0B29MAwT5sG2tgumhYiRaTurUfvXL28ff3qcioThYYAEgcTFqBKGQeSHGuBxlOXxN3DyJu8g5zMUBoDRqHg7hU8aWqYUxBCACgg42xTuHf+AKFO8w0F58AAVYHUvVghEPMa2NEJRJdNOr1z2DIJFgDXNwAEgOjwi5/85Ed/+8k/+eP/TTWDiqVWEQtMgkGHfkI6OD7sVwfTuGsaCZZefHH5+vIS+v6tDx+enA3HZ8M8bVZ9IpTAITUhQpwi9QfrKe2yZqsphShgDYCIJwPNoo6c2GoduoWp7PImakohhsVyP60LcC3ep2wKhmpWGh7IHRhGqhTMCUQdQAmcgay4E1NE5DApQr+4c/4wMj5/9rN8e+O5uinFThxq4oPFsN7crG/XTGCJRWU3z+pv/F8gztt5qgRa9OXr7cEQN+PtmMfTs8PzB/fU6t37d6f1uEEz4Iur3evX6xTo7fffKQhadrXsqwA6KLBVRyHz0PXnAK7uaLFvF0X2jt3p2cP1DFPeR+SaZ+KQ2g6sNonWm2k/S2ibto3zVMdJcw0pRsaJJW52l5fXnwQZoSRjVFJ0iGCI2KTW5hzQo2uYkBUbypvN1+eL9tce3YHNTdmjNuKMVh3zrgnI6sCsWquaS0jkGEWdEaM7uat5sWBqCGiOrE7k5EjVoLqGhM0OG8Bxd3n33uH9t39XxWtxqQb3Fvfv/f5//V//tzc7NTXCApAKtkANYQYb3ZKBW0VIgoRu7c6B0atMDmrVXUxbxMBBKfobcJ9ANAdRtEU4IJVR9jvNw2l655vneaqvvnr+zntvrfpBdJNpDhE+//Kju+dnqR2Oj86ePN1JK8NJM1AXCFdLvZxvIXq7bLxbpbZpUre+WV9eXl6v51c3m9tRWFOs6cMPfvXDd95++skvP/rlJxTYRQGTG5vFyksCxWCiDgDAgdBYwQGQnFSBWTggcKREbo2YRVbT4OjUC7sJmE6KML8hNmuSmYJhTYYRNtvy4x99+ff/6DfSytCYR24qCgkkblartlSb0CCcn36w28p2vIhNVFfXUWVWnIvhLLmB1DUhIEUPjKFYwRgZeJ7WInPbdU0j4Hr56rPD1eHJ4YP1WMxht5kvr9aiGYIRh1qcENruDaA3IEFi0k1eKxl6NG2Is1fDCjEIRI/WAvfmZElGl7mE/rhbry+medeGtutb9aIeFdBMe5bDVdc10RURGdlIJao6QQixlCoAFbGa9svF6eJ8mkYTjByqioJ7YGLouqYdmu6gG7rl5atXB4v4/MsvdK6PHr0Fdw6OHx1HKFCrK0Zm0WIopRAObdf2J0dH+4Z3mwpFLFpMCFZeP311cnJaRBSBLQHHueY2xVL2ZW7bxaF7SP2RePWapwmAUNE5EFR7Q62CwE0lVagAFFrVWR09RIoNE0OzvHf+4PDg4NXTrz7+yV8vBiJVB/LA2a2L4SC129frebcJ5G3Xq+rN7bVKFlAAcaJqWt0AAAyfvbh91XhsoMx1t5Vdkdubm5PhIEYA9jzPmMOjhw9eP3tWxMFpLnPNM3goUmvlOWsW64ekYNO4ju3i0ft/52c//NdOrGUI8WC/e9UREVTIcnBw7IjC5tP0+sVzcWv6tmqpjEUDAye23bidbX52+8k0b90lb7e6FeaokVZDS6ZBpc5zF+NJ163a/iA+4BqnYj/4zrd7m9b7nelK1cgZQuUQ0BnADSVAYNBSzWIQtYiISEToolrUXRAZydA4IKs7AiIygDcRTo4XIYBb3W/W3La1kpuwcd2PZyeHH7xz/9/97Uvnhh0apezlDQHILagBWXZwcwFgBHcAJQEoRAjgCOACyALAgtHdjcxBkI3IMVaRGd2B8bu/9g4E+/rLbZX2vXe/++Lrz6yNECAO/c2+3Gw3J83B+fEDLs3R4cECDYo37Zkt7M7x3TmPex3HvO+7rmn7qAYAJ0d+bzUcPeevvrrcXEyYDVHeOr//xadfuRMyqLt6dnLAZKYxBGcS88BgLBW8QG05dBwAiBEBqDqYg0UipGjBzAxrJFJTJ6XoZChkStJACoI79TJpCu3mcv4P/+bPv/973wx96FsWU8BKlgEmT4p4cPfw0b3Tx59vP7NasYHkDtoEq5t5Z4WBQi3KgF3DZiYVagsMlohd6yTzvL5ksoODc8CT1zcbTquT4weHB8uLi/FyszWUYaVnp6dffHoF7oGRUihCRUskH1bt7HmeMAtbcKiQiabGUtCGQ0+IBK5BKI2zBN2v81z6/jSEKFrRIwMCgJsenx4cHwwIigJuVH029NkLoquKgbgwcETlo2H5zvsflLwd9+Nf/tnf/L3f//tpWFLAFvHh+cnrrxf9ctm03f14/uLJZ+3Qbcf59uWrxweLKU9DH4WsH4bN1a5fDJPUy9dXZ3dPD3voOTTHp1mv825XXQIlJB6G1X4/c4pSp0YXsVmOY+HIbYz7q/VAbWwHwA4BkQkwKjhTMpsnBXAdPJrz1hXcU+jcIIYOHDDxmxZWG2h88fzZxz9c7y6bA3SAKhEcBbA/6DDb9ur1flZliE3Mmjfb9VxFC0iFqp5Vx9miJ/SqJsBhM5eyHqNbrWUs28i8VlmuDus0bte3DLbP+eRwODs99lryOKKqqSjILLCfdRav/vpHP/zXauH49P7B0fm9t3/zqy9+hjHlWpbtQU8wztu2WzbtUL0S1Oevn0utzCFvZw6k2JrQorEyb7Pbi/Hp1e4LomGkGaGsIJlCsbpjXaaeSyaZfv1bH7z3+P6S2oRtcBu636h52m4vqrmBkjsYmoMooFNEd3cGds0cG4CQxYjdXIMhARKwqMIbDgp6BSGraIYObgHBDQSJEUITOi2m5lUxWrVSkzQPj45BPucugCAgBYwVxoQQNJCjuQqIKwMAeMGiFipFAwV0Y4wkDmqIpGymAESo2FESKzXvIwip33s43D1d5DXmben7ZQr91cXN8nxYdmdNWt5Zna9ijJMm6t45f7fahPkmyWwqgk0BiOnoENplfwhEWuxud7ZqltfzfHpwdu/u2+/duwKlo9MzLbLbr++fJMm02U0QoiA4uOikKuQxNC0EZ+QI1GCYA9eIO/GgyEQRAznsOU6aGwNCcmbRGQqSBkRwMnZuLGyDZLY0caIo4KbqSNevx49++tV3vvcBg0IUVtf9HJdDlXp49vbR4YPt+np38wx1LnMGLCfDg0UL42r7anP7fH39xjY81pkIiHv0MCsAQXRMTApInOZx8maidrGTzf7FPM4n5sw0L3t+570jcO1anSd3jUhg5OoILi37ncOwd1qvJVsJyQE5svVUOgH0yE1fyTi41zHIXJrYBAwBGM2kOIGKl27VH52fYy7EFhCgmhdwopwaKm7mwA0Gm9ZjgkAtOpMLN137D//RHwCKwjYavrr+evbbe4/OSgEMotOt2wbC8HqnaAIu2yfP+0fHZ82CSBJByRki9H13+fzKljviYMyNF04U0GUc57rHEilAFyOUMt9cH5+eAC1342yLNIRm/epicS6pGwImoBgGVHXEYOLUhuoCTp1TIDeRJnJFCczmQBTQZN5O19MLlCwmizZmCuOMkbuujU2Efdnvb661bt152XdznfebvVcIHmopDu6IWSsRUxZzc6jiDhCCtWClXy3PV31Q2U67OuWb62tGDIDssDpeTCUPASNKljlPGobGXK36fjfWMnbhxmu42V48f9LeffsbbbxTioXALaOiutOwWIkCEdXrbZ0naAMAr0IzVVZLbWxULrNkQXr94nkgps6M3mg5KTRDZB/zlkIDMr//1vkHj+7I5naigDGg+X6qgMEMEQPCVKpT04gGYnV0AAIOmeZCrhbQIFKNnhKAeUZU8BrRARVMwQMTIaqKALIB11rZG6hODSIYgUSwAiLATFDq5u/81jsvp1cXrzZlDLezXGx2zAsTBxREVVcxdqqIMzgDkoOgGjvCm2OMWNEYFVWJGiAKnupcvvHeO7/1g2998tFf/eTjLw8P0u1FPlic/95/9naMCJHP3n885Wuk7uTo8d2zYdE34ElVyrh78uyjd89Sg1mUam2fXV9qODo9e7ToOqYWBw4IHdSVqqkjxr/z7hGy3erV7sq6v/vdXh+z5P/4w5//7OfPpxyy+RxmIlbFiKkJpKiIBBoCNK7GjDXwFCr33UFatLDLuzVlrbOYaGAeHQpjg8xuauCAbaEQW4yRfM9q7ga1DnF18Vl9fjS/82hhqqbNPOnllR4Ob58tHiH6Z8+f5DISsRMtFgt2IYeW22lfTSU0qbqXWlKICSgCNZGDUhMikoDTIp2jx/1ui6oYMSJcXVwieyKIgLvry6aPR0ftjXlVMC9AQA6NAaCHxF1P865odoaaECO1kTAmx6hVMMToTGoxVKK2C+ROAKaKZKxG4KmJiTkOnZi4FEZP1GStvVMFw9DmUks1qe7BQ/Kua5C5a5LJ+OzpV9N2TQg3txfjbmzbYbd7LfMeioN3Fxevj3oausXRnYVKLfs53T+3WqDh5WrYTfvA4fDgUKw8+eLLwGkVS7NYzNnNM0txbPM+Z92enNy9uLgd9y+7w7s51/1uGpYH3DRX11dtNw7tYex7h5wCVkuODbEyhireACdyJiRiClGtMoJLHfO4396iCRGoJZ4otOnw7n2Amjfr3fX1pqwdrONETNNuXN/ukYKIj+NeTbPqnM3c3YpAdSQBJACQAmDA2DWLq+ubRcKj1YGp3bg+eufdw8PDecrvvPt+1x7m6SpyV1wdQYSsFPIa2DoKqeWseT9PJckvPv1F0sM7d+4ExjbY5fXVol1gSBAM8n6br6GNUWrLAUMss8WAhLvdbh8auLr4Uuf1m+fvul5EzRliYix902TQgfV7jx9RXudx67HF2nKXIpObEAREJDU2UzSIiDoDBsUGgQGcwd0KUoyMbsDuGlCKGYFpBSF3s+AuQhzN0d8wqtlBdeAI7mIKJuCZFKwCGIDuz48O/y//h/+iZM9Zx1L+/D9+/D/8m5+sbVDDxtEAKhuYJjdTcWRUB3BgBAtVyRwMwBESRAclgzqNXRf/d//kH54exrPDGg/7l9v9z3/+7B/80a+enhwOXbPXPS1jGxJrjmG+vKi2s7Pjk65tpnz75KtfvDt8yMcxIAX0KPNmfp2nfPf0zrA6wNSsp92iozY75jJlycNc2T3iKjaHD97G/ALn7T/9w9/+7rfWf/bXnzx/vr2YKwiaGez3oUkWQmCCHlljMiEASezdsFodnhwdIfHFy5fbm2vpMo9zlR0zhQAgiBYpApgG9eBqoM7WIIoxgbsKGvzix1+en/1uQ/1qlda7q3nC+w/fWsbw7NVn4+ZFDB24Lbs2EBz3C3D9/PNPb6Y8xH4IlB2ui7mhhAw1IuzRQzM8CLExnR1UaZ71tq7hYLkSjMRJdW6bQAHH0bIURExRXBEBxFuXYu5u0WsMiYYTmK9mEW8isJgzuxgDYGqYghnus4TYDIjuMDu5VK8wVXI16YybLiUKWaaaixMCIgVmgZB8nGZwZyNm50ZTF0x1NfSl6M16XaY9jvn5q+eh6/vu4OnXT169uDw/Wr58/uryq+slh/v3+tPzO9aQdl3OeZunYA4hjPNkRVM/nB6cepEXl+uyvuz6IwDomhRi7FIcJ0/ztB/H9W2OTff1q6/v9zE2Q9TmZnvbd6nvlmiwu76C7bbvuOlaJ2UkF6PgQ9ssugU3MSC7YVHdjBd5LFBhc3NNJs6UAbldrlbHh6dHN5vx4vlT3dwyZE4GToRhs93d3qyJUt4VVc8qzlrMDcnNDNwiWDUgUilvfo5E8m6/wVKXR2cIiGrLvpeaPWA6WBCnOW8+/viX6POjh6vY4ixZTcyl7yMxEXfAgEOaxMtMi1XPCZuEWktA4tiXWlOjN+MtxNgCRA4OfFmrxdiw7LfXYGGat89ffwRcAdsQHamktsUSNSuZJDCt00Eb76yOtpcvdJqrxRihVgfQwEQgTcOTuRg6cHIkRzRlNFR04yCioIECuSFNYooY0Ijc2JuxKAZvAUyNkF3BTUwE3sBMQSFQdUG3OqtLqCWnAE3oUazUUgRFS2rKH/3Br3/yybO//vgK0zI7KCCABmKvRKRIKkzqQIBE1HrMTEYWCTrDsYyhb7//u7/xO7/7/dPzw+df/hTK9Pju+ecvfjbmmkvuY5sgOKdFCHNAxKB5qiU8v95WyI8f3wvcELc36+35nUeMuru9gawP7zw4uHN3nLZSb9Os+vJFc3iwiE1jvlbfldvbUimGZXNIkY2WRFDGm0f3l//53/21v/zhp8PuCIpePH3+R3/4u8su/Mmf/sex4nrcpgCBW6YoRI7kJpvtLhi89fjd+eHjy+sr3273uyudipapspoVNMpu9c1m3CCaYowRRSSc3T97/Pbjj774fNzWd7/7wdXV04DN/fMHi66fps2zZ58r5xV3J6vTse5ijAfHh8J8p+y/3v1kJllC2zddwZRLZfYUKXJYdWcJehbKsr2GrTrVHTaxC9qOroSFDKbsSJKISrWCEzWcDNUCOUSDWLoZmVxjIG/58Hh19XKbvRhl4kQKrQaJrsEJALyGwFCzB8ZcNoDBHItrmTYPwgJlDvFot1+3fY8AFSerULFWnpVr3k9WuOlT03d909S82e1fg9jt5es851z2i5NWJGzn7c3+9vD4zpdfPnnx5MsDXhwcLO68d7/rUiYyD3OVeV9LKdiEhjlwE4f+4vXT+cZ+5cPvXXz5o8Oh2dmchkasOjEnDKCrlrabm9Q2TRN+8uNPf+3X/w44IPejhLyfQ0PDohUV2837zcZBGJmAOKHEuOuXRBgAQAE87nWay96ruUW0Ljah6bhtFqjTk19+ud+L5Dk6OSObg9LlejPmWYzzOIF6ahsiHLMKGHsMguahOqAZGJsEMALFKtM0b8o6v/ri1cNHxyfnB3fun4P5tNnfufPgi88/vnPaD33O0zzt2JjVvJRiAm8AMZaFRE0EyhCb/vB4hSAhNBfX+6FfZaGITPM2uIixxhLbMO550tQEkrrdTbtFd/LVyy80lNiYY6WEgbsAjl5dfYhxkWLXwLcevpPc2ChiJ9kVzNicwRCIWylaVasBKVSvRCwYwYGhvnHjmptCFXd0czNCYkRAVRUmVq8IQESiKibmZmqOHDk4or8ZjYmDuqnlKbergbhD50adq8xV5ynbai6mFWckAm0YwWAEiM7RSAIw/if7q3fGlQkRUbGInhyv/v5v/r1v/+p37t8/zfvbr7/+ZL15vd1tPnv+2uvUeJ5uLuLDRytuMLWrvtls2zzJojt868FbiyFd3bxgmLrlwYfvfbhKQoBYpOF4fHTaH5+1bgMxS2lAHt8/wQAVlDx0Nd5UgchdF5uotZaK2h6uYhvK9WbV4/e/9+7x64svvvzy/ncfvf324aOD/lt3/uDptv4//1//Zp6vse8RVyg0TdvrmwsLDSmL8A9+53ffflxev/h6ro9L1a+/fmJXL1ZlCmIbzFvArFrcEjAAtqEzq8d3zkOM/+D3/pDbrmuOjk7cV0fHx6cE/vTi2TiNbZdOlslhs83b1N9db3dT8Jtp48E2CrbLxsUDupKV0K2a08WCgPJ0sQwhJdzs0vXIHSwh4xBX8za/uJrNrKd+6OOtKFanRSrB3WtiQ6e2TchQPHRAAMWZQ1rU2cfdFbITgSlpYjEhh47DklOYaXZkBHYKc528MjGB2WeffPz8i1+en513fX9851HqD6qCVi1iN5sxMjiFwzuHw2IpCkwxT7fZJh3XnidR8w5h0mn9artbHw2tjLkbmnfffqvJ+t433+8fHF+/fBkYQ+DQriA0i3ZZbHK3kKJO8+2L6xdfPr28eXr//ACYItC0u+Um7XIx434R3EKCOO5vWw7B+enXTx7cvyceEGITWjXdbicib7kJHB0BwLWWMpWiOOZNC0AgiYJqmA0Ejdk59TG1qcEs4/XN1fb2ulIhgYDuITnjfi91N89uOUvNFRg58pTnKRekQMaWjVzcKyK4C5ghqEgGq4eLxenpsj3tPv/p5xwCOrx6dfEbv/XbgPTg4cPN1avd5uJoNeyQpi0pzY6qilZJa1ksh5KnWnn23sPxyeFRCn7QH6xvrsCYKEZ2VAmAEaD4GDhV7Ld1ZvRkIqWkfjHVm/30OgSMnDAQUGw4RBnvHC7fv/f4cGhb1iFErrrfrc0EwVzcUK1hd0PkalU9EwurgEUOjTubsQBSIDPNXquDGyBwkGTASOSIYlM1dSQEnOccIGBgA6yipqhGgNL2ScUAwc3mUqvalKfBGqdUiINXA1N3hCSVb7cThkbVowGwsYeqDmhgzMaCxkRsbkyKiDXfPzv//m//4Fvf/nDZRXT95c9+vLm9Ui+Hx48wTt84ePCbv3N2ujw6PD5MGNkjMFBzQEePFLQJhhyR6CSsyn7LZN98/O4iQoCsu6vG/W4kqZedcGPcMhi6JMaqO4FXJd+Oc1jea/tI4Jtpp/Os7M3iPHZte3683+wXcfte6pouTvu8396s4zh0dG8YEMd/9F/97tHJ8vnXm+1Wf/jRzxtgt0TT/PqLT3922LeL1mruFssw8NF4spdZNhlbSALDrE3FXQZEY3EHw2Cfff7L1WL4yz//c8Dmf/9//ufdMhyc3GeO87x98vWTZb+4f7DY5v3Wx7iK293Vq4udDzrOm8OTrlfYXay3O3GmwMQ40zYn3LFIw/0sqWmXx/H8xeubMoQs0wMrS04XZhYxoNdZoVtcf/0qDrh8dAp5F1CIG0SkxmNVRs+1AIYgfmfV3szJipW5Ymgy155aUbAUmTCUUVmFOLhHElPI5B4jt23XI037KyujKt//YHG9v+goLdrluN40qWkOD5sudk1wcYTAjCjmYiFotCKz/s1f/eTuyaIbogAhlHPueV4+/cVnz1+/OKKy2U/CGsMMxuXV1dG987aFkzvH8zzHDHmfmybdOz105oyCql0M7h5CuLne3d7MTUpDDGAmFZd9s7td75aLfjgQ2W81LVN72Cw0ahbJWRRaCMZMbVgEoiymAhhTNSDyLrJYCoGJqM77cV8mHUsFQwN1dggE6nCz2Y37OVRY5xHMA5F43W/VLYCzWXF3R8OGplzViZVqVQcDrkjzydEhGBeo3/j2W4w6rBZnD1dxuTg/O1qvr3PZaZXtroyjoigmNaxq6NA8ffL0wX3ebtbD0WOnVYypjw0Dgtj2dt0vV24GlpE09l2wJrocL04++eoqOzQN47w2ycjNfv2kMeWmQUcG7dJhorjg5gfvf7Bw0mlGKKPnhOCERBwAK4qBlOLIDggIygRASOBViiMlUkJn78DYDNATqqthDEncE0WkJApTxVLR3dyLmweOKMnMSi6lYnUnrI0iOaC7ilSFKj7lMaRDZEf38p9OyhpAb8ebk0O/2tLNjozNUfWNqAkAlSo4GjCAOYkTY/zd3/3B3/3PfjAsO7NiPuk0HvTx4f1vYN92cdHFHqJ5IJcKBm6u7iFFYCFhwNDAZGCIXgnrVKkZvXqRFNhQLXGigESSDEHJzQTD8+vtruSx0vVc2tXJ6aKNyPM8/fDHH58slr/ynW8dxtVf/tWfNMvFg3feW3QLPKhv3z1L3jSl/uiTv9xf33z+8bO33jn6znceP7hzN/5m/y//3/8TyHq5HBRhCINU/+Sv/yK2/XCw4tj1R0e+mXg9uSm0lJg77jfbklPgMnLx++/d//Xf+7tvvfvocJFeffXy//F///9cPnv1K9/7ZqRECLeXF8vF4u7RYc3T1jMOAKrVkTvwIF27mt2iCRz6lNcxMIMyYNXN9eb2rDtg7V9djn3s134rwDFjZPTCXddF2JYiGiIEqDIOy3adx66MMaB58kCoc9IYkVXFOCqBV20TrxaH15t9JpmCkWmTE8VGmFKKYcHJQjbIpuIsURx1YihDE4bIV5ub9Th/9aNfPnj5+bu/+r2daGR+8M4HVUuXBkSkgNSQm4vOMcZ+cXC789u5vHz+siHgGJjTtBvnMR8th7nYzSSraruLi31VbtqyW19d7WZwY3zrrftfffasTKJTvrq4PLt/N6MNfYvkTdOAea0FiY+HA3lVbm/Xi4dnKuzQv/fht/7mx3/z9MXFB/earumA1ef9Zt5DgGbRNl3KGACsRcSAjeHQdkbEjApCyD7NaDrJDFLQUWQPplTbiGjA6DCX+eL6trqICe0tEnIMebZRaF8NLfMboKAJI7iQi7moQ3CoioKgXYjFTPIMUhBseTgMA/RdPDtY5P2V5qmWsUx7VI0cRXMR3Za8bFvRfH7v/Ob2areewlEi7NqhMdbA4eXVq9gugYea5+hzGtwMY2ofHdy9vJn388RdD5j3NTslAJ110lCRXZGcliF1iPmsWw0yXdxcNdC2gTCiIrKDAGFwl725uByQRhMPmMiTaY5AgKbq5kBABJBdEKxBULOsqhRF0bOQ1klkV3OZDZyQuZiajIEmIK+Ws/hYveGgNWQ0AJTsalbAQuSGg5uCAaiTVpdMHE9X8b/8g+8f/c0Xv/zo1YvtzRzYoQveqpN4RYSIHqnNVQ4OF3/8j//hN771IEutdWwiNQHa2PZHLaQ0cWSm6lN0wO3O5j2ZAUpqEii7SsnVcgl90zYNgAaQtALEfcMebQaXoQ3VMVEFjBU8q2yq/+TLr26mfbccYtNbaJbLJcs8NN3VfvP89ub8wb3D07tg8M6H73318vnzze2949Mvv/zyZz/76OLi6hvvffCbv/5bn/34f/n1HxxztJ/97MfX6/VyceBB/ot/9g9v9tsvf/7pr7773q9+97ux51Lts0+e/av/71988fnP+4Njncdo3hkKMoRGkWe4bgIeL4cPv/m4bxor87jRZbd6+/E7atp3AyHVfNOk8N7b77R9ulnf8Hqtsgk8aOoNY8WdICZUwkQrR/bb8TbUwNWV2L2tNYQmcB2+eDrlIXSHJ2bmENelnCwW07gRTXzQaDUiaRYxV5ZNictB0AnUCYqpM2JgAnb11JpqiWct6E7NCLWJ3f+fpf9c2ja9zju/tdaZrnTHJ745dO5GAyACQRBikkRRYWYUyx57XPZHV/mDN8Ib4C3wlMslqWS5amx5LMvSiKTEIJAEkdFAd6PD22984v3c6UpnWssfMPtxHL9/VGQtWkrEpJOEcfBWaUGKkFFlY1RRLdaby5hVYAqMrq4vXp6d3nkwOznd7jeFO51Pj+LAoIgQhJM1SisJGCVmYEy9v7m4CJxdM913LSnbdddN03Ch69uH1FRtt81A7c162K5n05OCZH9x/rTzY45Iikfcb9ant0/jGOzxISrprjaTakKKyKBAPr53a/35L5PkdvRYYbGYu7pJ43hxcXN8OlPOlqpW1jGlYdgrU2bsSEkEDckakSxpgAigQkjA0bHizJ5HlMQg0XttCCkL0xDC7qbt/K8SYoMmNGAM6V3XjaP4rETllD1z5gwAPGbf9i0zHs6X6+4atSYClQVBJEpZTm4254WDctZsu/706OTmcpWFx2HVbzZZtNYm9czojk/v/viP/uPRpLp152iIHrWanj4AKmtrrbGlRUg5jDypKxFhGLSDspp27VhUFrF6/vJck5vXtt1sKdmMLNxtxxvWokgZVFopgDjGnaqmkIOGzHkchAqxQkSoQLRwJkVJYsYYUnaoUGkAQCEShATKIHjHmVAzkUr5V8S/D0zJx5r0kCFpijgJ6qB8dFjYut3tcrca4hZzoJhCwBGkZ4hRaZXKzMLCmVJmj1A2NSOLxBQSMAhzjpIATKbXHz54cPdx+3vhBx9/9Md//cHzKwFWwIkyECinVRrT/du3/v4/+Dunt6uuXdXV3DlFyA2C9TeVzdmbQrmknQBRlG51TnkorDGOOCGKQwG02lkSiomDYUgkWGKBaEUxJAZBESDZdOnV1fXZdusReqBt29VVw0r7OM5mpSV0oEOOF5cXzroHDx4xGkCeNtPjabunfNNd11P8m7/3G2cvLv7qez+qp7NvfP3r7foi+TZd3cxObh82iz/4u3ev9v1HH376zt/+m++//XpVuyRelL51e3GybP78u9/7/Pn5gJKRx9gzSBu7DFCJOEjTubu4vjq89UABUoh+CL/1O78elY7j0Ggj7Y3uN88ubryFQhtjSHOR2VQHx0kIxucIKyMMUKRQH8wbWzu/HtAK6wBJWV0BalMwlLGwJfmQkkcioYw4oMbNPiUMk8YEAdEGrBljwGCM1rkLyhkWRDLAZCknygqcJHQGm6kb2qRyQewSgaCQ1r1mnaI3pIzowJ40+NQVqhz37byZjcMAqkwpktIpcLe6OTy60zSTdr+rm4WtqnHsOEZn1Hf/5M8///yzf/LP/mHbDp9+8kmGeHAyy3lxuV5r404Oj/bdrsseUS8PZ9HHPsHNzXqiYX64uPfwwfrsFUPSWmXkmHNRTk4Wh9cvzusDN1s0tjGZ4NX1dVnVmMRZI0Zef/MBxvz82cXdo/siu6NDu9/wuI9Xm3G+cEIjSEAts7LMIxijckwMOUsPnNIInoAYQIAhDREISFBYRLPWVCQc+tRud/3YhrHnLEBIChBBBYFXl9fjMAybPsTu6O6pM/rppy93N0OjOUMXMdX1ZLZYXJydJV1U8xmVIIVD0qV2907uGd5zGC83eycvRdzx7WNLOmVQzh4cHk0WD+Z339lfb4/K7x/Obc6RYiblwC2tberasgKiYr3euaJGzChecFgcHrd9LopJPS9/8rNPdn6YNIVD2naMjKB4HLc+986SFqWMKBs0IgWWMRa2obgZ0gDaaFQkmBEYUAitND7FPiYB57STxKCJjCIRyILsgFEAE0JOUQCSOC9uJIduKs3CFROt63q2kKpUhQ3jWM3HtN/a6ENYh80KeQ+xlbj3Ettx5CwKlPyqiqi01pYB+r5HVJBk9CHmYKzlEHMKhDB36ne+9e4vnz/3NESv1itPTKJwFYbDWyd/73/5Dw+bOvqVcEDfKiwEbBu3B84bJQpA5UzJj3HsUw8SiklVkAOdrNYEiBmNQhJJRgkiRyZmjDEJJcAkgxCoSK1Pf/nzpx9endlJ1TRTAjhq5g/v3p/Np2Ni40pClwTGEGaTyRtoZqRrQUacWBdFUuojIRbSTN1bb95bHk1eXKyeXL986/4DCnJ0T0FlOScVwYbw1bfevHv3Qc4pcvKew9gJ63v3br398PCo5j6HlL1ft+t29FVxvd3n6N9/8Ki5e/D//rO//vVv/44hCuKLeaUw7Nre73z0wDJ0jM1iHvaXvh+UzlabFCBSXEwOD5s75xebFCljeXpyyyrAm6eDb4Ul5QE1sNiA0JyUDxuXhknfhmgoi0y1I88xcSZCSYYcoxqZA+QcY5GcKMrMMKSmaEIGZlAOjJIcpTDGMh+Vc9/nFKHQGjChGMMaOWsFAgrGMABmi7Dt28H3FhIgGla7fcfIdWMWs6Mscv3qfLlsjHPrzWo2Pa7LYuhSjOHxa689fv0tBLvZb1MeUhqsLTiRTCplCl3aycGyG7bXl6/uH92WXOzHrnRVOaHDW0vn7PLWYfR97zGGyJxXN891kulk5ow1ZMLgtVZ13QwhgCCjsgZK69q+C703HNvzpzVmqmHT9uOAF4nns3JelApo1w4QQXskAEIGlXzySpcpgRbWxAGjRsWAgICaRh9T731sQ5YcxEcBhRACB/RjPww+boeXT54zsiLMEDB6UDButo6dhKR1AuHQdZ98+FNNGhlfffZsMS/jrMF7Ex6GSeWEc267pjHnqys/xmZpp8dHzpVlWW37WBdHs5PXnn/xF1/7+jeuVh8PMQFY0ktdzKw2mRIaGPodS3amxpxY0mw6zUJRQs64v9w9v9hqV0ymVbu6ziQiLDm03Zog5hTJRKsKzKgh10oenh5wipJD4p6zGZBEoyIlSogg5aRQfPZsXMrBKJURmDgRM0nOo9Y6kTBpJNoF6MWxbhQVQjplzVlbrdurK3KYo4gktCoxWlXVi4k9ugMpFlevzMUXA7dCMQJyhpS9z1FYOOsYMkgilQgISaxSmhhiskBjCiFHZxvmOFvAwfJgvZpev1y/ut4eHZz8r/4X/2za2JDaW4sJJ/brVzmqq3XadvvTw+L0YDaZVKpwLJb1gIFo3I+tT+CZvXNOo9LMHeoswEpFlpyZAQrtqtkhmwIB6rJRCiXm31q+9drN+XZoHVmCtFxO5oulsipjqakUzl5GSc2STBSpNWjNKSfQoEqNEueHS+vHsQ+LujBtPDxsLq6vwi/Hr739TYUEOgolDnj39LSqq8RJK8mSL549b4q6rKvE3TsPDw5/7VHvB8hhHOLHr14+7fr5qnt0Mvnqu29fXN/8v/5d+Nf/8l/+zu/+jZPbd6wa0Im2CFXuhthnbkOsjSxUqaDPRroYnCmbAi2JH40rb1XzkpXjYX9zsyFkV+jkx5wiorCipJRSel5X4GcvXl5A1EiRjFmNctH2RpfZj3FwyWJGtlYlZEQWZDIIKWsAwcwEwpkQlEGLFJjGDFobzRk1I6JVqCRJAo2gWt8CcWHM5mZdEhaOkOjs8kyzbSqbVUQgU1Zu0tgKt/sLf82kNsXrtZ0vJ7PDGLuTpkoZFY/3H95p7Li9uu6GFCgpNFmr1Xo1+LEqZ4tlrA8alWU+fzPuYx9vqnkjrO48fPzFZ5+yH1LKY9eybzM4DTrv0+c/+HRxOiuq8nJ1g5UrDiaCnIZsm3K1bo2ph3a7KIVZhQyYBqVMNHy22nY7d/f4VDeFWJIwIAuSQgA2JnHUGhQQMBpVxTjmFFOWbT9IJpUEkKOAcVYHPn/5oluvUg+S4tCPNkmtdKaU8mitER+YQ2VUkkiWgZMDi2Aw5xjD2GOFhrd+t4uqXqqJW/vt1IRSwJRqUGnv28vLK6VtoxWpopzdjmLPnn2YZFzcfvPs5qWCLdupqW6TqgtbZPCl1uNmM6nnApBTZImVm/vAgpCBnz69BnBV5VBS14UkijkCyBgHSqMyrKCoI9xZLk7m09vz0vLo16NFQ6xSpj4HBGUUEghBZMzMAMLCzF7YgRCDAoCcJESGGJWSBEIpui5XSdt6ukDEtmtT39XOQGZrVJ8yIUiC1EUfczI5BsmSDerQi20WtVS6MJNisrk46/fnPoMl4sgxJhZAIAUKScpCWcEgEHMSTdrZL16etx2X04M4wptvvvHb37736WfP7t17PJ8UkHYHTVmXWsmk628U9wcTRbZ8cbNHMy2X015rpY2RiUoHehI4Dzh0Yxiuhk5yMMBaaQ+C2Yf94HMqpwuezayd6cKQcig6o1fOzSqYnDzyo+y3bYztpDSOGRMxBgRBYZCIpI4W9W7fY/SYWWlk1ps4tpIo5EoX3vB+HE1RmBRv377j+/755bPF5PComsRR9MxWrhE/Vhj7/ZolPTyZAYvnjbOyOJ37GMtJlXq8XHetd2VpSrN557UHlQFohwKW29b83//Nf7pzevRb33nfaJzOZiRp6vjASMFkVJJqqri5xvbZfqcNjnHltAG0RlU5xaFfUY6I2cfBaRN6L2KFs6jMkIRVu+OxXWttYsyGu5mG8+uQ0VqlfJJ+73GCZHWhNRN6jjTEujAEPIbWGRPhV8odKgcZIBKjgnldrsPOkSMgxSIwsna6zYE4WWOC9xhHKnPVzJyhBDrtxpRGTEzWHBzeaeaHfth7ZYFGi8PZxYf9eDKrlq6ZiiXjiaXrh/XNehO1souqwJzj2I8SUbpubKbze7fulkYTKu/l6Ghy8WlP+9Chf/5yvNi2zKy0KW2FWkFOyaaLF5fg+8uzp/W8qpeHbEDvsEc0GpDxixfnVVGnQnU8iCqfPHlSJD0lRodg633rv/j8oljMTammBlhr0hRCMNoIQ+KQIWNWMfmu60GS0ioLEUBRGs5JchqHbnd+ffX5c0IJfQKdjTaoJJkgmDQDciAzyUksqtpSUG3WVU4MKSFrDIIaqLAaAdvx5mefD6e368OymKscwsBZl4Wt5yGm67OzG4aDY1eY0ayfjju2xVTrurLLXc7aHIiaWEdowYJLbQK0qbSQs/C4PJgSacJUgjvb7m92+7pwy8ZdnZ8FkMCMwIDZ+1EZZZVaqOIbj944mbicx7RrmQURjCpdjkMEtronmGDUYpkKYC0yIuscUjImsIKsnWTICJA55ywRqRpCuc+1MqVKud137MhUzhVOMo5tS0Q+CiM0k4NSlyXKSNEZkjasr16Eoa0LcK6UVPReV4ujYlK9fPEs9htW0u77qqw5szJZm9hgTaQBBQgExFn7yRdPTFOIgsraL7/1Tj1ZlrWblhNXJaWNs4617rYtlUvhxgQ/kQTTsqkXMQBZgzkbsoLF4JoMydhUKhLvOezHsad6XhDhbktqH/tOVOWqOiSf93s/DOthLHVyVcXT0gxopZpOStElJPJh4DBGBmsKo23pSk0qjh3iIGwzZ4kalUlohrG37TVk48WCsYE1Wi0hN7aK4/jR2Qfd8OjRvYfQ7VFlwK6/Ph82vZvUs8MaQxpTGGLOXADkYXez38WLdauLBcWdBpgXpkLbjvnoVv3gS1/7+Uefl6V7dXnz/uuP7t++a1QOF6+MAiUDQ0qcBXXyAqh8Cku3cAoSpNX6pdTjryC7fd8ZZ0IOq/1NZae1npQYVNaFAVs4I5UfmTEXmk3pUk61boBZK0GFxJETD8wGpI+deJkcHImNCQEyABWotZNfGRZkPTSO+yoXCR1kLUgIrBFJdIGg0CGr0W9Lm6Pvri+HWdOAD5YEORKpsqrHYbi4/uVkOjFVZS2G7ebyxQu43cZ6Pabkc1LaHB5Ww25buqaAlEBAWTRQCpWmbqrS7wIpnTJEiMrZ6259tdlaTtAYDiHHqNA2RRGJBu1Wz17R7kJrI9TU05qMrK9XhitrDpblZHm6+PSLFyFmV6nr9WYap2UV5wfl0s4S29TUyKzBYIKb1WX0vqpNaZ1zhWsc+2FWVLH3u671Ic9mc0VUuCrlyD6w4HoYQkg+p+B9Hru5xXZoBSLEeoDRKJRfYfqAKfcUN0IGnSsZCZ33mH0SigEjG2WsIjKxC5rQZd9ePrlZQbecGoOLw3l1YMIIV7Hb6RhHfvriJ+/wm9OqFKtv5Dp5yRI0zZFmQNA4xzETmTGEZj5nIUm9sVJUVUKQkP0+31z0qPRiovLYxzFCAsrIIqAj6VGEEc3dw9uzWq03r4qMDCQiSmPWTKU1EkaJFEEQ0RgAsqQAiUVSSlED5MJgziolhRgssB/QDnnRsx2TnRY1Qd+Nu7peVLMFq1KhMtkjR5soJOlDO4Q+ZHGTaQTeba+6cVdorY1CTIoUodWFmlTTew/e+OAnfzl2lzh6n4FYgRqnE0s4VyIOoQe2RsWQrjcbwChoposFIwj7+7eONWFOHjUalfub4ZMvvnjt9YfW1FqNAO3i9EAVZQhj0UszX7bDSDhg5hxZ62LX9ut2S7mXaKrJZHRULgxMm6WQYU4ifhyNxNI5NZ/o7Fl2kkBD0uwh7TwR6IV2lejKsIDRIEI++JtNll1I+wi1nh0p1IlVfXBrcWOWWpWl7TOMwqvVJrBRJFXZGG2efvH5n332yY+r5p1Hd7789uuKewW91VzWGGUoSZeq8BIDUxg5DH4+X9zm6qIzrz9+1N9dak3GOT05/uZv3fPif+/bX7rz+v3D09OjeeEK6fchDPH85uz68lWWLiMEQnaF1LpQalkvlSiPqevHqrKAsNt7hVVT0s36urtp60WFRqncTAAsBOVi0tgXtiFrgLqcDfHJrN63LQuDppgpc6KCvZAxZddv4q5XMzsqUUBas1UZhBQ54Ew6MStj6sISMGqlFDCiArSax45I7fabPu6IBhNDowozpkk181b6wYioMVrs5OZy6zTWpsQArpwtDu/eXK7/wx//m/fevlvaJhPqPE9pEFNUpDQHJjMCaKM5RKBcFhqzROGECYX32221rKJPnmVeOe5S38YQOyyQACRDYehguUxkSbtHb73x8x/9+Z2Tky5HNSnq0mbvC1caWxgFKmsMcuv4yIIWXXiEJkObBua4PGxCNLuxa3f9TchZUV3o6u7t3e5qMq0WE1cU9OHPP3VV3XkvopiziBJlY2ZNikptJpS22UQMkCJGpW0KooCAyJoaLSDp0Y9KRaeUKAGFQ4YYEDTVWtX19Nnq2eGyQGTnRyc63LT7MV29XMep21/vJnU5PT115UTxAD8e7p4cTucHmzHMZ4eubq53sZ43s8aSZJSUmW2pWKWUsoRueThjJFR4cXWDMN91eTqpb58cfvbJ54RO8gCZRXC7W6XckUYRWzqwedj6xLlGQoV95MBis2SDkIKQoZCywtGwRvBKsWItoBML5sGS/lUcUQi8muz4ZBunKSaHKFGDm1itt5tWslKTuSkLU5gUSYDI2No5QtysVteXFyr64DsFGgEFIycQipmTWHt11XZhaxcnQLnvdgwR0mAoFmUpqDKPAiTIzHlSVb/xtS//l5/89HrIE1sZoIJUaSxBYtDKaOH++vqiUPji2ctJ0xwvl8XMVmU95qSc8r5tUqMlvfzs5yAxaOetUaY4vzqbTnRNS5cSuTKYstJlSRog++hJLEkSBAbtiUiXWelM5HMCHjD0kq7EV1iUKcTtesMpa4WNzQDEsQBlEbgwlkmdHBYH1UKBB1QVyZiG+fIwQCFJYAyVq6rGnJ89ffbFkxcXXzy8Mzmpqm7oWQOikWjX6wFNnYQA1ZPPXzw8PZjNGgaPFZ0eNnxwG/KGU9CaNjeXp/cO3nrj4cF8oatKIFxdrbs+KTehRVpfvUKaNtPZvCxd7fZ+xTEiQQEIIhpdbm3iMTM3U72P6zhmG4tG3XUy4dxFhSYBql0JWrvJ9bD3hif18ktffe38fHV+cQGACiZX+9GPuwlR7IQANZdtyMtASRXJZAKKETNkkWyscopUJvEWcyTSWpPGlJkziBbkYdgZCQtD3lMSUcZt9gPvIjTT9XZYTGeT0thCvbG4qzhTGkCsqZaPv/T+6+Ds8nB19RnHZBXth72zaEQYCa3LAYqi3uVhjK02hnVImBMzIkDyE6U6KmWCCiDu4n69DuNIZR0j8jigktnJrKzLduAudn/yF991qM8/XVVzSwe8H7uTk2WWPSM11lolOUQR1BbLQhuU1IZxv4tDOzlVemmOVLXvrR9zyqhF/HAznenjk2ZZzzhB8c7j693+oy9ukByQLozJgCyQUiyU1ZOJKnyKiV0yQEqBspa9IOQMkRmEtVYUASli5uAqRMZ9yKSMBnrx7HPlyOfeEFp0mWPkiGiZMN60Ywgk0L28yubq0eN756tuvdktFrvjo9uHj082A2s3skpkbfLekBIQV5gsGfJYuALAAuD6ajWOctXdJIoP7t3OGbohJwEBRhFIolBLSqStctWQQWMp8aaHqBisEkUAzIhIxBYkxAw6qyyaRbQGEiKWnHJOgMljJZGigl7qLR6OuhbJGIk45KGPWCAZDnB9eek2GzQObAVolwcnpqA8xsvzq3ZzSTCyMpkJhGwlCAmgEBFOQ7vrORsRxSNN6tOsq3236dJaKYPiMoJoEtHoOUfv+/27d2/dOZ3/6NOz2WQ+taBw5BQJyRoDiGdnmz5EZgohbbfnq83m8aOHKnobI0myheK0qa2+8/qDm659fvaq3+yNLbPSN8F3fGP85UFzx6NGhsxsnDXKhDQARhYpss4Mvc+ttKGqbUmGFmSPcm459NKnoRugHRbzmVSubTvtZgcnt6yeJLSAGjmXwFJaz31WHqUs1SylqHNGzmScpDypivr+w6v1xqH62S9f/smzF19+8/6bb98ax7Fv49Xl/vjxspw3NUBT14BiKEwX2W/4/OzMTsajCXAGR+FbX3k8OZ5Q5SKOu/3Vy9WlbwMZF5Jv41rNcD45NKbwOVSFxN2oslaAxikU19TT7abVZblcOJadyuxDvbxzcnTyOLQdNSxk+5DOXr58+sEHV2vPyhbTaanM7HBx/9H9h3dPGl0+fbEp66KHYUweSBklGk1HXEpPrJAox2gURcpOgQFioSSjMfU0lZ5z5IRGUKmMokVyDrEykOJQOpBBddv984vrxszevfvW7XsPry7OQWtQOgtoQrZQN8uHj75iXEkIv/7t375evfP9v/jPV+fPl1CxslXlAjOxYkm/+MnH08V0OnOxA445ce5DcEbnmNI+DX0/WS7HmKKPo7AqVPRx9HR9c/XGO4+qRckJQhhijtPara6G7W7/jdffVk5FysvlDERfX+8xpSFnVxqloTAuR0RngbmA0mK6ePlycjhRyinrlKJx31XTUit21sSYvIglN62rzOHrX37rcrVfb4NVBlg88JDyxnsHdnJQjzBSJlExZU9iCIAlAYgOgFrIBkzpV53IwGytMykl6VFsYVSGaNk0pkoeIqess+RMSmkHR7YJIt4PgiIEk+UpcMtGZRx/+dmHom5Pi6VROiMzErOyrhZWRCmMu8l0AVhkyeubbaEX++2r5dzNF9WPv/czREwpIgCnTJILba2xgkSKnp1fvrWsJ4W63u6EKsFfUW0sREwgJmbPkmAQQqWMoJAQ6RxE2HjGnNlpF9it83ykJoJijspgTNoq1JTz2APLkCRyokS5a2OU7c1muliGfojjqFEQnGRgIecU0iCigijJTKgBORPHLCQ0Jk22mVunNXDX+WE1eKFiApxVQtCF9zGGnXX6K4/fTLkJggRKKbLkEMN2f601HB0dpZwF0qKxGD34K8lBmJ2ySludXGbcBLrcxtn0YNiciY7WOA+y2W3hxWfz+sAVM1Yp8Hh59qquFnVdKQTkMNpIYsqCki/b7VbvpKwnqplzMSE3kZicy9UBck7CuZgvlZtzWYbMzEFSZMwcw37YI8pm115v16jZWlOW88bZ1fUlI0a/M4iPD07ee/P9bn+THr+xLHz2fUpqEDUiZI2qaEzicnZU3zlgG5s89p0/291MCmWk8IKL5bKPTmHe7levzr646S6zo1pNIZbzWcW5J8t7v6JRZ0BBVEYi8CdXn9yZnxqqUGOWYdJMkAZgQDbz8vBk9sgpss4ZtQBth8jdVl6efxCKIudxdTbmRPTk2Q++99eL+fLtt7701ltvOW1OfLG9Wg3gydpCpB1D8NlAz1QBhtIKCelkADKgEKNoPzILJDAQADUoFNKBUAoAhUbcdr+CEdII84NTp+jZi4+LqtbKqFRFnciBIHSBKt2QcoQkkoNfj/3N7/+9f3R9/smLJ58tl80QM7ZdzgJYffTR+btv1GnwwBwgOJCcZOh9GnpOgMRagQ44cEZtmnJmMq63HR3dPn3wAGM7qScxyXi9nc7LrvfmcKLm5Wxx1HU3u85zZjLQhaiVNgSltSAyjp0kFYcejg4f3fu2911/c7FfXccxYWG/ePbs3bde2+97vQZVuLXrrcExxn3bCmtjm8lk0XV7zeystcoM+5wx+Jj37U5rITsZW9EiWgkDVG6mAhNQGltJA5MmUwNQP7KI7cMA8UaTJjYgiowilUDQ2RIB+j4BpsxpRjO7oGBC7tdcz6uyKRfzLgGSnU1KY7W1yu9brVUmo5wDTF23ZVBsyDb61YtLIHd+3RYED+4df/rZkyHuFRqlICYhQFYoUUiEjMiwr2xl7SyCVzEEnSCpAciQxBwBBQlRJZ9R0BRaZ0iCgGBAxcxeREYhjzq7x/XyfhXH9eomBc+EymKAUYLS1uiiqEG6Xet9ZkiGdEhpv7oona3qkr200ScQbYGs9qnINkWBAOwImFXGnCUTIZIgszZmMT0NxTrH8fyin1QwaQolSJwQue9zHnmyXHpGQdDaoAafxnizshBtXQBHCV1OO9znKuOvdsPZFgJZU2aMI6rrdsja1FruLw7WffAaCLCaVeN2uLg+P7nbZI0qmeDH1fOfHx4eLk+PTKlFk4wIqGxROtC7dntxdu3opmjqyXLJqsyWkECCb7d7U1lBI4k1IKIkTjGFkPqYglGliAZIWrFRlNM+1dNNXrddmDnnJpNyWqy21zX4Ervke9QW3bLrtjSdLg9uFaoOyd9996tJJZBR2tW05JBHxZUjw0pfby7b6NN6WLW7Mbfl0mij75zcub66ySorBw4pRlSaNCsiVATWKW9kFzaU/OrqgpwoE4UVB8teGruooBhj6FkMGC8YIv70kxcdKEg5ZRbQDGiNKQmHkH/8g59+/tmLN7703ttv3Dt5eLLrwnafAo8EkiLFgSEyGzUkLomUhixiACxSQMUWeBSbMZMVhgJJK8y9jAXQrGrGOJxdnStw9w/uZInR+6ubi6PDQ+93LBUkmwmb+eLB3QfOKpGMAMa6xbTI/apsmuPbt/ft9dX65s7ieLY8LSZH/8e3v7G7vrm6fvn88w/73b6Noe07h6SRyZVuUuz7TkK2pTm0B/t22G12od0f3Tv5yQ9/8vqD26WrXV1VSYw1y9vlVx4/iHb2+O1vPP/kJ6/6s1eXl009EZVzDgCGOWURYJBIR6fHRw/fOTx6CCAC/tUnH5w/+0Ri+q1f/1aX82bXt+2+WtD19np5OI+ZN0MuXJXYxgwJFKPkHIxW09IOadP7fc4xo5qDikgCApCtMfODaXu9UQowmCxF9iolAAVa68l0Np4PgNnVlQhJjl3bQSZRBTKZHAuFjIgAhUvToiJR2/Vw7s8evvYQPSRwTXloqRRDYx60AGapCqdBYhyH2M4WR8rpXbu72WwHb7t+OD0+Dp1cn28MFSFmziwxZOIkachd4liyu3908M0HDy37EQNY5hxz1FklRmAUTWy0xCQQCMAkg5QMCAthwsB5jKI8Hhze+RvF4phQhbGzuqDV9X6/QU6qdgd372lTglbKGT8Gv++6m3W/3aBkgTgmb0Bl5fpIilSpVBIcSMuYAKWwKku0xWx+dAxp5KHP4yCxkxwiJ6LGVrMU2t57gGHWFIAAogsLVE1X4z6CKrUF7nM/jv1YV42FatystN/lKiMGzZiVDUI5JR88afJoyZqn16t9wkbXFXNTTIjGF31HqlTG5Zm53F0V/XI+mXHIk4M7pw/fTGncrC/wejepmmZ6AqBJ6aipnNegaHe5atstQ7KuIuOUc8bU06OJB4asYchsshhBhU4XddHA1CVRs+PxPj/gGFIah9CPul8uJgh972Wu54pEt1ulk6Ywgt56ODio3zh9LQev2TuaUtHEPCgkCEr0QKafO7WsKkO6Byh0ce/ttxO2HHKXx0+ff5Ri59sNc0o+FUwqJ7IaNOQQJCCKJqXKJAXUu6G1hVuezBKvc86sFFu9uV598tefPN9v+hQxCQLGYeTkq7oa+p5EEkSrUDOREKVMCnfD5Xf/sv/k6Re/89tfPT6aUxmj135R7bohtSEADiKRlNMUORA4jTaLIJN2KqNYScgMmMFoDYAZ2Gc/BtalkbIYAicRRahY5sZA8CIOMYEmgupwcVLYEkAEEJHHth26fjN0CXzmVM3Ke/WdAgo3WQTGYlLeX75+5/WHX37//R//53/z/PMvmGkcPc4a56wPuRv6xlql1bD3kaBYTh7cv9tKOLQ6kzq/vO59KKdzMkgrdnXVbtqUZKLh8e2Dw9Ksb1qbQmMsQgjZg1hFGoCsnRVmst+skP2YU9nM33j3a5dXFxdnZ9t9n1juvP7Ilc5H8XEwpuTaANgoJrMHhCSZOYsCXUKRoLOyPJh3MQ9tZ7VKCEIYUnp59vxgNuWcOx806cIWfY4iqe9jzlLVjY9t50eNVJcGIgApnyl2kfyYtLBCI+QKrTKOu8hITy/P9jF8+6vfXB6dmGJekFNaDUMWEIuojEHk3W5V184ItJv9en1TFpObXV8YVRr98vm5QpVzZiQQsESBszDmnJZV896j1x8fzWHY7LoucnCG4hg8CzpwoJAgCSgkIjGUOQ8+WmVAM2WdAyWljPezYvFeULN2tR/7/TDshyFnYSTttJ4tjkLKTEECxTYSaGMnd1877DfXZ8+ejVkYOY4eCl1PZpizKQyHgT0DaSytuBIhuWrhvRgiVy90sZQchMccN9AOmgcyxbbvcugXUysgKedp7bp2lGB1nVPYc0iEMJ824MqUAkqMKt7s2jHERrtSS2Gt98Nqtx5G1Rw9uD1bXO47KsoCpSENMULyFtE1szEOkUFbs+lWzmCRyQcpmlq7qpouE/Dlq+dDGA9PbiMUIkqZaX18UByeKA4KpB/7EPp+2Lt6VEWNdiaCIpRTRGSmTEIMRCaLEpUVh1SQiZhsXdPgB7K2DFLpm/OXjxbNFEKOu87qH3785LW3fuPseVeX16+98bjrVqyTMQuXdIg7xITKKYI7R3Nti6Stt/mtL73TjmPqNhLyxfrai7DVXewHH40zQCRiBDVFUhQYgJXTmiw7Ydr7UZVFYkreCMj1mf/8lxcXzy5zF9naNkcQoZwsEYvSgRRCRjEZEiTAImQAUkkyRCLwz188/Xf/YfMP/tbfPD5YDEprlpImUOTtZtNBTCqPwAlNI0oCoCabc8IUtZgECIBKBQadxwgDZxXbFIPGk1szJcaWIoMvNcRgx5bRJpQoBJPZdD5b0v8MtkDX+jTooroznZd9+5z9NsXRVdP12husAlMIyWjIGa8vLhgBtamr+mA2zYVa7zvfeWd0ohTGULuaJGiEAVIQOTycowiE0FRlBq0UDAp+8dFTZefrF5/b9Wq/Ok9CjWlCHyF4ZVVZVpBN3/akhAwWjbLVTEapcpuz9O1weGsaklmtP2ZQez+kHFAMCqTouY/aGm0wA0MWAVRIIjBGIKoZqjGkkDKIFIRAmIkyZ8OT2ClmVqpAwnaMQxyM5cI5yDlBIqWSD4q0lzSpp0OXYoqMiUnQoEaNWrVtZkrsoQ8jZdxfd92QDl1pFVkLOYzEZkhDNZmCon2/74fW2okuaLVeW1Nst2Pw462TI+/bzKOgACAIZ8gMWYkwiFX67sHR7Znrr16yjwIqZhZE7VzoI6csTKRtZo1EWoUsiUEEegEtghxRsOxwMrn1vnfTFy8+zn0e2TMGZmMrV88cJQnRx5T6821lXQIWKTxEciTBoyt9l3JCR2g5Qr9jq8vFXIJrL69TTncOT0tbxTDmGGO/TSrtE1gqrdKmqMqjpXbb/fOf7W/WV5ur1x/dUljGGKuyHIbuvG2jPrRtaxCyLevlgdY2ACYANZ1//tnLZ8++UNZN6+bRwbworKtmJ81y13qYlh+dnfekGqDCKCTxmYcQNCnnoFocbi63Y+w33TrHsVJ2WjR9R9a4i7PL6aw+fe/9se83Y6xrV5Zz1I0goEQkDpx0Ma1Zk3CCxJCTH1lpIAtJUURlMefR527cC+i6KSxC5OQVJslibdn7GzRyCLlp8jzvUaVE/GonAe88ePD6P//v/2+vvfX4wduvqaL2ELT0CsiSTroHsKKtLgtvp/sQtC2fXj/7yY+/f3dx+Pbj1w4X1er6pnLFlMqTW8UqrXacCUgJalDKVl7GkJNVhFhuu35MuawVUfat+sFff/by2Q0Ep3XBBQ6UGDPEVKLOAKNnymwJiSEBRRaARIoMqCiitUZEK2Gzufkf/u0f/92/81t37t2RwStENnRgDxoe+jDEICTGCAiyJhJkyklnT0SJACEjWG0EbBCjMUvyIcc8Tut5ElEJy2pqy+zbzehXFpaccj2dTOZzIULJybfAcXp8iyV121djuLZWV6rIxizuHQuZ+aTJnBSa5y9++eSDPzF+7Nhjadu2i12ezJsiURjHi/X1cragDJcvXl5fX7//1XfnB1XlzNVqfXNxeevoCCBMiiIU1m/GV/tX3/mt71z+9K9jt1vFUBySIxX9gGK6fhe6vDpbLU4O3/nWcfQxwmDFGpyRy0YpRerN2a8tDm9fPn+y253vri6HuHeVW1/v5pMlIiIqFEO/yv1gEksyZFfUpIoIO1VSGjELk2gfYpaUVZSoJUNGLYKINlMgDsycIwFaZQhF5zGzAWM4RQQRUUxVQYAi4jmhNwEy64SF0oE8ozo8EOOMJg99HkdmZ4rKlgVjXt1cxXGk+QEpEpQosh3GaVU5MpftpagoGTEThuRzSJycAImRZK2u+qFrd/vCOGJRSABQWYM5rtPYxliTKcBA7hUaq6qcR0lDIJ1BK3QZa2he2+qy3a9HL1lGrULyrG2xPDhIkoqiJFTNpD450r4bRyXGTLp+/+LlM98PWhEBgFCUVHImhSH69dnLerLQlavJra8uVpyaSalQgSRlnSm1AxV3OwIWcVeX17v9Zr6oGihm0xIy5ByVLofMuzEYtdeQsy6qeZPR+qxjDj7jvkNd3X/n/ZOs8qeffvZqN2pdmKJURVHU9qLtB+vmi+M5Yg1SKekDq2JCKmqdLdKsKbkPPqa9HwcZOt+ZsDOg/NBt91f67q25nWTdDCmS7HUKmZA5GzJaOdEJUTOS6IySFQlC5jhoZRmZMhlqAJnzbj+ejwEQyArUTmmDjuMiYwxwBFyozMg9m1UsOfFbbzz+7g9/qsr0yeef7f79H/3jf/YP8+46DNehl2Z2NKLNEMGVPYSgZ10ea2N3+8/dxF7G4F985q1HHaaqeev2a1Vtz7rm568+LYgkg3IF55jRF4qKxCQqDpGYnXZPPrn87h9/FPpYVBYVciJSrszoMqVRLLueVAy+VCpxSIgpA2ZJmJDQgCNWRAGVpdGVpPZh9z/94ff+23/yX82nVUgDJFaFplAYbbBWHIUA+pQjQVI6jKwTR2ExmJHBkA4yZBNEKVcERJ1Z9QJ2CFqiTsFUpWJkhO3Q35kfTeoFYkZJyBkhKFeP7fXYrnPaFgqAGMkq4n7Yiy1d2ShULOz31xTi2eWN50hj/uL5+XR6cPve5Nn5Fwe2Rl+eX7TX+70J/mR5PIZ0WFUh8HQ+LyploHaq6OJ+6MbQjU6Kz3764wPQCWxd1BFUPa0g1PvtDe42l+e7MfqFHC7vvJ5D6MYAzogtJPdKVPbAgPPFkoWbffPao3eeP/v86cvPqaBeUolagXKkBoOaJYMYzhqRlTo9PeLNPgJ6DRTFAGEfMgdlaQs5+2iZkJy2hdaOJeZfuWQxMyEiCEESe7MLIqQtEoCGROiELUFAk3SOrHTStlBqfvvu4uBOEowKd6tuUrrMw2I2BU2b9Wa3X02appg1m901B+5CFBTXUDtuI+eYM0ZJIZOQZSVACbOC4NBeXTx/5947u8tNP3KlE/MgwARGacSYPbDyvdIVaVEY0DbBB4ljZldo4xXlyd3Z6f2zs6u+GxLh4miqmX2XwVrfjwS896330Ro9mU6zaCHX9tf7cTsOHSmVRTEQgWjQI5AAEobkPafr45OTyWySUk5pjGGInAQgDVxCNo1tps1w+Wy9eqnn09/4zt/+/IO/6LYXSt/2YQcYBcv54eIW43bVsxV9cJScBeaYupTy7qYbwzibGJvzk/WmUk3tyt04FvZggkWXNp2iajY7OKjL/aZGTJn7iLaZtXG13W3rWlAba1xmzJB84DYmk9vS2mZSb7fbl+t1qkSZrEuzGm8Ma+HU7jY5yXJxW9XK2FqhCiG4qiiKktGKTTm2AuQBIQcFIcdto0iER4ZxEEqqqDK2m9uQAFkkEykwRqScUj1fWlLGuuVSf/P/8//74y9e/vS3f/M3D+bNbrW9evXytnJoEAUQpqKZUyqo4qF/9+7j1+7e++TyYjtsZs00d1s/hF+8+PT0YHE1tGosErFgrhvT+WzRoVbjiLnrxnaY2Hp3kRWe/O/+u+/84me/+PEP/otVtNcw+qQzkDCh9kiSpUDNkpkVCholqJhzmZPxxBOkESTrVNoGva8q8mP3n/7oT//xP/pdBToCl6oqnUTNPifWLJBcdJyz4KiU1tYF35oomYqOWCOGACBgRj8yRGeoFjQMoHWK4d7Ba3qnRj1MzPTg4LR0JbAC4sw+hMh8kfweIRSFISwi+6Qk+1BgqVDFMbrSnJ0///ijX4Tdvo1ibUEx3bt9S1DtLvanx/e2lxsl5cM7d/7X/+wffvaX333yV98ft3L9RXv64ORsdTYtleIc87hbtc6pqyE1jlRqJ4eTbEIa3M0+H7/2pkXgZ0/2V6uixPnhoavoi08/fvzmu9azMzZKhmRLasgJ2igETEofHZHAZLn84sWTuiq0opTHMbItCSFj9EDkMybwmFhDRPHsB7GFzzLGZLRWHkgEKQNqDSgq+9AlL0aLKp2P0TMXVFhjU9ciCIEQcWFtThmyCJnMVFQl8zBEb5XRhKjMN7/26xM0hNp3UUCHTFXVlKZIPl2dv0ARpQkln71YNfNb22Fb1jbC4D3HBCwKIAILMxMSIjECE7M1nzw9e/3O8aMHDz/86GdS2AK1EkZCFlRK5RQjDyOwArZIzEEAAidGj+LIHB6/9s2LV19oGJ0TFXMlhkxZn2ilyUtIDDPlFEgIyRbFky9e7HedoSqSKCqBRAkigbCkzJETACoC5Hx4MJtMXMxDFgemRGUqbS0YxIh+76/O9rHr2vXrrz1+//13PvzB93/x458cHDaYIxAxmW4cycaj0wZIB24YjKTRIt8M3acvXqBPD44WmtPVzeVqkIOjk/14mYZkXEyL6sXm0h7OmsNGum7KpAV3kRPKrlsHjFo5IpsJSaMjFcaUkyByFtMlJgi21OuxzynWbjxuHpTTu5giYUKrJPoQNjCUTIYT79st7GViJ9XEECrUBVqhyMCgQLQoCCHmVFCYULQZ4zaQjyQApJN2ERVMFg6cjSCFNVVVzrI2k7e+9GuP3jhi6EQ1ZT3dtZ/oq8uTe8dMWQhMUfpIyCAJPBmotLbq0J3MqslmnXQFo+lf7F6AqEld9OO494PNFZsMwCSk1GKXcDI9PD491K5Sqqp1OW677/7Fn7JTY/RjToRJS3QaFGcdOCs1ss3ZGsUArXIGmFRmkhRJAZUqj8p4oIw5lbZ6eXb9gx//8utfe9ey0mAYszOGBKKGIQIQQUyGlHWONWbDfhxZEEXrEQm1cNpLytpNqrKwumQfCtCA+Oz5iwx+Pp0nXZ6e3jq8dYpkhCNnn33AtNNGWBsG1CJGV0rrRKooj//1v/53xye3fvtv/XZppz/+3s8e3D8oytIqLqxZntT7fujXu/5yf+/NL7/5a79x68GjEDsDoryfVfNuO25XNxTw/MWWQNZhCx5Tht0gfNAd3H305Iffg9pN799/9+7bH/zsk//m7/++Bnv97JkTmC2P3eTg9PQ2ajs7bko3yxA5iGKFyBGCGNC2rpsKBD7+2fevL6/feufBrJnsB70ZIUMwSievWMHAIwnlmNfbzttitx/QR2vLiJFVbo4nkgVjq7WByGxDSAARLNk0JGTRRKh0tkbG0SRghMrpFAZjLRnyiQSiMBtdxKyVVsjpzffePTo4KoBA5fXq2hVVDOPs6FSDXl3dtJvNZDotXX328qxqDjZDBCOTUnX9KIElBRQWICkgDhGBS6Cc8yB9pGSa+j//l//yv/9v/+nJsjm72WZdFACkMgha5YBVZB5TNuCYsnCXgAbWIphILJUf/vjHDB4EiTBHf30VF4vbIAVp0E67ycxgVRocxvCLX3y8bzsiVIpBKUDNOSmMiRkBFQABCDMGLoh2ry7CesskpJ0uZs18VjijWYykfbu6uXxamuJbv/6bb7z19off/5MPfvBnHNummQQZUy6catgz5xRgqKdN6l0WlMDP1s8++vzJ4e3br71xH9uVY1VW0+CHp23btef1pLTDi7Aey6kFjP5mNRVVWGKRNuagQVQGQSTHhALCwCipcEoQOCcCkgg6kZYiI5TN9O7BvdJOB0RQSQjLcoYcIaWktEAO/bae1YLao48DTMArvtFKAyitKibNpMkqY1BJgG4Nw16RABGAGjJu+jw9PDBubpm6zVqSdL0fJUxmzfGdxWq1ffCQ2i4Zqu/ef82H4Psxy5iFEybSBJwSZo/y6vzlTXsliW42K219hhxjMEI+jB5FNNW2Gfd71rqwk6k7VHo+vz9t7LTj4ISoTy9efPGHf/4fB5USkEJllESfhYwnVoCYgIRRZ+2SZDZURQZGLjUqRq8kYTaoPIMIK0HOAyj7ow8/fP3tB/OyzDSiUOSoJ5ZDpmwYklKASNZaq6zP2FEe21ixaCOGhLSgKiZ6MimrkjkXgXSGbRx22+uqLq9HXy5uHxydkC0yMDIoVCKQsSg1Xq7OlLUHh0ccMwkV9Uyb6e3bt//iz/5w2D6BEL/99bfHvhMlmhKxoEIQcbUr0L37/q8dndwahkHFMGE0hBcvX3FdLtNyt7p68eKq34+2KCbLuSeTdBgj/MV/+suJCneWywDurYf3Hr/+Ztjvuv34N/63/4cXH/109eSXgWW32d96+GVRCUU0aNAAOQORwyZlb8sCCJTS+76rmmK5nCGDoJAyOUbOmlQZUms0KMQcWYwOaCZYs6gwZtRAJZlpMdy0ACgqk0IRcA7IqOTZ1tXdu3c///CT0PcYMXEGpaxWSquUKTEwpZRRawTJyKmyzhkTjX34+lu/am6tt1tkwCTL+aIpGx+751985srSFkU3hv26W5we9furSQVx2FPSKSdCMSCcURCYkFFYYoLIWbFkTnAwPxTO86bcbLbj2GpXYmRNypJNiMIxAUrOSTSyAAAZGUbPqlJKTRRvB40KKWVHZvDjzeXLJBhzVNbpsikmyxwl+HB6cnu5jGP06/UNcwBgyCFTJEQQUIBKIIdYaVQ8agUcfGJpk+fc1+vNvftH1qrL1fMnH3wgOf3Tf/LP3vvmN84++sUvfvSXNzdXZVEY7UJiraTEX21NFbHJmSJLyN2r81WX/Xtf+jIgP3v+2b2DqaiqKm112W32N+VsMjlYTouysUoX1mcu+nFaTQPGMUaPRM4SRYw+pnEYWIiNK9IQndailAxICrHQKhkjBQaeVNOL3U3bv1wslk3ZGG1Qa2srMugAhn7tcvS9N6bWjoOiAXXDovPI3GLYK2VQW2II4DKqnJQfIymxRhOSGA2Q+7Fv6gkqbapi03ViyBGa0R80+LMXN5mT5ARISpMDdf7i1WRagrFMmkQyB+UEUYzCFD05o42KIbKglTrmEEyvmIiJM2os9vswmS9Opm+jWDaII3eb9vOXF7/87PO//OFf9X5fOCXELimbVSYzJs8FMSlBqAgEfhWpFMQSRAGKIIESQjYoyHpIioQLocxkDHX7/Qc//+x3fv3ryKJER8k5gwSMMSsCQAYUpVAbYZS6KZkxRdYkRsBpoww5FXKhUpYY2ZMxoesUh+wxo53YAk0JTKiiDyNmCRw1CQuFgL7bn5yeAovn8OFPf3TxYrfbD6+9thB/E0JOJplSEAoE0KiGMa9eria6nNy+y8Xk//mv/vXv/cO/L9eXzz78uTIyq4w9nn/j7/wBSrq46j74yQcf/uAnV9e7cnoAwVdHi8Oj2elciYazp798/Pje08vry1fPIrfdD9eldYnYGfjkJz84vPfG4dFSBBBEENHonBNk1qQ4szD7NH722ceTpnKFzQwVuu31mMGQgnHsc8o2qYJ4vd4Omzb0IyadfDfkbGdOib56cukg2tIye+O0Bc0ESmTX9RDV1bMzlQU1REiooK4nMXillRLnJY95sLYjmSQhJhKVW5/uvvOVopmJSpHT+mZTlo4oL45qNuPTL34Z0t7hMnB4/vzs7uH9VbtTlEuyGm2X+wicRBGicPzVJENYfuWyBNCch3vHB7//1bcg7lIK87q4Cptx7GtdEGQmtMYIQO+7LiZlCkdgs7KIAa1VE0PGzKf1ocmkxsg5S9q3vY+k3K1bty2r8/OzL64+FVGWlIRxcXx4fXkpWXIYFCEhASdk1goNoTA0ZVXWFsClmIZBujGg0oupO5jweP3Zy9Xuw48/1KJ+92//wXu//h3u21/+6Acvn36cBNCRtQY9UCEsgSEa5wBw3+bdyC+unw6j3H/4Xoyy6demLBKZAbzR9tZh1VE7vXNaNLYpS2Ndzglz60hVChLCkGOmRjIqtBpiFg5DVBWHABZIIWkip4Q5k3ClxA87MKYNbRIfYPjow88M6runp/duHWcEVC4Lie8lBqOTcV7QxJwyumCmkapKBpMHwizSA0vVxR5Y8kgajXGFJczKKWWNafsu727MZFqUhRnG/Xo9mxidZUYGkoRhT5VjHge/unx1/fFHn3zjm+/XhweQAQCspgQSh6E7WztTYoU+91nZkozFsYs9B1WUhVJpHHuOlBiHEFNgGf3Z6urjp599/NMPr15djZyzpkI3isekACUZQVGlZPKcUs4WNSBqjQJJGU2irdIRUkIQAWKpRg4KEgMBsxCJqCil85//8sNvfenLdVX2MZIBgBBIQFNKg4aslTIKNXBIKUVJqhhy0iKltsGnlnMuUt6JJDU2ZWlJzyaTQAMgjgoVSd+1xfJAsmxW19NJnVP0vsNF+eDeY+UccGcY+xB+/qMfXn5x1Xbt4zdORtDnlxtDcnpUHS7KGCCmvq7do/fu4VB+9Td/7/t/+l8O57NJPdu8fG4raJYnXT++9Z3fuPXWWyHwnfeaX//9v7te3Xzvu3/yn//DH75//933f+2BD/vViyeFLb/929+CMLx68cuMmHwfL57sbKkLAR5LY0J/A3AIkkEAQIAABZgDKIMFoWC3vRr311VZ7cc4+OH6kk114CADsNKqQquZc4qsdDbIxDEBVupIFz5GP4QKC22xnJaKD9vNhbNcuKrv2pJMCH5AtqUb/SgiunRdGAhpG3rMZLW1tiEbwxigU7GkIHE6Ob336DWnDBhYt3tlQAPNJzOtKfj+xbOXhWt8imkTx5j1fDJeb60iRCNZKCdNFHIWBiUggCIAqEAUcESUk8J9673XKgn7XZ9zbZ1Utd/3oZNQkEYGFkACpRFizoHZEqugkrZojZk5NaGqdEWVgKLnqXKLo1tFMbPV7Mmzj3ftjTK6MTYy5ASrq7Pt1ZXSKhvRkJGJsyhNCnBWTZBQCCezma1KVKS0c67YXF+31+eTohtuLj/7+NmLi8vqYHnv7jtf+87vu8Ojz//wT/7yB380xlGrXDjFIsIAyInzxFlQ+epm+2qbXq5Xm83wxutfIYFdu9vsN8dHczC1QgrMB7fu65PjAUYzreuyNgJDu29YH9U1mTCOfhNB1QYQgoxEKgonlVnEZXbWAZImDS73PpW2oEwhBVIyQMg5kdZVVckwTk3uVq+C0PxoCVCw0SxUl5ajF5aK3OB7LxGURdUonwxGpckikWHKY1YAdppTdtpGCYiZINtC90OHzkWlJ6WdipsUGR0XUd89aBwYxTrwEFK+czQ7vfMbRpuUfWmajMrLDlkqW2x3N95S6NL5xSsFdj6f7LvzSbM4PLl/enB8vbrkIAIKMMXBg/izy8t/8c//H5u2Vc5aD41VHhMpM3BkomC6AnTSIopcVJjRolaKQEEGUKgUiwIQzslgYnFJReaMIshKDKKwjEmCiLrarL54+uL999+m3GZRhTa5FN97RGJBg2pMqUujH9OQWJQutWgwFcWosvccrndDbU0x4cW0STnYiTs4PR527boftteXl08+r8rSFXZ5cMhhn8edK0plnZddAccp1lfPPvji2ZPLV+eg4fSoOl7Ou+BfvtqdnpzkkFbXq7pxzpgQQJQc3Lu3ODzFqjh99GB7vWru3jv++jffeO319fX1q7NXd4W00UTIOczmzR/81//1d37vd1/+7EcvPv9p0ajJwWnfd0+ePV1MFkVZ7H0vAerSRS1YmL4bCm20LQQQCIAh59y146SplUZEAFEovLu57nbXx4vp2I3rVZvHqihURMYQrUBEHDCLIFa1kTBHNZpxDJlRVFYKI5aoy8kIcny0XLdrTTJ0PQEJKY5Rk0OLWoyihmVIORTKImdmwJCKqWXRiEksIBHa+sE771a2yJIQ1G61L4uCCRbHy8Ty8S+fjFFUgQCwurh+9M7b/ZAVolNKK2q7XWLhjCAYclaEzEmBZMlZqeixkPj6ncnC+G614og5QYpQuWqMufM+j6iVKAKFypC1iJ0PCAoNILFAYcopGSJkyihiCuvKqhISZyzH7nQ5T02tUe/2B+cXN5OqMEqEyFYVEk1njaX6i0+f7LYvb91+MDs+3I09IVyenaVNW9VNVcvYDwcH83zz/JOf/vTq6rIfpa4X0/L07pvvP3r77f3V0z/84//xenfRGINMjZsqUCMHYpw4pSldXVxdbGFIRiMVpswZfRyPltPbt2amKIyrNYBVaiex70PtGgKDyipGG3YzU9TaxNi1cVTFhJRhTGQUZAYjKBkTKa1TRmuNczZxsNYUpYP/uXalCCBxAk3Kyels2pSm3Y9nq02bYTI/IlSlcYRMIixInCZWdWPb+5hMXTT12PUm9ECWDWthAzorpFIBklaGOaoMSIQOOfZaQBQH5bs+OCHfbu8cNlbZHEFCLkHVDnVTcqY+hCyDEmMSZ7JF4R7eevjv//OfNHeWFy92OcHNpFemJDW129C1T8uiOTl6o/dxUuFBeUClu//o4bRqHtw9fPPdt1/88vmz589X600CFhWBNLIgaSuYM2itWHHkFASMUMEkiIAAIRjOJBKFI2MGYhk0qJRRQUalvJDL2kb1/Z/+5I23HyutFSLmjAKKVJIoSbWRB9tpUKhsTkELWCDtakVxyjqDvzk8aGD0E7NIfUKlrQWrlbdKDamguLn54vrcLQ5PnTN+GDeby9nhkclNu9mBXI678dlnT9rd+u79I2V1JYqzSE5vv/5gaLumbsbkzy9vtNLOLTO6t772mBazv/VP/7HRqlvvY+zf+q2/ud321fzUJoNonHXMGQkAJKdUNvWb3/qWrtUvf/jXId4g8XCdj47uzGaH4+WLopqrgrAARGOPlkjzfogcslIoBAIgOQMRIAALQObUv3z+GXJGrYexu3v35MNfXBQxIEEm4JglZUk5/Oqxhoq0QgAdVNY0qtybXOqIPSPL+eoJMWQR7Zy2VihoHdkosawY290I1WAtKQEOkoCVUsI6E5DSojzEvDi5dXDndgSsTXF9sVLJcVYHh3Pr7Ppm9/Szs2JSJ6bQx7KaN+XibL1VEpfTRQijzyOAMDNgAoqRMiIYSUIyjJ5ZNIm2GQVj3yGgkpRTQoFSuxQgJQbkXw0NHKgREmFMzJELJIN6oouGtCJiSqA4ZlFijHVWa6tIH927p4nCOB76dPx4+Nmf/k9lHk0xcaZwczutCmfM2+89avfLqi6UsccHMwL+0hsPlWhbzw4P5z/5yz/93p/98ZNPP1ttz7Ux1jbzo9P5yaNH775r69n3/od/98Ff/aA8OBTxZAStC6AssAJtjGvbdT/qdh+mR8vDY0fUKN00B3U1nwLZMEYfhqATUg6QqllhogeOqe84imFelgWmMEQUt7CuAtQiqIg1siQQ0TF7JkBEzFlxmkwa3w8QxxiSsto6h5pTTJxzbfCwrnofB+OgrF6+vFAX26qs7t8+nrpy121FUV1UKo81RU3hpvPjbJptsV9tvAUJ2SmtgEmJNowIJTmVNRrOKmtEgBzTLoIoI1TOg+/7XScESjClqHKWvk3Zkw0oyurkc+TkdEbJEI0+efj4W7+ev/ezn1g1Wd5evveV96rmaNVe9fvLD37+Q+vq114f6+ni5rK79fiuqabtxdViYr/ya+9OC/Pw2+/Gb76+3q+37XB9fX6z3n/69JxJ/wqfTRyNxSELZlACIpQyak1IbQAOWdlsp1xEFRKPCNwpZMqZk8KSYy5scXV1/ery4t6dQ46ZiFQGHYASjZR8jpYNAXAGIgUEow9aRIExCGhE2dCWkykR5tQhYIzWD6PJUNd10dRC/ebmhSJYHh1uNpchBOKiNhMwfrO5abfrzXZbWCoNiDUx0o++9+NmUt86OZzUTW3K3WrY7YaT0yXqfPbyrBCtYn724vlPfvazGvXDo+lrX31/Mpsz8Je++c3E8od/9Ee/+Zt/oyis9x6VcYAs+tH73wYqf/GD/+gMsYfnz88QUmVLKHQ2QAYUo0P78uzya78x8aHVrrCktZK5JZYAqJFIILf91dXVs8m0OTpYpjQkHh+/ce/yeigzjopGhCzCSDkHAtTaxuSJtHKG/QCYGaEbfCmqQvRdYg0JwSRImjmxkEqJ8p51Jo7RiFNgw0goWlvx4H1KYpwwG2OK6fTk7gNTlpp0Yul3nStnRGm+mCTvf/nxpymCRNGO1l372pvv77qRIDvNBAJIjJwjBp9EQKGmjMwhC8ecICdlNKryZ59cHn7l/uzW7auXX/SJM6qEzATKSGAeUgraKACWAGq0BocQ+mzBTY6O7hJpo4yAEojnT58dPHpzfngwnyz6vrt+dQWqLEtbGffs449/8dd/pMK+mc59aK/aSwN8TVYITVXNDm8/eb6JXUdjVFq/9pUvueUhde366S+un3wY2vW2W+nSSjaL5a1bj987uPfw+OTk4tmz/++/+BeFKpAzqyxaiaKUuSKl2RCqara87vThgfGgrSmsds6RlRD8SKY02hHCLm1732UNkIGM04Y4BA6+ckpxSpI6JilmtigIIPuxVAVksAWV5WTXbzGDElEoCiGLWG05RQVoCK0zWQZFoDKelDWm3IbYW3Hzshj76/Ob6cPpZj84a1+t92MOd49vHU8mWo3k3MxxZF8UpZQTIPTdbsS0OD4FUZATgRpElBPmrMEIJ41sMCEqQBd01bX9buBsmSixJGSfxh1ISOgVYibKVMdIMcQspp4vxKS3v/ze6e27P/3kZ1wAc17dXFaziaSxLmcc5IMff++9r34DqXBlZcGen12gM10UijEXVFXV6a3qFiK8/kCh/pf/6t9/dnblbCGm9KgcphIxIjJ7RsyoOCQIkIVAKY+8V15IIGvGzAoBdWbKCLGQIKOO9MXTZ3fvH6lESUAQnTHrHKLKJYoPg49pUizEs8RoELUrlkN3VRZFAlBk+tBZgaI4YDdEwsRaqbKwOKaeCt4Pg9ntCaHf7Tilbn3x4Qe/OFpMq1mxH3PX9moyWa822ciYeXZ89CvF83DiFMrB4qSum+urK6Xc80+f/+DPv3vr4f2H9+9v15u6qd5+fC8hlKYe+5ZREKSq3Dj2ZeWsc5oo5BjHWNT17Oj25OiN04P5z7/3VxraplGERBpBUyZwhS2UPT5d9Lvzg+VhDj5xqfI4rleaFugaQRaRzc3NMLbzRcOx04jaFKBrsw85SWLWWrGHLCAsmXPOKUkUDMq6nhMkrjxpMaqILF4Km9kX5ARhP7Y5sysnIbICg8zWoiZDYkFL5ICQIzKhUZCjZCWmmM8mJ0eA4Ei9vLmMJZMNd04OrJPd+ub586dKWwXsu91y2iir2/3OYq5L533ctb0IgiCDSAaDCAmEwSeJMSEDKOFeLq7k361/8rvffnDy+uNPP/lo9JEVC7PTBea4GyVkQCOKRDApMiApxcS2njTLIJx8Mtq9vHjed+0tq4uqTmOUEGLYD721pvmr733X5vHBvZPN+ZCRVeGQlNXKoNWmmR/fYqdvTZpuv9aZD5bH5fygDzEmr8Ow77abdpNSLMmS0bce3VscHyyXR8vl6f/1//x/erW6PDye5pBQ22q50KCJPXGtssShLWfu8GB+cRPL6ayaFXGIAD1548dhclC6eu6p0sNu2LaUYdLMqCwYbc57I+NUEXLqYg5EGTxGMOiUgpgip6hsmZMs6gNLar9dxRh64HI6AWUy/Or9LpiztTiScMjOOe8Z2apsbFGXx5Url8d37gDpqOjOG+8BGYeaEVjGLBGhJ8gWjbaF5G4+s4FhDIOtFlhORDdICpQC8RkTDttx2GjMgCpFFX24Xq0Z1PLgULvMjA6QYgrj3sVqiIHdJKgUBTb9Hlxdcy4UrXc3ed83RTlgH8c2pWHPez+Ex8ePG1189uzHZ7/84v0v/y1SBnz40Y9+/ovPLj78/GWtjZtN7h8fv/3o3nRZgZaytPcevPXioiVtMFChlebgAUaMNYAhFKDgAwGiCIEEyqNiDGKiYUucgqCSbDSDhmw0kcb1Zp2BUSSjhCwxBkjegPa5C/GyqBeFxThGVgyidApE6Nq+12XJQMbBsL+22hKWzD4DMlDKpZ02l6++OF4Aj+56s9nvri5XF58NHHrZXxEru+1j8IGqNmUotCtq9/zq5duPHkP2zOwFt+vNy8tLQvD9s6OT8vajw7Orl7fvPN637Wy5ZFdKYhIGSFlEmL72a990hRNhhbrt2rJ2elIR0MXFbj3Ab3/tt7qIH/7iu6lPB/XcgFIowNkmbJxtDqb7yy9QUj2ZaZ2QxMwbVIipBa04wA+/992xH3RZZM/KFje78Yvzj+bLu6CSI8jMyhG3fQiRo+eUlTKZRmbpQwQYNVpCJAIUrS0rVUxr1/c5Rys2h+CzD6htKswQ2QqUgNYo4aiYsjLMFALqjGLN4vghGFcUjrOM+33ZVLZS9YHNAB999JlkAYpa1b2Py+PTzdhTjtZkpe1msxmGQIYyZxRhyJEFCYNAiFGRIq2jD23XM+kVy7/97l//N99559Gdux98/HOf2agCM1Vk2cLW++xzJg9ghbUTxVHmi1tZVZYSD+P6/MX1+TOjZ+3QFs44rYfNSsUg4y4W4AozL4qb845IE4gkAGciiSnM/Oh2FyF7b42qZ3OToOsGLFrWRuXs87jx3aodMmDK6c1336kPlvVkcv7px39x9eIXf/zv58tZFBaJAmwKnYgjMyIGJTp467ma1E0y5ByxLYqaDGjlJiKCwZbZDwOBb8oq55gwqZDQRx7388KVKktkIEfKhUwEmSxzzm0ctNGahCTkzmMzdVUzxqFUYj1lzpGFlbHEKWcalYPSVJSbSk3cHAoyBaAmUqd3KUhWgholZa+AEjMqZGFAZFTeg210DD1QJFBasvNMaetpX0yRjAasicoMQwrUb0ZTigKdwROF24czAdssboFYBQzIk8XE72O7G0aJIaJXMgbcdnvW/d3bD4yr8FD7JrVFfHn+NPuhLLSX0YHcaWaWRZ08+MnnryjrwhabzU3X31gDTOomZb64XJ1f/uznnz+4f+fBo9NFnVKvmno5wKjUaAByTkrihGkSTY/ZcCIVIqXMhoBRPGQwYlRmExLpnBQwR8eFBhslCMH1ttuHZGLSYFLfcxYGZIgpDSBhYmvmBMgZUBmn55PF6kU3rMfq1FhTaq25Cet+1xSNZezC4GU9Zvve7a/3szUh5DiuV1cvnn9ezY7HmF5dXdiNqcomp2Cd3q832hZ3Ht2LIWLI+83aaTW0PAzD2eWFaHXr9GQjPA75L370/b93erub3Pz273w75TzuNylKiNEUVkSs1WVZiWQkWq/Xl198NFPRNovFo/ff+/I77335PZH4a9/53ftvvvXRRz9+9vFHCxumNSLmcWxLV3/48+/ff+eNW8e3Q9szj6osNKm0ur6+/GJ5eP8nP/7Z6uXTu/eOc2ZSMgxdURb7bmOqRe1qGcWS8iSqqHgYY47AQVIWYzfrLYZkK60KQ4EJRRuXYlbWAJLvBwIiBTkkh9qPnggm1nEWCV4VymiEhCwyLSa7dtRKTY5uHdy9XZbTSk+ePHtiSCuOR5P5xJYvn569fHWltV7OJkDZVTOkRuKQfTdbLIZh6IcByMTIOYsCsSgZOCEGH5kzZxaiGBOwsGRSZRbd9u1pPZ9NJmc3axFgQEfZaSlCbkNMlK0DlkTKaOOShBRGi3HbP7+63LIAOHt8+3buxz5mJYkkO2trq2ql2n0+fftrz558cVjnDpPNkVThh3hx9mJ2fFdpwxBRrC6LiMP56lLr8vTwaHOxf/Xy1c36pirK4zu3l6e3nDG93y5Oqh/+2/9xURsQjsmjkCucIhMDWGXQkDImZ46RbZFRiCOTRlIqJ5ECCDUL39xcA4lG1xS6G3eD9yK5FCoDzx04TC1IKmoAEmZiyDEBCiIIZEVWcgaltt2mHwatqS5LGSOnBEEqW0xrZ0yhsUGgJAMgJ9YgRIyEKbOXDCmlUv9qh4o5egQIIiEFFnx2dnZ8eCcJ7Nt2PrW5C8pg9J2yWojGm+esUVUT5xqlwI8t1g0brpQTGAkhREBdKl0msBlaVGInZT2/5fuQU98T+VGGfe66vO/2afTalgBkDN07ut3ttpebC6V09KNlnFSQuqEirbNtpgswuqrt4/sL31+9WrWNVKAK0amF/qNXL19e3JRW+UTsjJUMwkbQ+xwhO2EgPcTAMhBAJJcFC1RGQRDPlJQ2DEQohlABKZDMiRSBQMipa8ep0n0KWSDnLASiouBIGqyyIYACAgFi0L2W2iz6q3OBAY5tZDRqhprGcUArHHMAUNB/8tPvNbOJnU6uL3cvn766ded0jNhMC701XzzdGNr8+jdeK+2MUu8hffriuXHm9GDK46hBP391uR+GyXQWOJrCilLauIur1T//7/8v73zp1/7p/+a/c85dPH95vdo1kwUhLpYHH/zipyeHx5Nmst7d/Nl3//wf/c43Pvrj/0Tzoy8d33bljJBEQAAPlrd/6zt3r975enf59PyTHw/DoChftavF7ak17vrVyjkDJsIYGXBzs3r68ZPV5fr5k180FRJyYGaMItlp+PpXvnR2EzgDapcxghCyYlMMvNcEcQh98NWsxM4yjG075j5kjmU5EWOq0qw265DFWGuU7hB3koiK2pbzSRnHHpBdqQpbXl+sgPRuvQUhqczd19/UlStM2bXD6ENZmKZSy6bOXXjy2dPEVDdVXZWX69XxvVshjzkOyAxRwj6QKEHRIJRY2AMAMkXvUwyaNCF0fkw5QfQORCI/vnfrzbv3usvnU2t5vji/2TKqrJggFRa7mIcQMmqFlAFsXfu4+uzJqzhCgNba4xLKsmyUNoicnQTFOJmIKbJPRVm/8fWvgZj9+l8dVHMFpFA51EpS6jebV+Py1t2qnGHCGElP5pO6btd7zrLf7v7Gb/3uuv33lXLvfekrjXUzK3178ctffry/ekENEIKGSRi9NUYpnaOQsVnA5qAqB2Xdd7nfDbo2fbz2KU6Xy6lU236MqAD00cHRyIg0jgn9GJTCUcJx4QotPofB1GIn2fc5JxTOklMORKBIARqtdb+9GWLow6BNoZSudEmokdOkmThnCZWCSeGqcbwOqQWIifPYj0YrppgjW0WZ3NVqtdpuhJXRiiUFTpLJFc10tkjDbj6vSxXQ2BCGRDmGkciJzrEbTNvlskoAtjwio3y3mk0MA4uIMmrw3rc36Gokm4a95ixaQGeldEOq1KAoH9DMX26vry7vzw4RIhIURXX/9MFuu08x5iTCYDSpUoWWj47uHh0dRY6b7aod1ndeX0YdXz3dKz3NygCh1lpF68eBDDlSntlq5AhitOcYmFsYOhMIIvlKJaMAQBAZmShgzgqFtSGlgFNOGUVICyIp1Cr2u5ummSamIWZEARKWHpW3ygCCIIIohYAAmmMoUOENcw43spodlHU5Mcr2cNPlrcmsOWu0ikoTSg6UGIScD8RZnCrffO3hpNkWxhjrlMsGoDHl5uUABd66f+C3m6GNi8mEFNb1ZL256ftxsVhuN0HlBDr++Iff9yn+/h/8raHfP378cDY7iDkh4ounn/7kL/+029z85u985x/8wW8ax1/6+39A5UmIUNbIAIjgx8Fog6QPD08WUzctcHXTba9fbvaXxirebai8NuVhDiBdX8/m5dGdb/1X7wrCm7/21ScffveTX3xQF3VhG2/TpClVUgZyEgalE+fEUaMiJI0aJRGITkEZFYT9EOKQIUkEaMgIqRSzcQ2YLDFLFm0sIhubxQ5dHAtrrNLa6PXoQamiKBxWPqXp7dsnt+9m0cL84vw5KgTA2fxAmeL85dn6ZmMKU0yKbhyKqtLWZA6+bytrN9t+6FJWQCKYmDllBRnV/5+n//r5Pk3S+7CqutM3/NKTnze/nXt6ws7s7GzgktxdcpekAimDgmjI8oEsGAZ85D/DgOEDwyc2BNiAAMoQRAKk4opR4mpXG2Z3cugw3W/3m5/4S990h6ryQa99dv8BNy5U1VX1ufLIXNgiOrQ5sxYQKWjEC86a6uvvn8SxK2PyIAtHvGgvb9dJrScka0LjZNqP/RiqORLkNA4xmWaxODnfrxEN2ao2MZd1d/TOqus3F7uto2ZmvJOkmV8++fjy2bP53PdZ5k29XC2oKKrjBCn1t08/O7l7L8xX9bw19cyQO1ycdOvrzLy+vjmcz5v58u6d089//r3X69tXL54aa8KiznlLrgC62gVf21jGxnqEUoXQLoK17aaTnrVums0wvtq8XB6fHDWLIg4n9oZMW0XgULvdsE+FgcgSzgouLaqKqAVTk3U8sqoyaNN4m9BDyLEEwFRiyp0AiMEEsksRIoKAiIIyiez2G9dAM28XZv7506efPv9s23UGw3KxxEo9yqJqS9t2cWuCHiyayoXt2BmxaZLjxXHtwuXltimxqbxGQf1LI5vVSvRKoTo6JO+MQW1Od+vbL548LW88qpy1ClMSVkdAjpytPLpqGrux76FMhU0qpZCupzypP3/8pvGeNQKAqLJICJUzvkjmFA+a47kLYyoE/q133rUoeeiePfsiISDCYmW3nb3ZDMKVg1lLM0SESooBAZCsYAGULYBhYOFcEMQgqSFRFcGiyqEAERS0CoDGIarhbMlGZmONMJPCsln2u/1eim+WALaQaCkCE0uytkFn8lAyAIAaBCvjuIvsTYubWOy04ckckW2D9SuNhsuNl+yMNU25vn2mdFbP6e6js/52yFlEx77fukLKaTMMxsnR4Yy8LA9nReB6s427rWYA66LkSouK5nHCgLM6UIYhp+VB8/Sjj/7L18+zpLM7j/7O3/t7/TScnp/+9u/8xsc/+u6j82/ODw/UJ8si44bVLO59U1UIAAGd8WQMEnFJal2i+s6bb/70px8SRLMDd7B65/E7zeqOCioCIlRAqkzkrjfXKenDR29++vETpMY1VTWv+k0UZrAWiwYhKZIKs7InL8BqoIFMyYqIAnhnxJM1howYY7KyqiEgMCaOg0dYGhHjVYsaMsGLCIM477WVYdzXtXN19fCdr1XVfL8ZY0g5l0U9884ul6vI8aNffAwG67YKld/uu+XJgSimMefEEXTIEdkLEIlQKmKRGTKz5GIsOGPzqHEsZI0l44AWpj5d4KrG8bpjLgCspTQ+LJrlVTdmhwBiiOa1n7qYxkRVQRgNo/R69savvvH2r3z80z93jU25gIGkuQxj3naLZUV53MaOZVx/9Ivd7bY9PN7u+9qs3n7vq63HnGzuO+UJjU9UtffOTKgW9QKVXr549uMff+/yxacnh20F5XQ1+6N/8ftabjkyGIfWLI5X/dXIyI6SmAqdKJbCPJtXZw8OuJu2VwOHNszrOPC2273xzhvF4dVw6U1dh+AIUXPab/KEibOzdaXBFT4AnHkcVV5vR39y6rxknRRIGZUJyDuGVagXtY+5d1jf7AeTxDh0kVPaIeDyYOWhdFebYegC8hjnSzdv6znborXWzofK+KUxzLOmUQVgqSzcXc5IXSnSd4OlcLBcSMlo7ItXu66vF96nKVpnbVsLLRJbwrDl0IQFVX6IKSmF5XFfxHL57PMn89XJ2YM3xNddHKftTbe5uLl8bVCOl+3Pf/LJ/bffy1rIheWdB9Y5lDSlQdWAMUYzEg6cRItL+exeW3niHFZHJ7M7d1MaZBivXr2wzgZrUnDtjKLAeisWvcNWfAJbLJqcYiJrDChnCxKKTAUMAoOgeoBsFNgnASF1gWxWYQtgEUSAGdQUwsIabGsdhhCGuN3b/aJWpRal8uT3KU+QDVoFNpYYVVVVxdpgtHaJsolkrlKe++uuC3FcHszRNFQXYpfjOOzXNzfd089evvHVuyJ083o/m7fVvFrWh2lUkeyd6bvY96laVM2hf/Lpxe311YPHx0UKsMYpd5Ri5DRNlW1TKa72s+BS7GcVWMoVtc+fPPlH//A/U0x3z+/86nd+7d7dO1LG/dDV7GLc3X7y0el7f0UBDJmSE5Ix3l+8eP7Rz3/yW7/7e1M3zQ/vkavefPfd/fWnvC+L47vV/AQUlOTL1W/VL1OMc10ffvDLf/P7P/qLT1/9+FdOjuu66nYibJwrjC4XkC9tIOUQfJYsObKUbCUoGS3BVOLJBqfCkDmWHqxVtJIojtmwZtkTmpKdC2FKnMdExIKRjFNkMJSGafHgzumDh1IkVLzt+tZ4Knx659g68+Lzq826axeLpm62272tK1vNSGi/2YtGNIiEhpMwJmRHajFoBs0ZRayzAtJP+wLqhBzbUFoqultHLa2r29QPoknJcEmLWchZrvtbCmTgy7vCKvFUmLyxhoh5/PFf/PGv/73/Q1UtrXTVvTdc05YYxykulwtCHce9qcRwB9O2NShoXLOsF6cQVocPVsjVbH5YHR+b0BQp3frq45/9/OmnT599+skXX3xCJrcnp6ZxTTd+8sMfrnevmyY4Cot5G4IpOeYiVfBuYRkcWBRma835nbNxiPvLLizv4mzhiCTkh2++MT9eXG1fEkawBk1VOFllD74ItqEW5yFPXoaV9ZqnSeV1Jw8fzVkzMhOrKnEqirIKs2OnMyfF2MPZ3Xsr3E6TsdTtdrfbfTZwc/N6jueLQItmseNx2FzYqjRV7WxDU6xrr5RCtYgdz6tQEpOiJ6tjscBBHeT6eH5YhVlmuHfvjd3Vq0zglgsKpvbWoO1JCxqDtmlnFn3aszPWNvPqzgPubsTAyYN7lXdl2kx5T5a67vbF1Res5o17bx62zS/9xoPV3Tub9e3l69eXr1+TMd74cL5wrjLGtkaffP797fa2rdz58dnZ0VEediWE2ewUyLGk5xcv911nKihojPM+SOs4wpCS1fli3s6mDjAXB6QIqaDJZHI0ooTsSb2hgsqJAItRUkW2wISFyCh6RGELnjkDGA/eioptVvN5G3QvecqTc3XDzFYEptIuZst2hc7bOmGXQL1xZNVVh60r5ARzk9z0mtO5ok+3dutnlbE1SvE1Qt6fncyndvH65RrJHSxXXHKcSnD1ONwO+3673YfK3314Ym0LyqtZ/eTJhbskr6ai6v75yVRwu96kVBzhatFsU7JVuB7HBFzX4GQ6Om567tvGvb784l//m/WvfuO9+aoGy5Mxh8uj03c/cMcHPFzcXm0PH76nGg1g8O3J6Z3p+qaQzubH3fri7a988+mP4qv+2enjR2SdCgMrIIIqABKiKNSrI8LDT3/++yqYOdxcdMYEDhZDFTsmAGOtdbYw+4zofGav6FhNgUzGOmeFioioClBqKjdkmYZCIp48syh5P6shEmZShSIZwVJlNZDx1rJFX7/3zW+uDmbrV7fGmqnf1diE2i4OZmM/PPvFM9/OrK+lSJxSc7TyPgz7aZgmpKKABtCIsAUxCkhYcskTESCRDf72dlMAlFiVraBnl0vcbOR//uOX3/rG4uD+g7S/3G/XWljZzZomSbcbLsEYA4112bCfpmgbVDIo0cLtH/7+/+vNR+fDtpurJfKswIxEbpBJHPo07V++zlrIuTkgG5sdXg9T2/EbD8/r04dTjJ/87McfffdPX3z68a7vtyWLtavTU018dnbnxbOPtt31rl/PqpUFCkY074eUClA1c6GxGGBma5FILFXTVvWsjMPs9NAdnI8seb8PTVUvZibg8eHy5vY2iwiKCogAC5KbFZFxnCqPNYK3quI3u0uFXPt2HDfMKsyiOI0TEIQajQxGEECsOou2nR8m5EC0H7PkNGu8tXFivd3uXq23ob596+G7i3r+5p3HfTo/nB9C0SgJ4Ho/TIIgoDHGfb+nesZijleHZ4uDwhHVTEl904zDOudhXhFiUbVTkgJuNl9ZqrkoICozWGPreeayy9GEWZFoYyJkUV6ilsNjnJ9V7REa087qsWhoVw8fV6+vXn/66ef37jwOoRLRVKab66svnr4kW9e+evPsHiZWG5K4EGbKEFP+6Bc/n3Qf1E9rvdqvBauqNst233X9+vqp5jODtRRmKQUyczLksslZGcCykFFEZnSKIJD9hB5ZLIKnLCYjShVm2yjkaytYORCSk2UzFwwgSLnANoTWurZ1zezuPeNh6pSLNk1V3anGgRHIUgSFYkJFQXOqFj3uX8T2fj3l0u2mpvLetImHerasSI5WZG+r7/3wY7iPpycrQrq+eBmCuXh5ub69On5w98XlrZ83y3l1e33x7rtvHZ0ebi7XV88uTk5WKQ1SinGOHGXJ1sQ2hBe7fraYB2OTY2AKrspSXNWwxqurZxCOTmaP5weP1jebYdwtbjc//P6/fuudbxzCu4ROmFfHi8OTX/7hf/tPl6fz9hu/ut/1R6fLdjGfret53SoQqABqASVEQhBEVOS4//S737188uHXv/X20clB2o8cYXF2nK6G3WYdvCHJzrrssinUTaWbUmJKYmJMNc0AC+GoKMqAit12UnGBaqakqgiuZOmGiUwAIGMJGHNCV0hIXfCO6tXd+288ereP0yS5DBqcQ0irkyPj3bNnT3MZDw4PSuJu3zfVrKmXqrLvtgwFkDWDU8xaABEA1VBiVgUCaJv25nbDImjAKdkkdlKdpkk01u7DZ7tPXz/99rcO3z8/PTpdja8+n7qoyIumZq52wwgKAtZaNlnzxK6yZHRR0ZHXx4+OP/ssRUns9XJzbUCyFjaOCYHLyekDhfLs+XMggTRcPnv26M1HV9tdc3nLr67/xX/7T19+8aHKBKbKprH1/OjgqIv96ens4tVrw+Xy5cum9kbVaYTYp8SuoVDN2rbyHrzz3rfADQ+7w7aGXMJyrubIhFl3e5kkVc0KEaGfNBUnHsmiKANkFdBsp1Q1Fanibr9wKJhZeZu6ZJyR6F1Q9Kxs0DvXcpkMGWcAoFhCwAQApBbBFrQchwrdwtth7G66eKMpk9teXc9nB/58NquXq8Mz7xrKFLyPx6c3u9vdsE1FDegX19vapz7q+an3UPb9bkgFYk7b3eli3jgCFUa3HVSb1dnxfSNGCg9TR8F56xlyQXbzxqoFRiyBiyhPmocq5zvVfIfKpKMScJdy0QzBWQB7786jN994p7Aq8OXNq1cvX57dfXyCZmXjSeNKSjEb52aGoUh89sVHm/1lMalMuYygORQE54xrPPdJSr65fEEmGG8RsxhKaaybVJiB1YuNSIzFKErJ1aqKk3Kajs5XstkHla3Kr/3Wtx6fvPFf/KP/HgIZtUHA175p6olHNUqOCnDur49PyLTW1joNE4t3hoRL09ZtO+u2g60M9ZD86bzbdewsZGk7H19E+yjESktfIqFvVrtpO1k+ROq72+XcbfYb4+jBg7MTtxDWt77y5qvXYXV2Pqa03uxWs/roYNWv91cXN85Wt7upyL7QoDnXbUOVXa5WV9fXn370i5K5aebzZdOVaCYIIpvdNgqcn59t17mdc1qM0/YV5THULcwO66PTR++/q4gp9dY6g4HzePHZR5//9PbkvTdnq4Pnn/wobq8QDShqKSmmJx9+/O43vmoA4jhY79Bjmfbb509q540uXr8ePv3o58cHy8eN7deDI1tyMiRkrRUHKbOoArIAGJeErWYCSpMRVWtLLkjaqGAIGNUgqDFWXVsgt/PZNIxcooIYS9YjOqh8zdY++spXhLHbDIvF8vMXzwOSb3B+uIwTP336sl40RDCkmJjndVvXs3V33U97wQLKqIYVDJAF4sIsjEKV8dba9WY3jZPxDoWsGiuMpeQSi2rmnAr3U/2Hf/HJqzsXv/sr3zk5OH/WfZLLoGpDWJlsx6EgeWOgApMipahVWy9mCxZ+8dnns2plnZcxpn4qXZzSZByCQabiUG9eXigY37bvPr770ZPrn3z3B9/+5V/++JOffvajP319/UralstRFGaE08UKNCza0HeX1xdPZjrN1frIiB3YpA5dVVeVqUJb11Xl0WBQsAnEom2dhTjaZR0RSFPar2fLFVOgXPqbzb4buKndoVOVFFPOkzFGrUiarOMDAwsUA+5q3w1YaT1PogQlpl5YCPlodWZ1uWxr4ig8GgWFIoCItUEz7veNM4t6xszX652gQyyxpG2Or64u53a5nC/ASMoxGMsxbcf+4nY7DFtWpbphhqt+kCxF4npYv7y6Knmsme8fL2aNmXImCJlm9dmhbRbr9dX2dmMt5ZKrZnZ0dALCCEYZDQOIFaOlkpTV5JCnGGXUoeO+lOYAAZVFBMWbwm51cLzdJVFEo9bOzu6/OU1lurk6rNBgYu9SATYhcl7vdz/46Q+7aagX1XI5H03c9KN3RjkVTCMpiARkoDywkqE0ysHM/if/+7//P/7LP/mjf/Pns1lAsBR4XrW/9JVvnr5zZOvKCXnfjlfdn/3JX/y1995/9717yuZXv/P1H/3w55ZmM5o1JgSaMXPbtiPcEJCWrt8X705taDhDKQadWqQMnMsoBHa9uw6z2fm9o+HDl3Nye54AfLWFzYveP5rVBilpmcCt5qVMO5Kmmd89t1XTEMnFs+frzdWbb73btvrWo7ei1Upqp3z97PX2erOcz+dHi0Lo6hOJ/OSz6+NmcdDOZ3Xb1NX8YH790jazSh1ncrWh27JX0qqpHIYK3GJxkKe87/eouPALiANvn50eHv2r3/83737z10/OTvt998M//Z+++cFX5q0/PL7XttXtzdBfXDz56KNHv/zr7KrU7dX6693+ZLc7nM27m3WzmNW2TUzPebgYNj/7b/6HO3fuFh2OTmY361dGWwRTlAUBAbLqlBIXNmAq52OZNAQDjEUtWgXgggxijQMAFvWGjcHKO8IwliTCZLiULIq+JrLFWuONCXfvNierV5ubZTN//fIlobDiwclda83LZ8/zyM3sYJz6KRfXVmFRR0n7/aCqQECABg0aATWcgZAAwEgJth6madt1zhlHHkRBWVDYQnSQdBpKNpUBrXKaffT089/42vsrhbaqUzfmNAnaUNU57ffj3pAh9QQMBQ3Ngnc2wM3VOuV0/4PHB3Udh6E9OUjeCDqQUsH0yRdPwMGjx28JmNM3337/23/jX/6zf/G//OGfLmd0003ZHybWYdqnjC64/W5dHbs7y8X/5z//Z7/2S1/9/Mc/n1sFLqYq1hsX6qrxobK1r523NoDFgGoi38wWFYBFTKhYk929vvRIUM1L1tevnt1evkoJ5idn986PpimVoqi2RHb4l+eb84C1TUOMG0C3OtDIUzcu2xoLaorWk5fc+soRARtRNKhGjBoziiQeyJbTs0ZzEqFTs8g5pS3vx/7e2VnlmvVwPVu0CFpKXG9fX189Ww8DG5rPapG8K5qmggZDcJu0e7l+WaEeEryxPHLOD1yKawwuSzU3Pry8+GIap8xxLMXaMAwj2XXw5Jy1hJqnGCOSMwnJAxCqbTM4wrr0cbffOTTBkoDrdwWN33ajc6jgSpFpKOvd/nb77Nz1q5P7KTKzZba7qVgKf/5nP/zejz4nH3/1N752fueUz9yPfv4/ba92rXXkIdB8cqCsUDgTj2l8cHb+H/+H/6CemV/6tW/u+vHs+GRez+1cZquj06N54Z4JGutzzuH+4e/9r/4tMEWBrbW//de/aYmf/PgaBBvnZlZs69rGozQx92i55FiiDqVIlsqiM2CMSywZIEmxdrlQLnRUzU6XctV7YwpDoKrd5c2LsdybkUeYJhjEtX4yGU1oWnvx+tWiMtbA6uT46fXLo8Xx47tnYxmeXl1vu/1pqN9+8030YIKyxbHP/aZ/69HDOA2+Bkl7k11tdHF+MO7yrD2xqLeXr8D4guRtXYVw/61HjrjxRjvupi6aSGhBYDafv/f1t/frF1dPPz05Ofqf//W/+hf/9T/63/6D/5AoDtsYDEy77sXnr77z7z7w9RwLgIM33nk7+Grohm6cFufnUfT584uLzfbX/9qvvfrs6eefPz86Pb64upryIjiDNkBClSJaACCEZoBJJYNiCOoxu1KRqreS2YlYTDKVZNkBIHMBkyYRxEXJYhwum2bHBYFUWKIQyJjjg7v3geqmspOU3ZCbugqNOThYlZK/eP65bdwUJY9SBJdt42o/7Po8TUSAiKTGATIZUbJGjRrVUle2qNzcbIyhQFQVzWCTJgadiCbHfUzFj1RnX9lpPd2dLWZtiNcXtVqtljdlL2lfkVCQGFNXCI0PwWiepCQQLbkcHh9s18P6F99/9OCtd371rz39yZ99/vHPD++9/fCtr1x++jO/OHr06M3Xn/zswTsfMCJ7+Pf+N//B//P/8n/++HYXCxv1637IMIlwFZr53N+/d/wP/+//j3fefnT16jMPvUVjKo++drUNtW8bZ4icR2vEkrEoJXNt8Gwxmy9n1bwhu6B6IdWezJKdMwk32w3OQg2+sK4vN6JCrhbDzGKStDM9DDI3wgW2Y9mDMQycRiGo66ox/ma/P3h06CFT3pOppACIURB0ZKQx9sC6YeaOsisWkimUso5Tt1q2948OBX0W6Kf4xYvPQjPb7W9j2u6GHdXNzC9YuaAip1KiANm6ilh8ZZcgd1xglGJcaRahWnHGUXi9vkrckbfB1ogKqmnkGJPxjQO0tmje1RDTCIJeJyNEWTxam8lBY+yQoopqBlCFgAwyxRcvXzz5/Nmzz68g4r4Mzm7/T//B3yqlCNJYJKIpgK9fX/3kx5/W1cF7HyzunR46lMr7v/17v/6T7314cvT4Fz//+frlJTYuS4Ek4OAbX3/nP/oH//57b33dsK1nn88Ws26/r9WpnfYJ+2kEjJZUock8CoHxaHxg5pJTwfydv/Ktu4+7J794rakMOd8/W4pLhp0DjCAlazWUw8VByb0iY06FDQWrPCGiXTYNFHhxedO+fby52c6pUslZiyu+uZSYk33syJFEHWM/nzfZzwRLtTzc76490NH5yWxWYomfv35CYHLEz19cvvG3f/VwttheX++HbjlrTh+92y/Wn/WfKjhf1yhpmqaUIjE69BfPr6a4qxrTOFz4VR/L+ft3zh6fbS6uq6q5ef3aWdMcrqahw8KvL19su3h0fOfg+JzT+h/8R//2Z09fvvGbvwlkuovn3Yvnzz5+8u67jz796fe+ePHyG7/0K2D8+fFhhjyMw/J4xVIA9cMPf3waXNWEo9O7N5sp5qwYrm7Gk2NonEuaCK1gsajOjLOZ26UIhkwBZz1HMmpTjoVZQXxjeYq5y5yLO0DnXcnqAAySjNNQoG2Xw6TjOGHlIISD07OD81MERTLr63XwNTMfrI6CwhcvXvXD0DRLEEaVxvjQtgrab9cAioigAABZGIW8IgKqEQOk5K8vbjx6p+QLFGBWBuFI40ZuLqcXPe8Uh5mrWl6MuD49ObOkfU6K4IxbNsuSc592QrqYzeN6kFzIgnFEElXIgCkcm9ls3A6vP/rzs/t3jhr7otsMH/1oyzKrdL1/9W/+8Xf/7f/4//jwKx9QPfvoZz/5w//2v17ULXh3s9mOfTpeLF9f9M6gdfnXv/3L/9X/+z9raz2fV88/umnnDYmaYGxdhZp8UGPJ29qYyjtHKHUIq5P54eyNhSdLMCk04SjMV7M8Pnv6OkzFgpzdOR5N0axp0u31pQ++XQZFLLms2ubefF5RD6BR9KrrJ7XIuGiO33jjKzrsjupmly+rUFsEA93UR2+MkgjGYRydXZGvRCOaA0Pa1AQ5m5R8qAXYVJspD1OU69v19QZtu0l5RyXXLgBQ4ggkBITWryq32Xc0xuWsdaCHtmXfuNUx2kpJR+CYhm3XWURHwRhAtETKhblInqYdcQ9aY55jCjoF0pJ6IWQyphAWB2xYbGM8JkrDFPOYhv3Fy2evnnwxjbt25r713uPNmn/yi6vf/c1vrmaeS0rktwKdJWL/gz/6PlX+4Xn79a+8XQUcOUWIs4P6N//GN0vxj948+vyL53XTMnKO8fzBvQcP78e0/sGP/lWgg6PzO1UlEo0QoPDCmYgJSNG7DJBEAGwzr0DQAbFiUU0lLlb25GTWXed6MfNziHBrrLIFTYkB9nFX80ytzUpJdFYFQJKsJlu7vV237UE0Gu7W4e48PhuCx1HZKB3kkG6mLW7NvZAcSgn9RqplRd669rCxtF9vbi6vT08P2/ni1cXF2MHLy63zWgumnlXC8em9/vUn2u7vnp2VYfvpFy/6OJLKNGYpBIVz7EsGoiqszj1NnMXYcHb+eExQzeddt/NtvZgth6ln7ddXu49+8tw5vPri5ZjGo3tnv/prf/WX3nzrsz//04df++VPf/AXX3z4U3cw++bv/j27XJiqdaECZ4kokLUulCF9+uHndx8drwLmuvnh//Lhn//4J2++ddcbQZJFszqaLcaxOLSiGQEIAJBcZf3CVbQoQ0nrbc6x63vBkqG0s4Wqq6u5ckbMFDQpqhgBKCljLFMpWSAXKyIeJBO+8f77VQikqKJpzApYN9ViMcspffH8mW/qkjPkzDk2h4dNO5Ouw5QBERVEgRAAVEUdgCJm0GXbXlzdFC4GCC0BYiwFCJjjRXx+sf+8571aRRShAJAVvBRX14uuaobxEjU6qA6aZe74Ng5kYT6b7fddLhmMt1bFAJECR2sCuf5m/exH/+qfL2sfjCVnH947evHq6YvnT3/pd/6tr//234pT/93/7r/7o9//x0dn9wraGEuo28eP3n7y2ecx5sWi/lu/87f+5T/5r65eXf7df+dv/OxPf3+2oEJggwmV9T5UFXmfDRrrwDtELTPn3nx42kIs+/V+vU8M/vztg/kBAO33w+3mkqY1GCME4skyeQEJtQ2VqIgqqh6vjluHDIJIPOQpDmo94uxkfmyjxkkP5ssPOXbdem6Mr8mSeOcFNU5ZxANykSwqTEmy7bkYC+QDiEHgWsU56y2/++bCvrjal0S+wcQpZ4eQkEuh2gRUcu0s5sy7vUU4aEPWbJuZYCOJC5bNpk+pc8aqkhhjLaKxrAyELmjxFEumorux22o6qCFYVEmGUJiNGMOIjKxW0JriEotX6aV74zx87fEHy2pW1b46OPhv/vs/eP908SvvPEo4IpqJjdgabfjsyedPLz47vnf467/5bWONrbyLA3ByFstYMu7Rp7feOiPjqbFNWwOixK2zwVeHivjZ05+44BQ4Sykp1RQckq/rmDPY4h0hEIgpqgUKEltRrzClHZbbYNqj45ngbXDEZPNU0LWmZJZp6PfBLhERQjWmyMKIgQHtGEd0/s7ds27oZ++ejONrWccKDWZBzASuv4kRRr7nsHZQeNhsbV1haKitVtVye/P64yefG0IRQpg5yF99915d8na/my3vrBZH/csPu5tX69evEfju2fGTZy+UtTbBG7doZ4qmbDYx7e4fv/fFF6/IVGhnzt/x1IPDeqV5SoI2eE8yJxxXB/OLy3WzXNw/X+RR/vQP/nB5cCp77jfrxqiCf/Or3zEn929vb98+P2EuAFrG3A19O5+l1BscuJTb/XpuYX7YvvO1h6uDRRz6m/Xl+aP7ahWASRlUCI2yerGYeEZNP1z367XpMQ1FsxQQ1ziHhtkIA6KGxgnpOGZSZwDQWmYGW6QkTeocGslvPH7jwfk9zuJd9frqlgxkKIvjlfX21cvnMRcywVrDKVLl3Lx2oJvtjjkpOQQhUUBFAjRoCVlk1rbXN7fTNCKRGowkrKAEDNzH3Yv905F79AYYHVZEbaTiW//Dz58czppvv/9+s5zx2E8Tp81NXUKrup26osZaTBmHqM2iVosAxaABjj7YbrhM+bTjWUw7Vvj4B38OyCd3H3/jN//qx3/0r7/3P/yTzc3Vg6985YvtcHW1rurw/jtvv3rx+vmLF/OD1be/880Pf/CDn/3ge3//3/93nvz0e80M2GVL3nkNzntHTbDGkkVHFoxhy3B+dNxaefnpx5wKWT/Z+dv33yDnxu3ts88+yWkXfPCmFbBZ0Fk35VgUJRcXBBhIYOyvdDk3iBhNjqiJnHHM1mmQfpIYl6uT2WzerV/7xWmAijTLFNG5tl54M+vUjDIJj0m2KQEBRS6hqkPbBE+2bjE7onFhAXF1sd4Og7K3fU791AOToqlDjVLCKEfLpVg/c0FKcdWCi+3jyBYyicHsHJRpKEquCgANi6oaKSyZ2ZPzQTnbepY0vSjRplIz0X6qLAWvJIziPDpnkKskamKSuXNkrKKCTon54x8/f/b807/3O79jJJaII/qxWnTR8y5+/0//uD4I3/zV9+/eP+qjqINqRDdBLtnXnvxC2EKyrkJBAGZyRlCFJXE/SjSmiLBrjRPi2osqJlYmooDAzhIieWOC4JQyGkppKgVmi/mDt6Hf+qJxlKHxNaqdO1MkMO4KaJym+eKMTCgsU4pIAEBIxp4eHBUDuR8cEJw3M3hw+aefNZ2pACLETGlmqrSWSRXuYA6g1kPHbmJcOdecLE+dbXwax2E3Ik5vPDo+Pjzr7cHxG49Tf/3FJ3+mhguF/e2NNz4s5x988N5uu+1udmkcj86WflmVNLlgv3jycR4zsPb5+dXLZ+enlTPgqPJVXRJnE7ylu/dPgzNFh3vnq2CdX4T1dj1tbteXV+uLX2y3sN4PX/32tzRtpFtvX78QS4A4WxyMN/vUX5m4PaTNxZOnWPocpyaUt+6cThOnTKuj4/nhMm6YiVhFtRCCCFoMvlKvypBLHIR3jSonrk3NICwgGq0XERTjBTC0DRbBmLOU7JEsUiTLhNb4pnnw1rtInlRSwVyyCoSZmR+0WfLTz5+SkmYoyqrg5m3T1uN+t069GMQvl/uRFMVYRENqwCH2+13/JU+WQAmMoRKLMhSCLHHSTm0gZsMcSCtn2cB8sbr/1a9996Off/T5q6+9eedgjov6zr3H9+nFJ1lfFAi7brKEjA7YVTAzol+u3JIRawGGUsqYrKa8IYJXz7uYk7XL//m/+E83N9fHy5M7773388vtF8+u33zj8be/9fVut7l8linHr7zzjXGI//r3/9Hv/jt/s7/5SOWZ8zOHoFZ8sD5454ksGXLeOSRjAEBlNTsofd93YL3HRMuzR7PZmSDud683t8/r5YKwUkK05JzzqJmSLZpj7CTWfkFM47hXaLxojnGSkXwjozBnKBlcNMLCdhUWJFtL3hICYylgLDk0wkMBo0Zy7uMwCsA4FQN2GrMmnoKbLVrnagIkLovK+8NZDDxkdxsDEWUGVZ+ytAiNM1amyhMwdAIJJzIdgEVrNcmYxj5PFMV6ryVyROO9KgGrISIwBVitOm+lFBycCA2KZO3NfjuNnbOiCszgELgUowEz3D0/D01bVPqhu7y5+cM//uO//jvfni3NmMrIJleVYOOC/MVf/Nm6v/gbf+u3Ht47dgi1MYq5eNNFra0HthkyCxvjiiEjxpONJQoAIiNnQamME5FCXCQJGEGmCosYFlRga/2YpAw7Y3xCcMYMQ6xtLUIKPJvZq+vON2yxmnIWHWsXsp1PcV9568NsSrmyylm4kDXGgrVo7M3N1fHigABHBFlC895J+vCaEhX2wokAHBrdlCknd6dOcykuO056kzRB1TZuda+jC8hZBOom1POlbe5cPP9ihrt60WSwP/nhk1//9jeuXrwIzsUUrQ/GNkO38c73qW9mbRe5ZLi6uDhanq6q8L0/+P2/83f/ul0eKBgUMBasrRkNkc4O519bfo0Upj3/6Ge/ePudO8BxiOVyTDe3Y6jCvuva9SVN3dXzjtr26OAEtD5/cO/5hz/YPPlpXbnbbcc5TdaMcXr+/BVhVS3DgwfneUxpSkQrJmUGlAwWnbOYuSaYYIZy5A5W66evAToR8MbkYtPUK0bnQykuq4AFETaGpbBlKiQ52oAihLMHp83xaVcgGNdvu6JYGTg/PfYOr55f9TGSD8A5Z/HWV83CgM3dKCxIllIBBGsAFJz1gkDOD+O4HwayUBI4g4gESgSExpBC8hmUyapOqW3qD77y3urwcBong4jG3PvKBzcvP/+TJ5+d1u7cX33w+Gt3T877/jWILSaspwzI1sRhvPHNSbBBjTKyBap8GPrOrFoOPseSgQVtFucFlvcfc1V9/PTixcXVb/3GX229vnr17OzxGy+f/Yvl0eLs7t1/+H/7v77/zW/dvT//7Mc/bA4WygaleNvYyofKeb/wFr1lRSE1oIgYnbP7m1tNmWyrbnl2/haiFZ40pzvnd7oxB1dVjdvHCdhbxMZYtZlTKhmyVWtx1gYDigxjLjFHYyy6VlK6vb4+ODniHPf95snzp/fOFuqg5DLzYbKehccpO6moao2SJccxK6KzVgRSiblLta723TRbzMOiAVustXM3r0LvcqyjMTd2HSUW6EqvJdZcBW8UqYv6bLOZndytfVKP05j6/S6zGgLvQTGCGs4ml2hN5cSSASU1CBYsgc/k1W2sdcpVipOdB1+13bDr+93N5eXuZn1xuR8nOqjM3//bv13PAyqC+C8+/eK3/upvHB3Ycdx30twkOFjVVqRbj7948sVf+b3ffPD41DsABUuak3rvXFNZlqTOMjlHUIrjUCCps1a9qBRhJlHUCRXgS4I/KYEAiRTE7EPgqHkcCgszYCWGTNoOOo3Rk2/C3Bzuxlgt1GItysLRGIuGfPGNNh5rnjIIWkYUEjKRlEStUCDwkdVUvh/7RbDm8RK96b//spXKGitcBCWg5SHJi4nONB6jZTYRh/2u0tqsgl0cN76Km22MkZA21y/unB3s+13JKLl655239rthtpwno9OUoPD8oJ5gdb2/9aE9PjgLfXr26mXV2KOTum0O33j7UWjrlLhtF8RsLbNqYgSB2YxSyZwLIb/3tTcdgRYbZqur7hKCTVBeXrwyB83m4rIb+tXRkeNczVegsDw4f/GLH+52N0OU58+uxpiHOCjIwcH8/OSoUfOD7/3oeHVvfrQiRQVUUCBkFYVsw5ynYeKy6dbOWRiMKKYpTTkbcIZM4iHlHmkGQo5UOGshJVuDL3VAFH9QP37/685WKRZjYdftEb2Z2XbeAuOzl9dIlSkESrkMNHfOVzGV/TiSIioGGzJyAnbWKqA3hhTGoSdDokzeIpA1SFxMEeetMqaYVIXi/qvvf+Ur77xNDscpImCcxjJIqHxTt73fPB15mrZ3ps2d5ZuHfqEATTZDlnGMAqUbX9epCmauCgjowBaqSnUU7rxdY+Z+3O6nhCWKsX62z/zhp7+Ynz74m7/3y+nzz3h1yCSVM69urn/t937vX/3T/3I+q//a3/zNpx//96u7d2fheNdtfOx8Bu8rHyCYGNB6tUoEkhH46GhVeXrVbUTLvi+ru0fzk9NCSaahMf6t+2/fbofmaNV112Pfg5G2NdUyAIXL6/71hqGaEhSHNcYCpLtx3K/Hg/M7D+++20+x9MkwWPIROqVyeXF9s2zssg6FXaiglKmo+ABIGmPcd5qFoYSAzIWUCN0iHPilu76+aIF824Cp0Q422CZHb/f3sredvLrZN8RntamtTJJvB+qSPbj7FjlXeBw310OKqupcNatrkIIEuXCSAY0reSKsBP2Xp8QWHecChL5aWIPCJFhNcSfUtGFG4fD+/a8D8x/+mz+/uN6A2a/Hblnm3jqyaTFzB3PLY9zH8NGzm7c++EBHigZ/8OMfffu3f+3enaXxaB2JRm99HFNBUUO2alATploTIEhB9i4oG8gsKs45EGQF1tEYhmIVdczRGGsECYihqEMVZ8CyhyJjTmPqI6pJKUXWeeNdpZaxZIwpG/qShp5BRCQPuVvYVGHgBMagocJkSsk26rCc1cZQcH5lq5vbTTVvqkdhieH2e88Co81amDOXmTMwUf8qQiQ4rMUg56S3yfRiV3U9W4bTA463m/20WjTcr1vTyK43wAVyTmKaSjmJjIrkwB8dzmwNKm7c9s4qx/2d89OppHunZ8f3zgH5u3/2/QePPviV73xn2l3leBunEkILaNpKUh64oPXV/mbngzt/BJnSsB2LyPd/+MN9nAKjsnz04mZ7Mxw8fYXeko1aA2E187auXSnTNz54c7fduKppnB7U1dffef+zp9dBirEkDFgUCouwQunWW8jRMFGk2G+VYyrE6kXVkTFU0AVb+9xDKRk8CoqC8Q1ZCoY9ql3duX927wFymRnb7XpLVpAPzw9djVcvb/f9aMjQBIposPLzRRWqy9evplJI1aKxSEyo1gICoWmc29zcBgZEK4oFANk50WBIQZk1YyQqp/Xy6x989dEbj6bUx5LAWQRsQQMaJDvxrs/mpsuXw/rdtzIHRvQL4+3MSMrrAn2cQGfxS4wIgiUjUIz3UtmCKhkiQ6dm209X24vN9e7gzqOvf+uvQ/8q337U3nnQnpxXcXf97MnR0fL286dXn3747/8n/7tu88U0qqlnT1/vfOmDY7IuEAXUYHExc42viZxBdlYOD452m/Vmu5+idrk/Xx5a10iJMo1FICwPzpdHnEfTtqvKSREPyZCCq+oHJ0f3FqayOSbLpR/77f7q2cVlALs0ofWubhp74BxSUj45Pnrn0YPd9fXZ+SOO665ET1lEyFSZOHbXY+z7bk3GWkSOyaBBIgN0e/nMNFZFLMyMoogwGGMoBOdNZewAtq9yKePkFKfM65x7rQ/uHpNpL2+3N1dPEcaqCqFuJQtncLZKhQWsIEMuRpUoOfRFQMWIoirCl9h5JULjHVdutS9dnFJT1wVK3YTHj+/v+pFL3A4Z0CgYW9lHbz2cODG4P/3p0zv3vjprVv2Ub7cvlof5gw/u9NstTBSzKRjRFPaWrLOTSuFq7o0JxZmUOtAMQGlKXArDBBpikdBUxgQAKqDgUFmct8TApAnAkJvP5g7cmIZplGmSWduSVc12GMt6v61qRFQuxRqjf4lyFSaQIc+QHIZEhMQOAQsKoHK2VWUBME659HsoWtkqTel22h6czBffvD9+/0VwFUIuLMiawNepdhfThEUPUbyUlCtRuE5UFqEN7I52fezGG+j7cTNIHm0Dh2eHTeXH/Q0Xul1384O5sWleN9XcrtfZBJvz9Pbbj0PbjAUfvv/N6sgrb37nd35TxY/jRkzywRjTgHEJVVIyplY1xosJaizOonv0ZtP1Y7/vj8QYpBxHA+b6+uZ2Gr/64KELYFt0lTdSWyhfeedxkomltPYwshAJWp4ftPL8orK2gAChGODEhlAIwbIl50y1u4ky9gpF0ORsVYgCZPnS/TCBiEuWjChkAJA0V95kP07w3oM3EUBTQeN3m4GMbedmNasN6/XVNRlFIHSIiqF2dd1qnGI/KKIRY4EExCMxoUgGhPV+QEJjPJeiCkpoDFgwSUd3RMuV9bPwqHon5XsIVZo2gkxGDKIFsuxI9fLi1ceffLodJ+vqIv71zV7eA/KNpqF2dOfkCAl5HTfjtDxQgegQvuSrEibpL6ZrT2a+H9PnL59f325OT8/+xt/5u0tTfvb9f3F6flqq0+bs/OTe/dvnTy8+/ezh6eGf/LN//s1f/uXDQ/uDHz1vqnucPciu4ph1gno2I515//DB+eFBVabJQqUohDHHbIx/72u/lBLc7od7D+4CQlAzdqOtWloeOGHpYgi1K6mUXMZIpi3YGNPMauMdsPoYdchKYf7ee2cOxEDlwYiq815KIgDI8vDO/e+/fHW9vj2eE4CdYjHCWbaTi30/7Ls9OKvM3nhBKgrGKcs0jWMe5ODwSER2t1ez+aIUJa8UsKCj0PhFOW2W6Ro3t8PIFfnj04PDftq/fv5kOw6FB6sRSLIaQ4IGjTpjLAAShKIZDWaJ3QTgKwAFdEgWnNGSRVGwVLUThtouG89Sct933dCfPzzA8JUvPv/0djd0Y25rVLXYNFOEn/zsk+JWd9+8M/IYZQTX3Xn7bNyvmXNWw+S8b9UYQ+jIt+THYcr7OF8eZyhjMbupG/KUYibQohOXbLzLmQPVFptCEUBm9awIC6F1KNkEqZah0VK8n0MfC5tQzZw1QsUa2Q0p950JITiXcgEgcgRGyz6mxKkykyqBAZBMZNAqezLGpoyEtvKep5GZV2e+28RV1eYsctbiV8+3P79u1ARyUYotbBiMQb7oSjZwbHnh192worpf76s91YervasikaCNnlPepy325fLxncPahQH07skdT8ZUvppZLp2LHFUm5bae2bamJL5Zro5Obq5GkDGYzNOtarRgsYhorLwBNCmhgEbWk4fvn959MHRjyYV5zCWyMcqMIgjw203Y7bel24z9fr277Tf9IrTLeRX3vfEz5ly1aHIqruymviS4e+9EDUThgkqKX2ICiZylidhmoNT3lXUFLEI2mNHYlDIZLwVAiiiCCopp7byUxOomRuXi756eP37IEzR+3u0nV7U5xYODg6CuX/dXF2skRIRM7BFcW1eB9q9vUQoRogBnNkEdkBUxPsSpp1KMWFXMUhRAcyIQa6yb68NfOqjmjGWKicbsrfGpFMhcUqlNNata8low/vyTV1fdlaGG41CAv/fzn7734N4HDx/23SFLWoA9f1SlMv7w5z/adEOpHKAiuoA2Qwpi824/GvrpF0+WB8u//bf/3VrGlz/7g2F3dXzvtDhvVP/kD//w1csvfuVXvr44dP/yX//R8ji9+fWHn/zijxH2aowVmTUUXANoSENCOTw+OJq77ukLzaQOvPOKuVk+mB8dAWUHtBqyrdqCZI2iiHMhUO2NFttJ3NuSAJTqRrHORSANlaw1A6KrEdRC295BNKKRioExWUMWCijHzFPi2dHZr/z6b8b9NsVCtgGwU78pJb/ev8o5VYsZIykig8uCy9NjhHR9+RKdm4c6tPM+dzzuY+qKSO1nddWa1ivqbHGy79bsJ5yxY+vC/Or29c3mdsxsMA95UCxeLQA4azLnktQAOzRqVBBGKEiqkjEWZ4DBOF+rWpPRBmA0Ixm0KkperUnocyWS+hxX5wers691t5ttLM6HwkOE2+//+KNPPtn83r/3GxBoGrucro7vLrOFENkVwFkDCEoudXu0mF1CDL5GVtsNe+s48T6AABR0iGq0WANGi4AiSwqVA/BpmhCxFBYUZIcK6JQNoZ9td5vbaW/IliSYAagglMqHbj/EPKFrnHcsuUgC5W7cs4VR80IzRaVitWUgQFFBsgFtZfHVq6u28fOmXW/WaIxH8nW93nTuvqtlmT/amwShBIWRgAGojQd8NW1yKsfetIudis3qdBhuBObLZhFg5lsfpqbe513XrT9/fjWvmtXBojnw05iEe8lht59uLgYX8qJdBGMRsXL2J9/7g2dPTu8/PF8enzBMFi2PTQQuOhpjUiomU8zZ+qqCJqxW1eq4Whb4MuuKFAFRUYSNtTH2ppn1ZIpIPW5LjJu+FPZjyihgQ/3JZx+/+cY90smQZZP9jLohGfBYmJTVFABkYRFn0Uxj54NF50mgAog4iKIUGGMhtsBJDZADwMihSsx5iDB6QXnv3beqesFDKaSbbmcRqxZX87lRfvHyBaohNKpiGSHU7eygpHETN4UiKCWkYC06AeTFYj7lFFO2SlSKEhrLCHx67DxVpUzHby6qRVHNdR3ESCLrbEURSnJG+rapLdFiuSBHWkzODpwRmQrzq5L+03/y333j/jvvPmwXc5IxB0PHh6d/5dd++y++9/3b26vl8ogAyRBYBY3F4C6N7z08P2ir+MXPgLoF3o5zWHc3r57+IrOVHB48epyLfPeP/2hemeb++W33GdmhrinzHtBVs9ZZk+LYT7YhPV/Nh/V17PcIZE2Vclsdns1Pj50VMCqSHBJVSMbIyP3+tqJVC2J8MLNZnl5rmlgpsXjPnkpVCqBmxGAcWCpAWToCbFytmnJ/XQVS6NiQsQ25JirZxZGvF8P65YRobNNjPw5c3PF8bhOM6jFYJ5FLTBevvvDW1PWsCaFu54zcdfvaGxYR5Cnvskxem7qpQVxTL2HJatBP8Oz1y64rwdWMUz92hQtZl9WBwphGyh4oI0BNwTQNMAojGrRgi3CSAg5YouRkjZ2JnTs/sUwG1SYubKwxNoQA5OyoeZi0WR2I2NtYMKV9F5/fbNuHp3uYTNcHyq4lLoWVpgSq4CUzZ4aSczYixNlWJnO2zgDx2EU2zldWKWZVAGuJcmREJVLFMEwJQAgh8zBxLKImTuRb5NEIALi+vw4zDwWojIkxT2XkjGiNq0BGIgHjCkTDWQsxZ5TSNJ7AlKKgWvoJrSdyQmBvX78+WS3mc+/qcNNt2/nS+yoN49DvKyjtzKU7Zkph9oSXUnFQTQVZMyOS1nsjMeuZoXlJFEd1VeFys3ZT5eeLUjf1okKpS5LuetNv+s0+mcsrFaqIfGWvxxFN++7p3dJPaKnyxgLGFNeXv+i7G/rgK6f373bTqB5Qk5YppmjIJqPQ1AqusjNEAyCqAgCA8KVeAQIZqwLONSencx54d3t7fXk78RBWi73IbDaDwt47H+zQq69rgBgcdF2W7MkaRKtKCogWOUMBo/1AVrF2qoCChMZQLsXmTMqllDirG6qhlLFkHsdOMWRWgfHg7OSNR29OKZJzecrCKBZWZ0eFCqf0/OISXUUAIsCOTOvRmmk7KLCSgjKpkEGLJjg3xXi726IxWDRiBHGp5DffP3n7a8c3t1eENVUWa100B5yzGS1kw+y6MWc2VTM3jgzZSLgM9dHZff70yn6ZuFOgiO1U/uTDjz/8TL7y7vG9VVvrOGzX7zb33nvzzY85ppTUuKyKqgAgeV9TfT5rnn72w3e++hvT2EyZb4cnfcwHJ4t1LvdPHvaXw6c/+2jaQO0PwFTn52eN0anvgPLVze3u9Yv9NvdDDJX95q9/uyK8Xt/uu3z66P1meWSruWk8mMKlC56KqHHOhEqRQYbCyYHYca8yZZ2c9Uk5JvauMTBgIlKrgB4Mj9HVC9eg6ogFFZ0zgjhacGPqM5PqTuwKZ/NikBlyMxMpOefNNJoqkPFZCqFrmrmoKqdisnWGkFIpdV0lnlgzEaUohPglAApU8hDzmBYHM2O1aWvnMXfTcVKxetP1OgxGIDhvyEumxKIGEAZAa9CoK7BlZSJDLlhL6owDNCVTTslVxqJLORMaJlRWD6AFODMAudCgDFwc+BmnmJR7LS3OUHF1cHcH01/8xR/MwvKdtx49eHycVA0Z5uycy8zCqpxVOCMDAZcEggxsyFITXBwdeQXNlpHsgtxkSyFlUvhLMgaDQikKgkQypYSDZGu7/XVrKnRCzobaWSYWmHqSbFRsYaMCKbHAYK0CuKlkZUMEhAIAxnohFDQoYAwSij04OhimwXpAp5NmGvqS8zCMB8u5MKslnnG+wxrc9U8uDdfkQDRmUnR2Vmwd404lJpZVPYFhnBqvnGV9MVTzuZvbuj68d3e1n6/315vd7dX62aur28177751dnZYt20BvtrctH4W6qZqm37qEg/tzE359vt/8f23t/zoncdRJ02qJVj283YVS9qXtcVgsWmaGYACACICAACoqv7lEwABAEJVRS5njx4PQ5/SlNK0yWPfdaXo6vD0448+u3//6M7dxeb2stuWqp0DQBIhVVWQnCVLAtWUxBN7p3FAQgKS7KDnyvhSySBD9EIJ8hRr35RiuJgy5VzLw6+9G5r5MKZq3ty8WiNrvQirVWOQnn12PWV0FlAUUdXQfNYagHFIqsYaFCkGkQwgUhEZ+96qQSRAFjJlMmhqt/CbbmtaaZq68vOUpzglRNQCmGjcTbXDeRuMA0N4sDqYFJ+9fPrg4YO7H7749OkvvA8glQpnGF1Tttr+8ElZn67fvVMTyc3mydnxG3dOz29vN2PM3vt6FmbNbD+U59fPL0tdH9ztb7d9Xl9sX0DQt95+a3MRP/35R6vx9H/853/yb/+v/6NHv/VYBM/unB3W3Yff/ZfvPjivHMvDst51my5td+uTk/rds6Pu8ovd7b49fOvgwVu2CVwMYkbOTtWDzVDQVUDeIRpNCwuBu7LJYFGM5DxYW82sN6CInEhUJhUoUXlUMt7VwRPF2Nu55UmTTCJClCvwUjjlV8OwNot76Be28Vbi7csXZSyurQLZMU++CYK03Ww9iKqYomQJRZBgmoaC2RDFpJUXAoJsBEzVzpwz25vrtp1Vy6XxQRs8OijduHm2u0ZgAjKKoBkQUBSMAxCjaMir+ZKzZoBsFikyJonOBy5s0GAUS5wAQbJ33grkiS0ZEUaHRZhsVRF55Kx9lFG57Dlr6+4+ut/cvhp9VjD2y6hgh8ggzDZU4H2KYxEl7wooIgCoIwQVyRmaGidTJiaw1holCMYaaxNzhoJWhjKAgHcBMEjkLKm2YFIBxdFJOGpBNDM78h6JY2bvGE3OoGgQ3MipG2/bKlShKZiB0GINWgk4NcwIhI7QIjgpYNGZHDHy5KM5OjyGMa53GzerMdipi8gUqpBbiDPjrdt8fN10YlkMQtRkDHmkxWS7q6SxMnOearOXoVJnkfJ+O43W1bNm1SyXdyq/WjSr+WxRtdfgQj+NvibgsWAzGW1sRa7icbDWC6EJ1gV6+eonL1///ODknrC++947s2pBaJGn4XaLhIlzjfClYP3/1Qq+RN+D4pfHo8pqZLWsgcNsdpLLJDx0w76um+3lvr/uvEcg2XXjeh9taAEYSMihqkoRFmRUFCUfEIGcy0mMpWGMJbKrOASsfYAo/TBqThYtoLHkF8vFUKexgbPH75Soc9903cAxB2sOlpXFAtk8f30ZqhoksxIotr6dV83NzdWYRJnQgEdnDSGBIPTdGIwn4MIFAImNEWMbQiyr5ZJtKMCpjCCFQIf9OO1HV8g1xtdSIKtx6Lyb1bsXN5rmqc9vnL/54WcfqvFOBqNiwBqsFM3O0g9uxnWO7x81UF8fnjxeHqx88IBYVbXxMJX04Lg+vbv66NPL2lS3++vLq89tLfcfPTxaNO0eVl9/6+Lm8rge/+U//s/V4bxezGrzm99591e+sko3X2zSVLf1YWjv3Ju7R15Khu3lbnPdLO+cPPgKWMeFGYszwimbYBCRkpKxREGBiqoPiCYLRMxAYo0KiAXmwqOCASzKzBGzmFQsceWKEUoKFCMxIdcHrm543BrJwAIsVG4UCoRTdC7G/vrlq1mz9GiUR/JoGh+nhEXFoRgCJrSuqRxPOZWEXkVRRXNmI2oFFUvKxCKlTEPvyZFpajE5lduTA3+7cxe3U8GiKKpk0FnnjEUWQoXaWyCIHJWgaVsVKZyZR+FiTM0CpLawFIlfRh9oEVALYL78t6iQohKRMwZsBoU8KZgEKrP5orZ0dX3lZ4vlcm6VDNIUk7feOoeWVMESi4pVUs4WMiqIAVZjEzvjUpogkDUWACIXUSUiw5ZhTBIxVpWN5ITY2DJTl9BJn0pVz5uw8EVHKfv9sM0TsBhjU4wxS+bCeTCWaxsgE6JQERCo3MksnH8Jr0NEyeS8ByVUsDJNddMWpraaM0PMgEg2OBYZpmidbev54eFic3uRz6hxp/qzjdyYWsXDCJSLVSt+xka3MA3Sn6LM/TDlGas3lkvKN1fj1rqT+Xy5ak/n7cGiPjjcb15yHvoMJSU7rwIU7gezbLwaQ1XSYtkZguByyv3Lz3fOLF+0jfDFarY8PGowMXhmyYBfqpQiEqiCflltgaqqApERVh7GkiNYO6QCucQxDt0w91Wu8u22Wy6WLPL6cstKgvnLYTsbEEI2JjMXUCdlSsxirAPbNimqYlksA0BBysaahpbMmCQomC7DrPLkzQT5O7/xN1bNMUX23m9vrw3Z0ITV8ZK0XFxe7eNUNaFSHKOAaUO97OPUjT2SWCZD5EBAhEH3Yw/qDCCAFiySwSWoSKuZvPHgCCnmhDkDkHLWvmzyVByS9QpWyKElH6OWLMPYp5ychGHojEcQ4DI5LBZIGMQQeQsGU9JnG913m8+e5K6j99+4Y9WV0l28+IShRIaK6I03P/jmB2/95Ke/+Pynf5ZyWp0cL+Tsrs101qRz8yvffPje23e+++NPt91oCR/eOf0r3zjpLp/sbi7JEpdGyg6AF7VYbCnnachnb96X4FEKZDtrqQg7Yx0JcHFFx/3o5swWwFBiLfvRlCQqfdHVfIklliIIWUM2zihQKX52/BhmB5AoTnsmdfVMjS+EVX1iHEqxr37xA18BNi2DwX5nhqGg2w7DOO6a9kCcjTm17azEbAXJ+UnzkHS1ODg6P+u2F7nfO2M1F9Ayt1VJSQmAyCHxFCeMRKAs035sCC2Fen4Wx+2DO9oP8SaqIFa+0kKx5BrR+ConFogoVKERQo6TQe+tq4yb0kBGGUWgDFOxxhhDnWgwwVsjuYhk66xkJhAgSqpRRZ3TXLDAlDJLrBp/9vhcnZ80O0GJwEpFkUU4s7D4xnfDxArWUSpR2SqBIEDfWTJFM5mgwMQwSh7GQcE6V3tjGmoTqTADegUFKypuGvb7283oY3fZL6vKOE+hWh4utDCXAgj9dNv1W+Jo0RmcGfQg2atrcLbyZ7Vtk0y5aAG27AgBKBOCRbRWqLZtSmOXslo6uX8exzR008HBLBez6aNry1Z6jvHxm2+Rr/d//iwM6LNT0YionDygFqVIMyz7yK5xYnRAVuDaEufcXW5kzKuDQ1fPD8/C4cHJdv0il6tkjOhguDbAqR8JbNICCt44hRyqahpH7qbXN1cp9fPjw24/73o7a4KXAGSssQr6ZW2F/7/OUBGFMI/x+mpze/XapbGIGffj7eWaeTIWxn6vuS6AdWtKmnZ7aasaTdlETsKVImSx4FSRsghQEVQQBMWMHo11GhqjlYXI2ltrfV8Ga70aEWMJKAHeav7mb/21u2++3cfpuJ5thylmDEZny4rIENMXz66td5xwEioy1rO5Dy7HbeqLQArBktWSi7Nhu9+UwsEETgVNUXBV1sZAVA4LB0EsWUdFxJRR992AlZ211TSOE5CrTVs3vM9Xl6988FUVMDQ9T4AwX8zmth4gC1C2VpEQSC2oYZMpk95Uze7ZePvPf/DZWx8/PDqYNegsCwHZNoH5+JOP33zfvvP+GeF7yO7x2/dnQbdXL7pNlszeuaOze3/nt79+M02o+f7sdLq6GLdr40yWHAphMR6LZhQar/t1tbzTHp8bNWWfzTygIco9I4sqCHBK/bQ9Oo+gjnw1Pzzpn7+6ff6KsWjdVsYE75tZqwQFSlZwVFCgz7CqDnIo1TxI7IzhMo0Wg1QSEyoRs72+ugLa1u1hvToAEW9dCK0JHTNj1mWofaiKNxbt+vZyyilgANTN/joNgxHOKJVByJIkszIWRGtt8EZVNIOFlEdJCr0uDk98HSyknKbHd46np686SVPZSQYVk5ittCiu9DFUwWONarjiCaYaldmA8UA1FjYqyKxIhTNyUZtKHsEYAVTJSGoQSQGKekP9NHhyhcZYJlKJXTk5P46YBWTCiSXGCGlUWSsYNNbWVVV53/qgRUTtoBgygtFIoEDO1jpmdRAlcxYDzqPlkgEhOCi5FETQzBqT6jQU7Ettq6wKDFTV1cwb7wsoWefVbba73CfJwsbZApVTg6isqUhj5z5UQGCA0lgYyQafyCJTC8Zm9l031QHQlsp67+vb15dVaFCUAPMwoppAYRkWt9urm/1Nez5rfu189+PncBFnxUDRWLhCYxEM6clQuSRccTlgrbQUKWDJGpTY39yWIc9XK7cMENzp/XfjeLxfX3XbKxCCXMZuyqoMaq1nRjBZrFSz5vMfPMECzdv3m+DambPBATVAQdDmohXgX5ZZhAKAgOO+e/365TBsBPwihCevn5S+eKtgUgKmlAtzSpkIF/Mqq60Ko+A09N3N9vD0yLVYMpesoEgEKCBFSYE4p/2AEgsqeqeayGFxwN2Upwihqj1OgomBWv+tv/rrdx+8EZM6smjsZrcmFO/tyemhCl9frzfTFtAa1VIEQghNRQTDvlMBNYaMVRTj664bhCEYBzkXVaMaBFtxSMA0nd5ZuIo4lpJpv+9ySkhgEQZWdTY460K968ru1fbmZt3OKhPaKduboTOowCmXLD6IAosoZmMRiVRFiohkb6Q5n+0v+g+/2F+v86OzxcmJr1s1kEkJIb/44hdn54/ef/urBJr6F69fr7moiFjrNOWLF89sHfx8FaxZv/pU+s4aIwUAbJTJYEgCQ5yUM0Pz3hu/rBqQhDFXlRGyRtkYBYPMJaPuuv0iTcY6gFCtHtTLw+poNq1vyKMLtbMOnZ/GCOg055hgiNrWLknUqjGE1vg07faxd857sqwwgmkfv+GGo5svPnn96nOzuWmPTqrGd6k43wJiVXlwEEWC9+N2n4bek4baE+Vpc4tCbFBFY0xGpSgzfEmEiZoFyUCRKeesPoTEaYOj+roV03TTS+dS7fcvrjdJsmHIpcpUvNsvqPG26rINfnBYY/Fka8YE3oNxhUeLxhKNUhDUkk2ZteQQWlAlNApAhIqiIgqQchQtim4YeywEGlMemA99qJgLxam1Vi3mRgtqz2niqdsP2bmRrA9N3TSmFGBIuagBRVUxXAqqccYhFK9qEPpxLGzJO2exyERovK27bZf3uaGKvAUF7+pUWLtSty5r6oehu16nmC0YRyFp2fPQciHeKylI5ataRCAXV7kBQQBA1bAAQD+OlmZgrBFhA8aqrwosbLW+3TSLhQe3Wlb7ri+Zh+04q2YBa1Z5Hm/vfePx7mfP80X0hQySpBSVOWBg2yihwPW0pQMIizBgRNaKyLmGBXaXN24gXDkzP/b+7tHZ0XJ5r9t+TiYOY8xqFGzw4CyXNHGsvKt+6Ze/OpvPskjMVKEBCgoGkLjIl+N1UUVEFUTh25vrYVjPTD48OMLZcRxvdz+61mQ5WLRUWc+pIBgWMA5EIXP2jhCtgXD/5KhZtRM7BQuUlQWJiEFYS85jt5lVbuxHdWaMA26Sb5emaaY0OHIpZbRYsqCb/eqv/5Wze/emxI5s41zOMaWRMK9Wx4DMDM+e34BgIS1QrMNQhWbWcJriNFkybCAldY6mHFOKlbNYoAgrATHM1bZg96pihCFdX183LtzcjsPYE3HdtAzITK2pPGu/KVevXw/7vTrjXRs3cTcNwzjVVqbcb0e0HACVLKODAqKxgGbN4tDoEIfWhbNVd3E97fJud3una+6c29NVRcDGcpr4iyc/LkSB5iuPSBmoZjMKZwKLALHHHG/Bz4MSEadScpHEjCYZSFLMKMmCe/+D72TyuZTglJyzYY7GkrlVLZmRBWFx8vj0QIMXVaSggaKiv3uXywh5ZIyas+aESft+2k88RevnR4ezA6Fscy+cQJOgNfUiNCesFoqAGhsqHfYCYBf1zc3VF1fPh9zeffz+/PDAOI+VYVTjHaAO/caCGmfQgAyD1VxsANBSmBTIO0LTNG2aeqPAuQgplESGLBJwtqJ5Gmyo23ZxfHx29fyJc34/dOQCZEVkTmVbMkOam6ZwEFBy4HLSAuhC4tHWnJjZuKIuWEeIKmhtECkpsTGUNaO1KEYVsw5ssgJphrHfSC6GKKnM7y6gThmF0HMJrKowJcqJGFVrQLGhxJSUR9F9SgvfEJCysBS1BtAiEYpaIKM4WB5Gdr4FUMmsJXtLKiDseVRSq2Qz81jGIfVlhxVVldmn1BcpqmCMFxGPliXzxOghGyyGiJ2nOiVuG5OSFCVCMIDOmARiV43FMWLh3bA5PFqhhS5nrPyyOal9GNfbfcmr40PvKs0HQ781VuJm54TN3Lzx7bc3P3uVntxaRXQWCnOCohHImuJarWMcZEp0qFpRnHJxyZnaGaOJ+Zpvbq7aw/nsqKrbA9+0Ircx7aY0CfegjTVufXMbh2a5WFXBVI4c10M0VEy3G2lpLGfIAlIQAfHLGXnc3l4ZKAetL8IAsDxYbmXSYlWTKmjG1Wo+iqaUphKd9Rkwiy6DSwJI1nszDRsb7ltwQgkQMoBIAVBjrXXGn86HyxTEcaGsWEYd0hoJfeUx6sDCLnznd3/r8OGD6+62qeZgCZ29uL1kowvvlgdzMnC76a42W2t8BgBSQpi3M2HZ7m+VxNUeVVVGyMJDDlRZMKK5QMYsNYbWeVD+0kWe9lOzrG62N+OUm7YxBPNFa9jeXO1cYxiVwex2kYd0fHxmtemnNGlU2gOWtnG8M3vurUltoFC5YiSa6Cx7Y5KKQRqniMHgLMhQxmKvLksc8njoj+ZmtbDFKqDNhTKFENqASswGUUTQuAKacRNg4awBjgVo0jKWKSU/PziIww5UiuJieYjODWlnm8a0tXcV2GCMgzBjBktkQpWwYnRaohoxtrHicm5s8Oa4UMp8/XraT1LZZ5+/6EXuPXhzsaRqPrfWAjLxJAKMgdysrS2jVWXgTCB9t12/fJJycqGez+lmeskAxhkGXsyqQlL7qpnNr64uQNl7k1A5Dw6Q2Sr95RwCrRUAFGQE38xMLGUcMiSx5K2rTJ1lwsKQAIuy5nl70NW7e+fh9Hr/6nZjbLBIjfUsOQIHw4GwwLBNG4uiMje2rTwZMYTkyVQ2kDkw5MVZFkH0yLlwIWOYc5HJFJVSCnIpcbi9BUBF1w2juNJQzeiQKHMygTrO4jFP7MQaJEaRKEGNApbCxJBNtK5WBVZOqdSNSzl7450xQmJEqrYGdk5Kydk6S1SYyRjT1D77pFos2RnPSyGxnIeJszoMpLBPwoCH7QHkUsQbH0RV2HEqbTgEdsJsrBvGQVjVG3GGETnpYtZYiNKGStBXbPquR0NoLQXb5ck401qTU0xTqoNzZiYg7Xzlcf7sBx998vKlH7DaaTFARmMUC4YQPQakECxgpnIDcdJyCK6xYmScxspXFtFntaQy7DelnzUHYTbT6mwWjnzcr28vnj67rGo4Pz3KMW83+3Y2m/Zb65pq1WYo6AM4AgRDxlov+mVHqFe3N94qGQDjQJDKMHQX89VZmJ9018+tZ7U4ScbK6AA5Rk2FEUWIGLx1WJkx91zQ+mRJixAQFgXnDSIYWzW12eyuYDbjXlOegKqJo+oU6lqtLWiV4K/+9u8ePHj0+edP53WYL4MqadY0Zg+0aBbWOQZ9ffmKkdFYLICqPnhXzXKKw7hHQoEMWqzRMo41ugICrMSIgI3aQxOIpUcoJKjAUbbrnUc4XM1Fsa5mBmG72Q5jT9XMN3WtpnAOYebbttv1TB4zVWYrMHUDEQJPJVNJo3iT0RM1zjVKBhWQ9Msw0mKs91ZYZbQ1YaWjuU3b1USHywNTO2SN0z7F/vh4XoNYQUaOMmY2aqBwymXvSIXMyOlys3704FfvPfzK7uLSQAqtP1gcMKkNrpkvyBklEIiqKPUMC0COORG5VMqICEy+VKgODTCayh881LG/+OxF2guh0+ro7v07VVBnh8rnMq69LQpMVEkxRtTkFMtYWDzVaeivnz9nRaxbkLA4Ov/q+ePdFNE5a8GgzpsmjenlixdpGurgORWJWUnEVqDeJQYHSkYRGIpVjT17X+cxImqiQkSIkFJUi7ZqUp6kFAavhKvj47pzv/but/7Zn/zBxBGxJcpOZEhpUzKNu9A4JAy+UpgcMRaPQtYFAeCSfKnBNGMZC+SArRJbMta4cerGYU9IjmicuovLV6Xr6qb11ZIsGXCyYVH0gTBz29bdxEklGIdsAKxCwgokFkKUUgCgaEkS0ZBkUUAUMsayqhCOUSzaXkc2k5BhAQG1qhRC5Zv1/pI5kkHViAWxeAO2QGIwhDWavB6v91OpqyaQtX4OKeSocztv5zUbn6ZEjpBQQRAhgLXGZVZrfVO1dqKUGY7vPd6s1zY0U5mslsDU+OB8LVkuXl+sFnMkkxMvDxb5avPyz3569clzoxxHieAKROMlZVFSKGZWLUjIu8aRmQh8tjlyXKZmVaE33VSCza3zhiAz2+zTZuh3e5q75XxZ+ZN7j86OVuubyydc/KtXL06PDqtQ/+Cnvzg4Ovyl828JSWMrZZeFlAgMkKqAIllCc3P73KE8uPugFIzstttbVx0/fuP+k2mdYiRKyKSYrCWPMA5x24+LlQuH86YKYy7ZaBftJEVVHRoxRTKC8UiSUxz7CTI5JXBqXMi5FITF6qBplkPkQfN3/tpvnN+99/mT53Hfv3XvDhRpg+nWXcjGBlwcLgmqsR+urzYoyCwebEGGxmcy49gZtRaVxALIuJ8qCkCsMopYUXBAK1sFsRmUDbIiWhqZTZJwNOty74K3Og6bbtuPzeLAzzwgXr1+FbmrDg7Xsc+smGNrtZqdbOOTP/w3z7d9JA8gljX1WUigsZlaVkRUIlCyLrGmnOp5sLHPpRusw1mYdNUN+XW3PT9ol7YxUDa7qefhdLlwBKqTZpcmGguF2cSmqrAyoPuudF2+uLpZHU2hdm3tq9oKqg3zejGzwaABo0i5jzga771rAJBzxLEAsDpvrMucwQhgTKyagLS0d09+9r9898T5o4d3LUUno0WLRqxuQRgBuHCJUtLkUY0BIziB22/G48OziTgVIFZBTMKFIyG2zaytXN6N+/22MJrgwUDpBwBBAAciWhCZRRw6YESDjAIl9tMEqr6qgQBUi4h3NKY8TH3wNWcAY7xHZEDlw/nig0dv/MXnP8kOikDUHIzJBWw1Pz16CAg321fOFEwkJRZbMSBjVuenwtazx0xFFL7MmGBFk4sQeQbpx+2Ye9c2i8WBWEUFB66kPOUIw86WUClcDtfWhVDXygZJE7MoAJkiETUj/n9Z+tOmW5PsPA9bU2Y+w977Hc5YVd1d3Y2pCZASAZCEKTvMkBxh+VebEQoHZVukCBMAATTYc1fVqTO8w977GTJzDf5w9CMyI9fK+76usapidyD2oIyDgJpubhKWgxODh+/kaDkxIEGEdioCSF0vhmsGuDw+WFXhY+2CxJmEiRUvT+fv135tgr97/OWX92+yD4klONq+j9McjAaWJTNFYkDOOZJEV8QICQaZxrk1rXWLCA8cBln3y4xFeizbMp/u59MpTSnl4oR5909//YvysN/QcGmrC2B0aJ26jEicWD22y9mQA+v98aYksc3A0vZtdo0AAQAASURBVL5jnNVuOd0WBV18VwxwSRqZU0pjX+rT5YMcjuXmdHP80XhzY3r1dFiX89N1v72dTje5tz6mo/ddwYiyI6kZEIIBoRPqi7vTKALNQ4OBxPuH3/63Icvd7Xh9bGttLr0wQ0Czcl1q69e7ux9Vh+vDdTkv0zC9uLn5uGDLYtHJggqCshmqWiB25N7c1pbTaNxr22vj6I5j+Tf/7t++fP2DX//6+2/fffjRT37ozOKRpTw9fSCh4TCkiRH7+/ef9hZAmAAJUWS4mY9a+35eGFkkUi7vH84ZGZANQ53UNAXf4TAqN/OG3lA7VDmQzHh8PUrJ/LTHsi20hRRAmcZchHuDerGxzNnzdmlVI0Dffnk3Mvz8v27/7e/ej0doZMWydm4pGvlQCEbqSdkZw6UrEXSEplhSJge2Tbecpjd+0K2++9D2QMsgRLxuurfHsUyFEfZWd6sAutVPF3l5elMou7x589WPfv7zXzyd//3/+O/+BylkFJ6K3NwTBmjV/epAe1UeRkK2klUAMfXLdylRDZaCFgbYTLVbgwaCSea7P/xXf3l3vNfL4rqPx2EcxdECmgLndPClhV4ldQJq2q/XbcPT4fY1Lsvzh+934H/69ve/+f23BDLPp5/97E8zISOdlx0BMMFQku6rI6ibIKt3EmjR1adEIeEUbE6ALvPp/vUfLOdflM6YxE27dUKgIAe1vpGk6MhQUjno03dfv7j9+e/HC1Dz6O1zFmqY5h+N8vLS3l3bpQgfhRCI1TMRplTNH7ZLCy6JCJhI9r6Hm20VhB0U3QE8cc5DSVwM1GuFQEPsjgmATc29Y1+1vfCDWUcPs0YYbLkFAZJZJKQCHK1hIhKkQFRh4qVXHpKxK0XvEKYpjVfdCANRAIdtedRdt2XtS2UsmJLr7kgrOdpz7ZeznZsM4IeKVvfGQbWb7t6CBY/ZoPU+JAF0c+uuqQw5mDW6IHOWAVMSTABlmjFYhZv2WpWI1l4nsJu7475ddbPj6f75P/2T/+48R95FNqfWmyREoEA2UK7AHpnhYnv1Rou/Gt+ypNlxrAy1Pm1n88j3M1C+1soYIJZQocFRDi3Fdr6u53W53+f745xfvnr7Zuvb9vG718CSsW0K3MvoVNUZe0SrPWZHYoBQc0aXUhQCyL23eYr1enWSXGIYieR4rY8ZqCAnBHL/o6+/epFzM/zlN+/2rb19K2nvHEXK3OqWkBJoiHTviIhJxLLZM/VG4aXroePyYenHw//5//rv5jcvfv/L3z++/3Sax9PtQcEP492npx2kGCyvX7/KybX299+/AyAgZw4Ay2MehnR+fKraSh4kycf3HxEhYbKuGuY9ktM9TUMUrWoRlhCsA0rYdjgWQluuV3RmpGrVvCh4GsGjR2S09IP7H5rC44f3mOjudh5m6ZX+419/ULbbFyNL+fDN6gCcYBiQp94J3SkxpEQc6KiSUmuwQ5JBQivsK/HKA7nMpzdz4GXZoGvloWyenjVSq7kNBlobvXz19fFwTMNpml/N4x1Eu3v5o//9P/37//d/+Y//t//L/1R3zVkQWtu3urxnbMRlSMdJJFSdiBBDY992iELzYJgQyaz2dt5bzzj2hDzOX8/F9s0JCVJhRexIrpFSPlE+Srs2P1sKN7LmPB6LnC7Xp/N33z7t669/97u//uUvnup+yNPdi7f/jBW91g3CLIDHeTrN5ftP3xsYkSAKymcoaaB1RMHgcEBh4WyOAt7qlloahrz27qGSM1GGCqFbN010X9ItZEJ5lzL+6U9++r/90z+ixUjSsFaqzx//oV3SEk+dkOJUvQvTRIpWVa0X6tSxoukolJnAQsMaE3NKHVZbKlhob5lZkcBQULx39qi9Y9KQpASdQ3e7GBFxIgoI5KAwBGyqHkTorVVhRkpIYsrhkWeGbett54GTwsCJg93CkDq4aoqG6xmevt8saq1uKa6fPujy3GlfQAfIIw11ZCXlfkG4sdq6xHXd6qYwHPDy9MV8/9m8IYJm6qERrVl2Ksx4RJWn9TrP89NyySlfL9e7l6d9uxqJsUyntLRz3ZYiOXNp2w6InUgBDsexPW2hpGqYedcWTgEEpFIoNkeIrV4fP3w6Hu7nMe99BYPc5v1dvTxsx7eH4/HOTVvbvPd5BHK1lI7DaAbn61NbH+o0H1/fjlN+8ZM/XOob36/sqa/NvKeExNFaXa7XFy/uzByRbm7un59XQ2IQQFv7xRPjdLi5v3v38F1bliAhHFtPEFsaDKXK+OJTrUH89usvCIUlkwsHbtWRxFUluKO79cRsxNZDMnkJ792wa9b7L7/85//6fzzc3f7uN78+f7qWTC9eHnJi4hQpHq/PEXFzupnKjVB7Ol+WdWESRETIwMRl3ve4Pl8DAZkfPn2yZsf52NsWEYIiDe5kOkZuPTzYQIMAhAhwWc5g99sS1j2XQYm9Z7CcWNX73qxtmkrW3lsPKUVyOk7H2laSE5349svjzV1+flo0WmQ2cgFACDCXRERiISY5Cbe2WuqrqwQnAqO69083x1e34z2XKOOdHDn2FmBIpuq1RtgKbfjTn/3FD9/+BHofEh3SYd+vIWu6of/u//SX1fo5GCWDK67vsV8ENwBziK5xeWrj8YZ8M1USmW7uW90IBWmAwNa26LU+noGq3GjiAderRIUSEIau4dIdgwrD2Dd0KCyH8M00BWdMR5bh+v7hum3LstwfDv/zv/m3V/OndVXioaRw27YVEFMaMvKn7z8YmBB5hIUzigZ40ETuDICCELlwBE4e529+Tug9fPn4oUxjKgUJtWlbjcSUcQ28u31Tynj79gefHr79kuDud+X9+WkTAkQ2oNRXXSQVBLEOq9XEkZKZ7ZHIg+fxXsDANdyXfdUGLMpEWlfMHQKbBgHrvhnskSTc3apagyyNcrQoxI0BDKv2NBBCCKUIcwBmSiz7bojeuqd0YMnqBIHOGrYLsa5KEdeo4D5F4jTEDqEIQzhtH5Zvfnf5xjYLV8TUA2ssbugsEGDqAEFpQQr19LTghLCDfSK4TTdfjkdnAoScxQ2sBzgagqIjdIlSG8kwj8u+stB4HMuhnC+Xl3ev+q4INEraYi/zCN2X9bxv7w93A76e9dtzjrgZDm3vEWTeMRxdwI3EQ23C1Lvr3tWWfUpJJ0FJY+bNb7QsdV/Wc7yw6X7Aad5A9209jnTiY9uMhuHEqFtf22XvazkMN7dfDOPMp4OC614fvntMd7Gd1475zQ8RgAgVAIZh+vih195EMPoiEUmptZjuX9zf//j3v/rV6TCPOXWmdoZ62VCtroo5h+ntPD6f1/O6HaebIIYAIERJ7qRQA0MIUvDArESRSyfez5e7L3/0L//t/zCd3n7zu98/fzx/9tjd3t8xcI55v/bwIPGb+4MjmMo33z4aEDFwJAFGhmEY2lpB+5zydl7ath+HY1i0cASH5jcw3nwmBTZvFj6Akq3eK+2/fff7+Xf4g6/frMv5xMSC03z/9NAzibbYN+jNJQ3Pl9VqZ4g3b+6C6rLqMNibV2OLXaOD+0Tc3HoyE/AWnJiZCdA8jHkab4mo7c+tBpMiJ0AqVIrL+eljymmYXwzDNB1H39dlPYfsxINB+oOv/+wnP/pD6p5yHsc0YD1kBEdVHspJMdW1pZK6dz2vcwKAFCQOHNoz2abA3b1aur3P46HWnQE+F0oQCP1YbP321/80vX3z9svXkE2AGLlVA/5swh5ApHYnkj5k7LU/XbWBpgMqGPIXP/xjaaq2yd0pPL25ec3HEzho31sLIMbM1tan5ycNpVLUNbE1AzNIJTEUM9+0TwIFBAwdNNyEciTpptM4Medwa+uKhkIcgWjULpcdfHx5W2Seysn3HZk7sdPOQUi5k3V0VgfsQdYgs/XeepIhpYkhLeenzgl1QvCuntMBkQCRaABDgx6cwY1B9203RQvkYHNED6+KMmtQt+b71ntMclPKQAQKHkZCiO4h6BbJhAwJcNMaxEmwmZZ0enxaWu0qFUVW66ax1U7ubb18ePj0629+sbYWRE6tBFHLwWXFlQkWax0AHaGPIpkhrtgVtC5XzncMkvPIgQCUJbXaQiECSiodC3YfjkMVlqzw/buP82FaAfLxVOb758fHm3EWpr7peDg8PHxans5Wm6Pd/uBu+Prl9nE99tRlHeYUta+emNzcFV0CyRBZQhxjX/R5f1a+fTWztKoZCwYaEvJhf6xPny7yepJXh0iTdv1wfizzlCUmpwETUWrm9dker5/GQ55vcj4MY57W8aYcb7a9nR+f2raYVg/ugJkJeWqb5omDA0TatqLjvpy/+PonP//P/5m3yjdjtL1Fe//9x+r1rr+cCgkg15hT9ljbdkEZGcECg3sApUgso9meAttml2sd5mNv+uUf/Oyf/fmfD4fTr3/1zePThTg31dPNHeSRSHLGpw9nySTCZZKAdrn29x8eMRgckIQch7lMCa/rcwLqVetyncejA3jsROSdb214kQ9Rt+TUqgKjEy8eFWGPfsnnv/vVf7u5OQD6uvXMqVlX1zSkpilbMA8fzk/b1hj3uzfl5qiP1/q8nv/+H//+cn33+V+eSUtGXVm3ThlLZg3oYSVIBM17jQ2TgwKC7ODN20BDavX6+MAHAh4UZUhTQnQaXx5erv3Tsj6+ffn1H339M4oYEhQJwIqxZd7R+3E4FoLnVaVHQL/6pZRymO9rXTu3Dr0gguq0XwyIYmi7KluI9GUbhnsVJyx8nKeU5trG03HX5q5jRiOU8dYicJg8DU1r4AQ0BjjAsO2t9SSfMQBte3h4DLAvvvoRiOAwt0itWmttLGk8zFjKsl3qukKGAgzERrTDlQIohlBEDiKegTAIpuk4H6/PH3evRZJw6a513wM2DkqETh2iU6SpjEC6LQ/lICpMCGOZvnzz5vdPDxmLQSCE69o8mJAwRziiMpCag3Xb9qweYZEyoYGBRxNy6ycaELD37j0AzDk8MCQNBoCAhcoezG4G3UZv1pfnd9isYF4vPB+PJubVvEfgVU0dBw/YdSeV2pIgmS/QM/ncPFQcdWs9OmgKf96vD9flfH53XZptXSCRTi3B2vo5/GBddguRHaNqZLLDcDfiWCr1MI3WsETc3vLtHU0jlVb3xFmIt7312lJhdQRIBp1GIN8ks3zx9Q9DlQOjITWbHLhvl6ud7l9J8tBWo+VxLE4Py3V6e5x/9uNP/+XbAx1OoyE1WFcjreDRZXdNjGg9B0aekOq+LpfHRNPNoUzNOibiNKRw1Mgo+7tdF00vJrhNlsrDvmNtN4fpSMGEBaIHmC77pUaTcWkyDS9fvmhBPI8vxnnb9m9+9buhnHDIWtI8jfX6CbywJIXoFAF6+fRrTscf/8lP/+Hv//qGZ4i4XNfzci1jceCUM6n23iKir+vhcNOIpmncl9UDEEEahDFACqY0lFLGy1Zvvvzhn/73/yrn6Te/++7x+ZMkMjekuHlxQziWfNC+1b0NOb+8O8zTyML/+E+/tc8FU3CiMCQqZd3WWnfB2Pta5sGCIdxcMfgY40kGjBA+mu5EAgVXaN0MBJZ4KDf87tP3/8//7d//ydc/+/rLL42C171uezqcWAmVz8t2Pj8TtjdfzC/enlQ9WH/5q7//9P73YVliRbQtORxQtVND3NDRdfMAkhIi7mDdPJMXikDcAJ1NYSeZMmZyyDEcpxd5ODJItfPW91SOPxhfff3yy5IRIsLDKNRbQAVDKONZokvVLCyIANEYqFwjNoImmMsgCuvj2bbK+eZwup3ScL2ep5wu61LzIx0PLZwYaB5f/OFPfV0hLta3BkmmCXNiZvXkmpAEZfQg2a/P779tmzdi0z4B2b5vlyWQJ7ltgjGOFJ6gizAYZszPT49qNZARNWIDIHAH4OCEsbKnHkGUs4xJhpQzADgC5YxJ6rb1uod0BkQjlASIBmEQe2u5WEq8Xffx9n6Yjtb3H796/Te/+MUCwjKwV6PrAIOHOGJmQlDBLIxEvdVl36KkkXcUKNNwZPZoC8ZokCIZJU6e3JTCgwhRQCuhRTRG7do51bqvl2snAEQQTLr25/fPr9/ec6ItLpshemZAh9YSkXnqmBM5AFnSis/9HBCUx9C97Q/fvv/+3fncrEFYR/ZC1aKBOxgyR/fdV6GGweQUwY5wrs/BUbgMghw500mtozeBGt4C4HaeEKRDc/SIAixETTyyp6goWwtj+Pj8eDgcB1f31chkGCB7871d2v2L+9Z7KkegIuF3d+XV269/AWn5T7++5xeQrvOEH2rTCBEEJ2VIwLBaQpFhVI11XbSRvR7GxBKeHDOkzkiAqfO22fZubY/78PZmPB621p6X2kTnEQfkIQ0NA6KbwfNlwdryvuOcx3Gah+F5tU/reUrnIY33hxMNoZC6qwCQ5EEO23opzBj28u2b26evnj69HzAISmIrFGgQxAiGCTL6i2GKwN1CSASkmYKHR0SiAISuz+fL01q/+uOf/exf/ivq9Nvf/P7h8TklDlR3Os6HNIyEBuhP582DEtHNUCSi7f3dN++J0CEokAjkyFhwebg6+V5bygIgdXdvmlnGzl9gmoMtOBTMAxMtuK7UTUJxq/R0GIeHj7Su9enh009++KMsw/W8mnPfAL22Bk/npUe/vYGXXxyJ+brbf/2nX356OisIJYxNBFmE5NaPE7ZLi4p9YBmBB84lJQqmzuQABlm6o6MziFZYrWPUzLQudVvrfHq5XnqR24E1an11fy8z7ukaAKiWMDjR6sWE8zh0wt2K9a3ZKohAsLE2vSABIYOxkZTjq/PvvzmNN354iQmpVZRC3Lbt6XCaOTq3hsyAzmxupqGt+nBAsE0NGp0iJ5apdQff2uU99O18vj5cH29evpYTE+N8nNQVcxH368dngy6Mw2HWGg9P31XbFRJREcLwbl7JxUmMCK1QAJcULOZw/+Ju2Za6XhCDkNdax3FOeW79GVzDzP8PSWUXRNfu7CbodR8MnYsiH/Lh9Xj89XJlhuwJ09yJmzEBMboAESbCCG+Zxw6OUdQ6IC675iERDRqKtiEhYAiLSXiL8IyQCDujh3cmAEiIVOtS+EhOkkzVnP3D86etXX/6468gsAZiQHJXIXZGo7bsMCAnTODr9bLxMkrqNiztfD6/X+pmPDGM6Iu6A1pAB63EMiT03oHsCoHiBJo8I4JW6FOX6UjOjlF9dWxFRgd1V1OdjzOlUffNIQBTRAFoAYGcPEJar17t7nRKY9brdav1MByJZqhLNBtLJoRJhnk6bIjjYV7W8+Xy3d1f/JD3/fx3v5cikcoAt7HX3daEHOgGnXP2Hg44zfNibd0v+AHy6fYwFFDrYTnlZIGYiSJ7Wa9p/29bO/bx9YgTbN2Wfh4Tnwaabw8hBGYZvXffg9CYl+04RRmLZdEOS6/L+p5HGMBcy/E0lDxYd8ISQOMwVYs/+9N//v/9D/8B3IARsYLy04cnntKJA5OPo2hbCXL+XMCHwmAWaqHOoIYQPBze/PEf/flP/+SfXS7rr//+H60rCXXzCHTil/evCDEngGSX1rKkcRqGUsDht7/5fUQQEwAQkxCWkrV23zprBKAiqqsDoAUaFi6CbBoUYNRD/Kz7xXdjN7Zr/2S8gKWBEyi4dUO3HluD4+0r7L4uT89Vl23PDIebk2MCh7/9x7959/DOABzIsWEqzWKceCw0iGzndVdtWfZ9BQqMXkiEUiAGUetQ2cIYHBn9Elcg65Zv5dX5+QLwXaaSy7FI/vJH95BqG1UyQUBf9622kgYgpENC7uHIwihD35fPvEVDzCIFWAIZRB02z3LzBeYZBlJ3Gcaq1oXKfLAAJ/d6zSFIRryjq6cbylN1xNYhFx6nyCWUou+hV05purn3bx/mebq5uaGczLs196Bn30vY9fH744uXlCcL3vXcbAuAYZ5MwVs4Zk4JnCDo5vBiTHOvD107qUHE5eGjg/W62udpDLyLTONN77mbspCBJRlGIVstkXhUq8qSVD0NmUg0OMtx5G7gDkZBaDRiRmRmYjDmog4iN1kSMZtp7ev1unvdi0F5cdNRySs2Jk2KmYmJGIhcm0BAkGHKwsheewUaKISic4BTVG2GdF6vnz5+mg5HBjfoDkEkyGRm1mpVm0pp0XZUs3V3UH1+PH/48Pi0rO3azLWhgwWpOUGAd9AAHwEyRgBCAxl9OA4ypCHajUj0bhCduZC7QRCNxKdWeShDBKjrtu97rfMEBGFGKWXOvK5nySfuxtY61I4IxJhCz9//frq/d0OV5KB2mlf0gySMzXkM4vf78+u/+snO/vhffveqzPdT3srDZTn0rQW0LmihygjoSek0l23k/en5mw9Lf/V6HEYmUe8KkTKNyGB+ounQ8uVJF618iuFlgZEt9Lw+r7rcHe/GSYBb3/Zkgg55or7V3mw4lXEmQGym664GvG/t8WkdBykFMiOQL/s5Qo639199/dPnD9/n9WksPwFdJANZcIALmcI83VBQPV9dbuhwsssORpmkamcqx7vX/+Kf/9HLn/7kb//z3/7yF790A2VxcOYUBsxwmGfIOOXDw9KVYkKc59kQ976/e3zoBIBKxB4gQgWnum6wGtSaiffP9IDAAumAcosjKhqHausYG9q7dsFDYnCzXm3BrOaIyeu6K0Iu4/m8j3lKMlZdLxd93jUjv7wrMsJl237/q1/8/Ff/YEBuK5omyjHHdaljHlJOI6TT8dASkMC22cenpdpq3okTOEBIRkxZVuscIWqdaW04Yibju8OrL9++YsTm26tX84uXp20/X/cdPRGiglEmzzRIRo+97QotS4oozIxg4CjE5OSABBCtg2ODkJx6W/fn93v1hLDqBjJgmhwESKKwehvIKWq1SKev4vQiorKaSXEXrG62MW1GDjxDjTevvthLkWmIZhDIeRCeJPR3//Q3337z6z+7+atXr169+/RNq63gRO7kvfaWaAocQwIcXh7eDDI9Xr7d2yU5ISKgBUNtlcw9AjGEels+teWcygETqVZ27JcNAlCyBbBCMvRAa5YTJgTKdJxzeUZMp0iE3kmEgbMkZHLylFJQQmOMCHJkWFonMgom3Xt/Tkk4DRGhtnuoUCbMBEYYDO5AwMncgSIYADIEgaA1gvCRsys64LL06RDUET1lAgHYwYE7Sauq68WR24rV+nJusVyXj88fPi69N7do48BeO1v6oz/6s08PH5/O7zvsq23m/mqYb6bXtWvqepKUS/bUG9AeIDSEgYQDCAYwAYkzQwCp91ZrIpYCICtaZhQM51DRtU/TuE8ISHOLeT6K+9ZrztyBCDQMu1EpEgNve+faMmdmeeo1/eztjPLdX//yRZapHCXwES+9WZiIQJgCp4bADhPy8Hpal/79u+/m0/3t7f14COnQa2CJseReDYigFK5rfV8vH56m12n84qSDNNRP54dcZT4Nh+OMLSDDKMgO6ODrpSHxcS4cuaWO4cJdYXnqwTYyZLZBUoKUKP/oB19+H0wan+bvW/OO0fcdb27GQbB4ysWWmsHR9opTjeS2cRqH8f7m9sWLFy9ymv6X/+X/9eF374bCkDACJRAcLfz+5gaEEyZHuj5cZ6F5kGEQyvj820/bsiNzJqCAYJrmkcz3dWsYyEIQpBEeqcMJ+Ugy1kCMJkhhmOJ5vVYJLkGYNl2gIGBE7MFoZMG4XqJXn27HurSn5/N1rUeZ8kzjvSDq03b533/xd+t24SQGmAAZxdWYkQGKSeSkrhZMxqdhGL+6++3736s+ZnQBwSgOzcKyAJgXTMLmgtoa4Ho384TEQjeH480B1+unvZ977QMPBqAeSTLVHlYXD8TIgmqdgIDEgoWJImMXo9qhC2RxlsyA1raOTyvnhIJpvuGUW1szOYJblITm1MGKB7a6+XYlpi4kRO3hffhuHJmZXNTDo5U5E4u6IcRS1WWQVJYPnz5+8+3NzRscDsE7bDtNQ8rp+vET1zSWG0HZdcOuQFy3h6fL70MABI2MYQjyti/cXZkAURzIRyKHaHVdjRVRM53AAMiQsLU1IJTR3bjuPMzuwr0PXISEMAVRJGAuAsDMREIkEZDzkGnYl5VSXPat7o4xMgalUIPPZjlCRMgZhQFbXxfrwTyNM1jPTOrhgIBMTuo1goBHCXEx4w4KDaj1OlLtFmDJzDtIaAcwcFkqYOmP54f3D7+x4HX3relnYZ6x/+s//8vtuuZ8c3f34vff59+9w7WedV1DEzIQ2mko05BYoLN5a9mPCkzmwR4Aam7dIALBGRyjcZBYl3FIlM3EQiH34HBy2WtjKWbABE5cIH+8fro53ZNRXeti23TIfrm2fhCEvm7V/TBhSYOBW+/3f/VTeTE8/od/uN/HiSINtk647nvbu4ISOAQSIEYQ4DyPc4IW/buH3974fDwcRbK4ezMnnVKBcPZ8wFzbYf3NZXuuetun1wPNUtX06dK3/XY8jgUcmVJBtdzQmC0ZDSRCSj0wkqeUhqvvi/W6xRJahD5dP92+uBmGzAlpBO27r7Fiek4lA+WOSn277FvdgQlSTuUmHY/TeINAOaX3H77/5t13fWnHU26mZs6OguAQKdHtzQ0TCMvS1cCPRHdTGZKse3v/+NTdhVMCNu+YqAzD3jal2qyJsLoJQnE80XygJOEGXUAwwhN92p6usJdDcUwN9dE/ePkUZqCYmdYQ3/j8cb25Paxbe3x87Ms2IOWRhxMlMe1hi/3ln/3rv/7r//h4+ejExMWI17qnhCBg3Dt0YFLrHdKAkcf06vXN+3dX8whWhBpkATAwimQUGGXgLe8fdkJc+sMLng7jy/lGAvddl7YvzKkxRufiIkCMpsBUcimczKCSAZohA2jvao0BSJxl9Eg4mCKIMDjScBwOk4Sruq17r6tbK4eDCJmZGjBO6VSUBwXV5+Xp08f7N69K8uXp0/b0/Om796+/+OHtFy8jVY2mEGhpXbbzspUjQse2PvduA+X5dFN7yxje9tr2kgaQYby9rZfn2q4zs7tedGUmAEIgBmq6EDlBsKCCsmQ0BCAU1m7EbmZEGQnNVcLMAYUUwBnCa9RW4gYo78g5I7B3XAQkYYJAiNE5GxohJKGmttsuIhrt6fyo5vwZWRlu0THI3dhHDjd2YIdEOU1d97avgZS4EDO5BgzoLinUe9hOId0aREWvcwEKVndFDCDrCrFFcyCutbYAVlWNZoMBYbYyCDlk5x//6GcvDvc+3SEPXe2Hb76Eau8+2Olw0uaGe/U1CzsDM0xcuhm4stUWvZKgD4WLm1MSjWgRSWjfmwfmYUaeP9Pxbqe76NwbCudoyau2ooRCj+erRj8V6OoZ4LmrtvTyizegRgZDynIa+rbuW+M05OMc4PJq/un/49/84n/929P751tIhdJhHFZcSs9L7S4BqoYhgAYWHCBQCl7O1839QOlGRiyjm6tVQhgpDD0L3vCry7pc7Hze1nQznF6f0igbaN0upS/DMN7evhhyFkJXlWe3BWIuNDCiA3cEmylpJ8LcrK/Nu/Wlfcweu4oM93GpGfBytch2O44DJwy0YZKJUW5CRzbkBM2ibuu+rxGWypgVl/VqBOAoEG7uFPPpRkoBtFHKu4+PlIkKjcchCK7Xdl5ayQUxQMGAS5kDBluvumwT595agJPZDQ6nKAJIgCmxqgPSt+fnj7hbzoIBGJflUv2ScQvlqJGEiaR1cwBVv1yeL5etUMZDSaeMsl/7UlcYy3Q63A3p4PU9s93e3j88LuRqHCyZUri2oFIwt27NVNZ6I6ONLx+fPrAYYk2FifKRMwJesVqEb9ech9p2SgVyBlJTcCaAMqRXnIduQDkAnBlHTM65M4qwtuqKXRUpuSkLA4OkBEhIIQmRyl6v8VmDaHuBsUGg6ZSCEFZboSeAQjiqVWZGmQxFGAv5p6cPj7a//vGP57svyeX5+RmpkV1H0g1iN2hWK2gDT2Zu+3i6+aP//l/l2xdpPrhejDtCIyTksiwLAIApE3XAkMQgrB6A5ADuhAnRwZozIBEhELO5e0CwCJugo6e1nxmjA6mDcGIgtlB0EHBhYG61CVCRvJEHuDsnQsIaDklGiOZewwUBmejp0+Ny3kEwcCUmCgHdyIrBEIAR2uoGxYRmwTRNQ2+h+6a9yTgDCkaEdQIMC+0qRA6MUtxxXX0aRo3NQgEcIkWYC3RoQIpNMXxIQGCBbI7uYmgSWMohILlispjCzdrLm/F3j4bAZkI4DkCAvEPT1gNCZOrSergHq0aDKEQBoG7dTACQeG+t9sZtT7MCoRCNLNu+pVQkgpF5PMwl0Horcy4GbttVbULMU6mSunVGM43LdZ0zPX58PI7z+Xx+8eJFMurIn4r+0f/8Fw//9Te//v/98tbSgYfTJLhrEV/W607REypAuHEYBwwAOI874WW/9NiL1ZKOag0YUsmOGMEQPXsa66mAblo/PX0qL6fTq/F0d3SF88O6nt+9uD/pYZjGmxzRdqh6oVpIIsC4CHFBQiuYcwJ33FRbWwE4z3/4Z3+h20qtX1oP4ZIpE2DENApwqS5+3sJqQ9emXdXBDZGAJJVSzE0BgwCcraLNxxlIhjGb+77VMnM5FGf2iMeHJ+0mWRzVa3hAmabebbm2XhUoXAMpxpDRSCCYGdzdoxG+v56fqMcpd+2E0lq91mfjBWpAY3dlhkR43VcUenp+vFwX9JRvp8PLU2JrW73Ua0ljSrTvNeU5ySCoj8+Xa2soLogWBt2KCEqR5sAQkoOckF/df9E33fZHYeLmxAqQPJiYbetkgGlblvDObtPu0NdFBQQiedrWljlhDh6kpFJAIAiaXR+XcGUcKGWwAFLDoJQMOwYE6Nqr0GTgFI6MW1vLFYsQ9aqkhEAebb1SARozwmf3NQMxoLdec+EMaX9+nk7z4eX925JA17rvQ7jWWGoz4ZynV4eXGgCAA87zi9QQDWgYTjzcebukzHuzMpRuKzmYAbNEBAElZo8gQQ4gl+6dmKlwCouuHm5hBgBAroGAFhUJhJAtfdbQj4lEmALV+ma7FC5Tubt5Ke8+sAdTEqHPsxtIrXYGB6uaZQDkWrWtZ0lohlWbp6xNj5IzYgtTMPTEGKrh0B226hjBWcitt7oCZWANNgciSomTQkWmwATC1WJpmsdEvVN0J2oO3jui7tEX6jlS3a8F+qbR0dUDsA15Oh2HzyYOMg9TQJynuxPdPm1XRSB0CUkdkIiMEFxtdybiQhojOKJHRCq5tn2QkYG6hZm5qQhygq4A6BZq3hW65Hlmtb4tOE9hOqUhkHirY8p5ygTVepUmmJhOuVSlPeYyp2m8HYdtvZ5rd0gA/K5b+Zc/nV7O3//Hv1se+ys8HIv08ETgMC5aF63mgAAWZhDgO/HAhb2ntTbtzwMQIdc1uAyGMQ5UKEEj2Lj0sqNWrc9r29/X+y9fZjl00MdlW7YlyWW+O058GCBq3XqHgiXWCFpwJuIMDo6EOSkYGrhDt6B8DLZhAk6FI1y1mrm3vva1XqWDCyBhEghXYENHZozPWaEIVTNrHihjHsognMZhftxWHkoRvz0ckKnt++PjA6cUjGAAEfNUsvh2WbxVArce0LAIzyEJCMPUQhC6xEPdP9pqJ2rcmAQ8tvZoZcllsL5r9EDrrUfv2v3x/VPOsa+Xw3yTilPfda+9b1noeCx1vW5bHE634+VuXZ8LH76ay6fH91qt8j4KeY/etzlikFKZLUIw5WG4f/Xqt799IgB2ZYqtWcCIgKmJGTXrUoa7aRoGBYIWHEgIO6NxgqAVlakNarqCuVFvgUqlTCCZiKxt+7ZbeM4U6BQokLu2NZ5Z0ufERdf98fJ4W0BckQMCE5Tez2vbxuE+81A7RDJAUvfheLzLPwbH1vW67OM8jTenekFvvtT1vF6vy2bj7WgyxGgAIoLgvW+RONFU0vjm9Vfr+rC0Z4im7epmZBQhShphGNQDKUkNEIcwM3T3MI0CyE7m7uhClPKg2rs2w4aeTZFk8DAAdUckBAWmSGbW697rppt5Z0jsgXGFTupJERU64A6gZrthbLUDIZIUPga78XX3y4i34IjeAjCiA/wfESjve+8EhA1CxsnMbb9yChIy5s+iFsGhqhIgOxL483Z+Mb5yxYhu2AM3jwgQazu59UgPe90BjYDBMIG1/ZAPBcgVKdgFO5obUMBxPlyWMwgEBgYSEQcBoKdw1FUlRyUOZypQvLujm3c04wBh6q0xUpZiCuEMkAETkaGHhBu0CIXzZWWWdd0T4IGkqlEionxI7jVYMifBmRjhdnrRAbBdobsTZU6Iqdq2XCvfHb7+v//V81//+vlX67QtmfE0TOBwk+fVarfaQqtba9Z0dzYCYvDmsNvmyISICLhdkQmCSEZKTJFRfXTyGC/qOvhjfZRjnm7HeUwy0rbt3757kPz8aj5wHkWwfd4y1AUaQ9q4jJ24mwkwRLOOE2fbuhIggy1b8161m2P0DYC6KyY2U4HEKMGD6sbYxDNmRnAwIgQdeFU73BxSnnLB3X153sbEU5KC1ME+Xp67WpEBwqsFEJxuXnQkvX4ffaMQaD4HT5YJxcPdEQB3jmuvn3yBGwYyNlq3CmjX/izDErGramLGgq0zcIEWj+v3R58k5XFI0yQgPY8cW2aiXrsZrMt+SPP96WWm4Qevvp6wfJ9v3z8/ntv7XbtRk0BIaSgZBXvDiJCUEjszIwBBATNg5ESJGGgLrZNMX719Gdwa7EmIaiQ4SpkI12YEBknIDRhzbbWqB6Y8nCDTMGHbmpqyyM3N4fMgRAHQHRElJxHxblVt0z2H9z2CipoxAwoCpL77+vsPr758a0jbtpbpiJgbF2AGqwCm+76oltNBxlMNYON5wkD6dL389jfviPI4T8xDnodm/cWXXyGhh7kAIOuu0SroJjSYIwAgICgSIgS17oFoAWwa4M0DgasgujGCBAxQaldCPp3u9+3a247j8KM//mff/fzXfXl207UzifSw6I4KYgBhCKm7PsezdGAUcGYWCK5YicC9bxbRIHN2M4AtJ24QJGSwVT0GJo09EBDFuK0aycEphbP31pRkGIXJ6g6WKBUgEkEIzpQjPFh7D2+6LdcSgiCAKjAFW/cOBr1DeEOQhkQYYTkakA+nl68d3XUzF8lEFBDe9n1ONiVZohbMLBOM4noho2t0REQRVdDPkaEEmdPejWHX3ApRdL3qpoWDOQIDMKdJvSI3VJK27ClJLrk1n4dT1YVQzIIpHs/Px5uZCT49f/rxj/7gfN373jjlfb2qQ5kYx+l+OkXX3hcC6rtDbB3w5r/7g6e7D/X9efnufbn2mYYxhFk6ZkikZpSx4b5pbapEFF2bswA3a81bULD6tnG3PdimVIZ04jIXTCVUMS5bc12XdavnlG6n6f40JGheL2uN1VOyxHlhzomoqjTo645EjHmJyByF0u6bJSguUHsARsDAaORIxdy5e1ctlEJNMUIInNEYAnq04PDumcSEhzKWcUb0cRzq3gkQw4+nI1EkpeV5KyEpsIJKJBRWpvW6bHvrbtx9RJ5ECjA4ukN3d6Trvj/Y2WfuaB62txpACqRCCGuKxSVMEiXH1sG9tlXbGuU0pvlwM00zBBiihEPrupuqqalhh2KZ8iEx7buV4f5lPtBTudZ3HnUYjyTeWUsaMs91q6Vtw0DHMdWlBUoHyOQ5Uy6lCPeIVzfjUPowURmTqeUMuC8BoGiQCG3qTqCo1TwICg+lBKCFtwYS2JE6YDcXEYZwAEQfswQzWEjmMAUna111iGBJEsgYhZgQtff6/uPT7d1d102DxyHtUTn6AKxYNPbt/Mxbm29PIBMOI+ab+cZz9/lFCwRJlPPQMQBwGg+McL0+hoe2ZlXBKMHEyjtSSApEjjA3IEKIcOUgJwPvmcVUicRRFbBAal3TmHvry/nsrp/P93ff/iasZaI9jDJXdE6gGQF4OJ6OXbb151uYMoFHY2AJ8iWCAgAItaN1TCChTgCIGtYJApw64M4rSQmEFu4kRX3Hay9JQFo/qxMZdN2lwFAObmqtA7MHoDfCwcPNuiFAd+zC7CTqEFBZuocIlYzX3Wu1Wqlkc+sATdeD0MvbF5mTgSG4Nvdwd5UU969e2g6/fPe7XnCrDXxF2hDMA1kpQpHz58/QVPfIyjgnEiA0CjHsDSKJBSWUQn4YMkVoVwCW481M5h/eX9NwvD49Benh7hU0nyiGQ5JUVt9h5vP6yIa389SaHk/Hddm6mVH06gQ9FelBzZZSpnIYMlD+0cvli8PxT9+0X3y3/eJjWStFzJILcHcDB4458Xy4PzDaupyv11b37s3UeW9VAwK0WQtQ7n0YjkNmzqwIo6UDzrVua6+L9rNty7kPh5RvqYwQEJuC97qFQeaEORWcSVKjddvATVMCtqOQie6DFWYLghAPHyV3w2tdKJAlWVDBMNBuykTorIgdoINRSWZoUmgQwmEckjBdmiOSCJdUyH1d9+fLenO62y/X3T2nLMOoDLFt0DwZZ+cT5qyfdcqGaJW0hj351QdyMgetoS0ipdTakwybyn7ZK0tyxmSoe+ven/tq31keTscxg/Rqqq0vy86Mdbu0zhpqtdvqdXXioSvu3brT1m3iGfPt2nfboQ6ehdgIaMA87GYROIxD31YmD3bBEQAbBA+cbtI0ACPf3t5rNMaqLYAGxiG5IGSm3HuHwABPU2YGAlNrhoQtuiuM5FZ2QvEGAepB6EMid5j5cP/yjS7r0/vfYK9KFghhnLEQ5BAKc2h8fVhhx+P9je7r5h5TMYoiwTJOSdbL+Zvf/rfjfLp/86XmmdLY0FOC48uTYhChm3l0kVHK0azTOGQyp9J3gspm3gCdOdwQyD3SkB3QwdzcwwKQicAbCgETEqj2QDEC29eUy+lwXLat9j3UL48fOBITeKDrbpgHTplL1b2ubV2fDc4aTjSYmyK0EAHgMOEkyFt1b+iZWm+ZGQQdFIHZh1AzXpkAgB3Uoje/b7izdYTu4UbBsEH3HQe3dR6Suyq02jsHZTAOQnIE6ARI5oBdHbMFOlI4uiR03Vpnq8ElqTbuNjH/+PWb2+EAgcS0YkMYTSmoUXL09OMvf/x82b6tizvEuh9PUgmtEZugBykx55yRSZuuJG4WrSXA12vdSf0wHgRFzYHCofXoiqFB8nx9Is0vXr8GiO28OeciZVmvLJAItTdr7VCm6/Xx9vaOcqHAS11goDxM+7Zsl/P9zVRdyzB4d6eyq9WiMmTZrmWcTv/6n9c/Wf3D49Ovv798uty2GDAPIshEcyYJrXqp9aEt120FDqcwJjBX9aow5TQO8zhmBkXsZUyk0Vs5OtxRerb65B7SbevLxnuu03HOhzkTqTYPXM3FencUGgKJGFR3h2wawkzAkMHAMTEqmwMbJcwhIIC7Kg3sWyVEt+BAAhLInZN7CAWQk+TCacAxOrVWiWieDsIJrL9/fOjum+5r24lEhWUY2Dpse1KkLjPkpCDE5hDAyrBAf+qbFZYhuTULWLeGzFvfVD8OvGzXFZygFAqMjuumLfau9f36UdKv7v7Fnz2vsJmEns/Xx5zG5XFFy06CKK11VT6Mt6rSdG1dQSFME44vDqfH88N3v73cv8x0V1NOCFS9JyTOg4wHAoAwZIFwhPBcNLzGcBznrvtnCMjAo+WBaTylcVdvbSOE6TCoe8XGgdY0kDglMyXQaRjEqVbjCPMYB3YNawphKrzXPVRb3fTxYSojIAIn5BqwROjl8lRkGvLtct7V43A3rn1HOM3Dscembpnl+elal2UifH736yGPe++rOdHQwzVi2/vLl2+Ob++kZKCcJe3a217rUi0ECAmjizt4NkiIPJUOSMxgnQgsHIwwSCEgwFU5gN2MunmgVbTteT+jDGBG3kmwITSkRAmdKQgDtDVrDcPUt9a7M1nvGSRxq94dT4wOaPtu67oz5aoBgIjs6IaMweRBRhKZTYhSROl96+khwMcYwcI8UNBDGRAdzHr3KGnIkrq3jubaKXAYh121swOrOndHqI2BgcBCmYIEum7PUcsuNzFexeYkb29foaNDIBI5RQQ6JB6YowOl6fDy1Zvf/fYXnBhjzBWMugdZFtmDDKzbrlgmnoYvgE2tnS+fbqZ7wzKkdMijAFugcMqZLaoHtu7iHdfrotHm40icmFJf9xo9Am5lgL4NeVx7BckoLJCE5KlfXWI/P58ON7pe6/W6WRuPTIHX84MgH+YBC8ZYEGXZaxW7/YMXb97e2NP66effPH+8lMt2wmFottX2sK3X2jc2v8nBHh18dUi67c9rbwlPh+l+5jlIJCL23qKBJ0c2xxPIwXGvttd22dWL17rtZ5U55ZGHMgELh5z7Q9g+wEDuuZRqIUTFAJ82zTkG9vDMDOreiTApupgWdHVFiITUkDoioCdABnJUtD7kU/N8KmlIdN0f2FTykMdUvWPE4+NV93Zue2YeQnoIc7Lz2ZaWPBWEAkxggeAYDr16XW2zQjGkJXp3r2aILJS6rZ2Wy/q8NphSzpHd6seHa2s2Cr74wUkOQyb5//zN/3o6jX/5L//Ffrmui37a3h8kJSllvOkt1vXTWGZm2Tczc2gNG3aU+TgeJlm36z/+7af7e37z4/3L1zblCRjMLIhoylo1ESuEuAokhMAsivD6B18iMjjP+TiUOVG+LvvZNosY0iAFDyXX2oAM3ZACGblwry0nGQphDzbR6uM8pOLLdVuuzaPLSNfzB93XDq1Wn6YRKM7XpemyrOvDp3fa97evfvT1j19y4u8/fPfxIq9ff8WhDGBQFHdzvXv75Xy6Ox0OEOvy6QNqOz+c1TMKMkvvvpXzeDzQAN537avHujw+7uezajU3JjQET+AC4aCukYfEuddKAYZobikx9cKBaCFgRNwponZEa+FMhVCO9y/q9bHXq4WKjBAEJJlBhEg8oKmtj8/va/MYsrqWlFMUwzVcI6L7/nhxNy1eASeO4tE0wkUQycHDe0B2cO17o6GhFD6DcnNtGEEQHlWJAVA3p1g1dUyCwlSKSMQarW9798xgtlybMCG7OBJyMw9EAHRJm63c+dp3HdjR3x5fTocbEjY1UGfIjNzDEmGYhcqOcb2ujMgQBYrp3jgCPWkTLk4AQIBoTVe5pjQmGYY8MQNQOt7fOWdJAzcoyGSoKuBaUkgZ58RDo2YBIOwYkK3WFaPsQBEooEOh7hzBl4cnxmQKWON2GLtH97i27fDiJDIgr6/e3ELPgO0Sl+GY25MHyjiNkCgOCTnNfzl9/N03y6++Xy9m52dm2tWDgFOmjAXBmu2+77t3wbjPq/uzbvf5lSBHj6BEqQl/JvpDg8rGM5bRhjG8qu5ddYC+1Y3jOm44SZk4p5HB0XpT62tTIJaxI44M0sEdiNwCIIqTB0ZgmDZGDxdJGB4jxVpj1VZNxRAckACNURIJCXOrzpJOQx6zKtvjh7VuCmqYaBqOuHk6DgTw/nxBdXZIwNkgEMEUDIKisvlIgNDRFtPWK5NlISn9vH/X+dGg9bbt7Bmn6jvJ+sXd8XQYgMLFt1Xv7sthkm193xWGnJfLViGCtK5137uhg2RiDtdt2U039z7O42Ec8wBQ9tuXJqM8X6vZt29fvqRSMNgtMAE5cG+BQJkDAJTALd+exsPLJGMumQx6xXO7IoAI51EoUYt2aT1M1QwDO2gihto5PM9jpIyhtq5ImEpKYAwc0MdxJgZtH0O1AsTd/VaGIdPN7Z0BvwL8UfzJ9Xz2tTfbl9qe1mc7w3XpP/jx19s8BBGhR+ssw+n1i5z8w/unx/VqGjZIrVfKt0nK8TTygMyG3mu7mm+CuC/Pbd+UIQlbNwAzB6AIUAIDNcOVhN3dVN0NjIcymSTrHcB7cBjOx1MXPmRuzw9tV5i8zAfbq4ChekRAMpZEeezhvde2tncPzx4lgiJ8g1U7cCTwBVhad1MSPgLaACNIal7BjECJhnBUs61uruoea6wKUetiShmUB6ytISGJNEc3QOaSk+tmujKDpSMnYMhbrWzVmFaDEbXDXvBQkkc0Zu3d6776aNq7GlejZO12zClSiSTCF9fmMYBJmGsAIzg+r5fvz2exw8GS56pldVOBGRHRIRxiIDNFJwBnbTQdhjR6ESDL6kFtx9oBb8c5gKwhA4KrJBDI2GoXGGUsT8t5CMHF0u1Qw8Kbu5hjKGgLB7s8Pr/58gsVvKzXPE+e0rq2Gal2K9MEvqFAD8o2cGSSHQWZ8npdpmnaMq5bffX2Dd6e2qf96Ze/g6dtDCYuW2yBhO4MVMA9edEM5ovH3z59s0S8Pd3dlsNAJcyJnR3cIMvgbtFdLB8Lnsi25lX7xlYlsHlsrV7dEk95GHNOyUGBIq59WwEUAUmYeSBG9pQSYU9qDCFprGjhmo0LhkQkD/XorrVrogkpQ04pMSaqtXo1GDFlEXMEvD4+9nWjBCPl4gRCPSHtC65rtjh5yh4R0RnCEZie2tIlmkTD2NT2fRNEJkJmA7vYuUYl9MyYM1z3Bff+o7dvNl0ezk/jMFEKczf0DfS7p0fqninnWT5viJe2PC77wLT2y+OHS3QVcqLAxNMgeaAG9t3T9y9+lDAcKSLqh6fvTvcvCg9oiIzTMEDKe9eofYwNsjEP9y9eTtMEkdSlbzVCnaiMA6RQVPNFTdVgzCMZVm0hARhmmkVESkKsdVdth+nUe+2ElUmmAYG2dmb2HggxwgFcsjIDkqM36IJlur/3oYESWczH29bMiblMykXtGm1jtSyDef3226fL03X3pJ9fQNZf3b/Z6zLcno63x3k6SJnIBzPRvgF8zkLl1togBSzMGoNDqLtBWEMIoxBiBGZClK1Vt5oIAwiZFZDydHs6tf2sBinx+eG9Q0s8USC4BFC3nofDJGPUdul2wb61iojulnMGRg8ABTdA5w/vz9dLJ55KTjnbcJBxPkD35OhmQKwOl+enNBcy3PuG4Asse0cBoQUDCQkJMUkKB8qDdq2FMsfBmFKBnixLQoFN3fagtEU4YNiqRoHGJNqVjDkSoWpfo+MPvvjqy1dvLepiAS4cIhAWPqbU990kwC5aNTF64q6KsClGAitgQIMGBHRvO1FCnDKBAFkzhSCU3ZsZDM7GSkSSkyMqOAKKJCGEsZTm/vTx8urtcFtyPT+9vL3ZuuZMLmWr+zRPHG05X1+9vO/dP52f5+M0UJkg5PaQsR3T6JEuyzVBnPdHmuaB522tZcoAeL2sRAgEUyopeUST21FeIb25uf7TN/3bT7iZoETiDsaMYyS/qgyHvVtbLufz098/nx/fvPny5Zu3p1clRJwkSW+KCghICEpoEINHCRp4Gl3XVvcWmwANGVLfZG1D3qxNU0mZjjkbxq6171cGrlWIgVJnAUQIiqLSQB0Nuruim2vTEphSMuTwQXmMiNu5JE7bckbiIng4Db3uuuv+dE5EkTjn0s1pKCKyfnooTQ9WJChC8bPyLWLxfROHhM7RQ7spgBFlYQZmyNx8XtpzYQMP73R9vELoq3t8+nhhGg/DUJj27QrEy25jmTTW8/ZchAsLcXven+seMszm2nb9zEAwgXIY83CIlEy5biVnSqzbzoADjXLeL6TX23SLic06lcxDiadd91VgN4oXNydG22rvKyTi4zwZk6L30IimvRMJAQBHFgZgg0BVcTpORyHWtnuv8zTkIVnD2rugDAV8b125a7TO2TOIB0O3Fq2bmgcAexnydJigY55PN3jat50Qi2jbHnXftvNzCW5YO0TVzpQwT6bdtX31wz9+/YOvrusTAjGJY5hv4brvZ201Z+nMPRipEMuYJNZn6IgkiMGERuDuDgi9uyC4QYSYk7oIhCTndL68f37+QKEi5G6SuQc1r4LCIpASSUrTQRlCCabh3bePj5cHykdgQRBrAQQOhpAf3p/ff/dMAc2qBjp6EvlnP/1pnnNzI4jWa7dOELY7WGLACE2IrXqNJjkTIIIDBQQQBVYA9a35UsDGo9blLt3v2jGqkVqvGRxwUOcau0MWZJa56aU3zzpkzckHJPvBV3843785X9+DQHbCagWSSQAwkm99kRyYzakvcUZEqmhQRs7oWC06BgclCCEwqsgDk5An9izGdX1GHnIqETwAJmR1hyzq3t2FGbfWWCQX+/j48Tge1g2cg7L0ptfLcrw/DKXQEcOgdT/evQpUrzsrhbfnfQOAp+fzcHOaxoTOhwLPW08sZSglYe/tdJpqa7bv83zaBwhI6Apq08vbWsjfTP2XH66/eiomfBhQCBJkHLd9C8Sbu5s84PX56qDvtg/PeH159+oWT7cqIyUPrwgsxJ2aKZIguweQ4h3PobH22GpX3toUe2+ZBaxdkpn3MaU8l1wGJlG11rtbB84sHAQeBhCNajIGY+aUczFbGjgAGJOLTEOZmaVz3xuTHMrgBJ7l8nj27pwycIBQjciZo/l+2QaTiUoHt8BwM/dVdUnuozhqUzNXAktMCMicJA8y+u3x7vnjN4u1etn9vfYOwy1/3HbFHCQGrdYACGIYMc35SMMx7Zfl/BG47rQCpWkorZ6bkjg5AhCz5JSG6uxKl+fLgIJmVocIx6T7roOMb++++OL+Kyq+Xh6u/aIIMA+Xxx6tzQnAh7q5G07jPJSUE9W2gWsayB1AxJUwkYeGGsHnMpkEOAubaq+NUIZUtHU0GTKn5GB9N7pubt3IQ+EZq6+Qat2i7bZj+CCDHtwQgJzdXc0SJ7d6PT+JlGaVhuQh6tJ7Z8EOqIAuiUo+3NwyMRNor6G4X3Rd340l7eveqpLvg4iZ5jxo65A6ccOckIoAqoaFYhIKIEEmUCeDHqgNyYNQo0vIkDNg1mwY5mjRKQ1IlYwACQTn6TjACA336n31vpjhpE5Ibq0BAGN2w+tDrRefhtGsg4EqB/LzuT/3/avpnrX13npsKFgADZQ4AmBpBaqiufGOZgwjOARFixYcZjFFSY28wvXp+iTnJ3kuKVXdlZzJjz4iq0qs7VnYhUqiZd/r87IRD9opdr+5KW9vbw+Ru5V1vzgZBw05E7M2g1TCaq3xcF6XZsRYPZhYwR1iEO7eMVQjgTGBpJKZMkWGkNN8o60HADkJZjeUcegJ9n0Pc3QPB1nr9bLU483N4ZSf1oosQ54yIbK3arXvt3i8Pp+3dR/mo2sf8iEROgINvKhtaqc8kvbr+ihBKQ0o9OI496ZWK9E4QnIyF06dtmUN7ZL5erncHm+qGdY6jbn8xR9Nr168+/kv9uv11XxERL8ZFCsBpB4oAxUiRAj7uD99PO9fffXDK+i8022Mkw7gYa5ZRu7mumJOTlQJSGMMPmpeKa6ugaal92ySSCT3bvv+HGDDOJZhPAwjM3ZBRAh3UXCiMc0JwRMbYWLMKoecW/XH1UMsZ56S9KedO8okUMZqCt0ePz13AyppyAyATjFIulxXutoYpVsYKiE01CvaJrGXMGpu3syDkMKFJZeZUyp5HAf44auvf/v+10/rZguiApAMgadczr22tnw6wyg5jwcCja51Wyae7uT++HJ8vn7guqp3FwRL3kKDznUb5/HuMBSh7v27bz70df/hmy8vy/Uffv6bw81pHMoPXn71sx/8bBhfmnphaGW5bt89PH08w5WmEpAxjSgFCG9uTkHotgdlAB0KDYchPF/2q3mE99Y7AwKEG9beA10vTxmlt56ZuToh8pSB1H1rvZ6rdfdwDmvOPmPJKWMgpIFm9siUhcmZgxAjADIAI0HW8O5KggqgAWgdBQwSBR6Vo4Z2crWHj58UFxby2J8fP7Sl0eElGNnWgbFbTYX29SkAuzEgmgUBkQiP7G1v0EGVWNwi3DCUEriTR07C6IDoHm5IWzcgLEMyCKQDC4gQpQzgELsAsW3L84csYIAOAR6CCQKo4vXS6xkKjcZR0YOEgdS3UuLdtx+3ff36y9fDOE2Y1LbSudq1xd4jQZoCU6sKiSUIYAMkhKRA3WBr654gO3AzAu+9/d4+ZivgouQI26cqjSkVKTlhfL6UnzyoE0gz8khQ53FQbw9PHyCgUN577ZGbXw55AiOHkBBzf3x4vDw9T6eSPZcAVVMPTJLVg7IiGQCBsIt4EsrAOeW07rsEElGjoGAhIQR0995BGJlk055Lkky76lhSYGuhydzMQtL96/u6qSvO800ZZd/UrJGHNUsjEAuSEMphKNvH39PxlnlQrZI6WK9tLd7WGpoDOY1prHU5nE7r3oBzmmbb63R7vHz6NDLf/dFXL/7wq29+9RtYr+1y9S0Ox1OTvV0W8xSSGSjcBUkNfvHtb7/+wz+wl6f+2F8929jzQAUIHXzHTADZuwNhA2LraMnySdPIrmB7rd01ptST45idrLW2bbt1E8Ey52GUF+PAgxhLa8BCFOG+bbbbdWndLmtNt68Q57HMprDVSjRIIknEFtfr/vD0TCi91VmOXlu+GYORLvWm54zUFYjAQHfQPUElQEKwUGv0+YmYiNIkJY3T7VAGxO02398eXyjue2BfW6hi54myp9wjao+1Nskava179X5OLyYh19bPD0tvvTVcYrPtnCyjUjef9BhTPs6wXs/7dX/56pZLAOW3X/BP3/7opz/9SR6G4tTCkejp6UNdnw7j9MXdm8NeDme8tgpVJXSYUtXFKZhUdSWIcTgBo5qHbtmUovTAzhGBzkg5BUVThQAEasrbvo0FKSqGEdTee+2IpYxjwuBuZtYb4jgfwJwAEbCxYXgLSCDwWZ8NaIFApOhEABYKSgiMZIgAWDgjoRTZrXXbjGyW3Pct9t1tX/oqEVvfswV4Bc80jb1Xjz3YP/eidmVXYyHGcFIHJIaAbu5mLMACKZrf3kzLtnb1bhpUtakZATMCC43ImUOZmQd0CRWUaSqXY7JgDg1CYgNw7dbdyC0swrNnCxQChsQD9mX99aezgPzxH/8gWwAkJyzGHSGAB6pWvHG+xyPAttrZcRgVGxBhOqZA34RKT9aVGcqI2i0qVHPOac5zJLOgsjZ0q2MKxoBwaOLqVi1T/Mkf/6jF3rQlGIQpSwpkDNyuazjLNHUmqHHII5Cuux1csxyyJAUHJXfsyBKUEBJTRiLnRHkqc858XboTYGETwIoFDOs1OQKLMTYMIaIXx7u17oNIRl7bfns/goUnIQfqDQicIEV4bdF7KtM8TVZT7YYYSbihEUCep77toDiOo689KU0lqVsxmqRYoYfHj/PxYAajzKtenr5/OB0POaUrw/vrE9J4OB1e/+ynUZf6/PzN3/6ioCQSVy9ayb2ieQQlipGOp+Pw8i7dvdSX7duHS/7Y5nWfo6RGCSdyd+YeLimsdQJixkwsDtHohmXvfQ29uvbsMCEkyCWHhEZfHvvzp+fvbFF2ZhFgQkdCInI3Qm+uQ75JNA2cBzBovG+eDyVNkpwg4PJ0JUAwy1kYSQO8JNirXLYMGO6O5IwXg8bcBYzRTGtvSaiwVA8sx1zyPN+M41iK9N0Ll7c3P3hc3kOBWo2xf+z6Y7eROcY0TOXp0/P1ejWwfY3d6/bxe1hs2Z8XvaKyASsgVU0IDm6my+Py7uOn+ebEELfH41pr9vL1F3/6r//sNYOEdYeu2J+fP/zD3/3Dti5/+Rd/XuYDam1re3Mod2S1XU0rWFPrLuJICUmjISE5bpc1GiiwMzBJ8QhJXYAoam0JmJOHByICixO0vUJQGDDnqQyICOrNom1GKDRA733MhQFVu4PlwmjYrCFASgnCwdHdASJ2Z4iUPsctgkMQMDyCwdEzU7VOzbz2S98SDhHWbAPMIFDdAhqCcSdJ3NFUQxzFAj8zZ6Mjs2O2CAsRGRPyF198sWzr5fFDuNXlgu4cUNXKxEIJ0cyBmYL2juh1P+Qjcg5Qd+sW337zqJpS4ohAgKq+dAvClKh7VwcAIYNBUD1a0+Aohe9ubgpG2N6iKzCBsOfi1j+zhEH2hoDsadRIipKEMJSCQooGFiVjXt1TecGCUBcNIGEIzSkbAgS0Lmq9IYfNvj+7o/P4Zz/7g7f3d+ZljVWtW+ehZFdlHnMW6L7vWxmSZ7s/Hu+ej0/7soWFt+IsnMwp0B29aQAAW2eeJilFhuN8G8Bdu0okQHZwCjxwx1BwIgELiZDjMC/nxcI9GaKEwsOnD6/vX217C2/Pz9e3X7x9Pp/dfToeOcWnTx+aHg5lOj8/y2m67Nfb0+3aVjUvjEVMXC9mG9vx1REue8Zk5BOJT8fWtqB6ONweb8Z+WQGDRKb5SGg39680OmJAHvIpXv3pH377y2986zevfmDXBzjvEGoJjWCayssffX188WoYpiZII0w/PX767v2nT+v9R79rA8WIiE7V0XMpYdR1ZwCyQEPHPGCKtU1Uqvba6gbWisLIMg55FMSTga6+iPdam6OFuRAzZSZKxYrcBpZjGQuX636hTJQQiCNAt7pdFgqQhGNOyaFNA4vAugwNIAgIFWnx2gfxhE7m4dY6AXpgdc/jCHkcxjROecgkLIodFb58+eqfvpGUKU/qFdduv/z+45//7Cf68B1g55EeH1Zs8vxY+7lmKAkYmDAOHoAagehNwsAIFc28taa6BhD0697qOpXTP//hncRoYBh+fvjub375d99/+N6a/9Vf/tXdzX3v2vv287/5ry/v3/z4Z3+S3tAwCkBMJfcQV0+MPaBtm/rStSfKQMiJxpTz5+WNuLYVM0awuYX5OCUk6V2JuHWCGNHDO0W33vbqRpLH4wFwQWcPzTk7YjZMjh5ICAGm2iPC3NFZSBIzUmysCYHBEMJVmnrhxJH6rhAQfVs3ne9fYF0HLq1nHjiJdkNgVm1aw23kcc6CBbMQqm4GO0RnL8KDu3r0cT4I5u+//a5FCzQADwOEiIDhkFtdkAoJBUa0EHD0qBY5Uw5o6AEde/3w+MSUwzAVbF33rYdFIAAaAmXOroQULdQ8iDMFZfH5hpy2wJAoim2DPXMQood06wywgwZ58iKRUi4WO3ozlKu7LbU0RaRdjOeSZMhcMjFnkyDvxkCqPqDvFHt3wh5FdLU/+Or+j378Q3PEgBSh2B27Wko8gKJTDMfS1j26BsDxMH7x4mZ730DmTbfwGACYCgaRWk5DBitCiWhIk3CZymSmRDLLUDAntyAWGfa2OkCEEgGgiyJ+vJyHw8wU3fvt/WGWqS/qQL3C3f3rx2Upc9n2mhkcKR/GrbeBh3Eeni/bFy9ejDlVjw+XB09cbg6L6XgqWM2vvSjuGIwAGkMZYuNg/v79h+mQx/ngIj366eYuYQPwcZBWm4dwmdO9vJLUt3bz4qY8PiyX7cvb08p2XZY5+P7lmzRPaFbGbA6e+Pb1fXt5v3+1/frdY/70dKhwi2Xw0T1X3gEZiIS49QbRAHViYacSTjBUj21py97b1X0KKpEy5DQxp8AwtEBHxzA1x733fnNrY7aSrUPdayqcByCA8Ngv6/ZwTUhlSAWTe5QyuBFebUC+UFOMK2JL4Kkbe3M1cxIgEEMAQSpSxuF0OKbUSy7uglI33w83L3/85R/++vv3mWT3/z9Lf9Zsy5JdZ2JjNu4esdbazTn33A6ZyEyAIAGQIIslsUSTVCaTmUy/W82DrMyKRViRIIg2E5nIvO1p9t6riXD32ehh50O8x4NbhPv0Mb7PB8o//eq7n799d1pP718+bFc7v0dcMruWWYJjFwtPgsL3SRnJ1XgLu3mUSJ4UEpsOhOO6zdsN+PjX63/5xb/888v28f2Pv/z1r/5WamttOb19+OqrnwixSF4uP7y502Wtb+7fRY1yH3JfI0GTcpvILCJhPseQWmpbmhRhEJxYo+rcr0IojOHTkgqxUFp2C0eSW1ZtniMzREqtQIwohGp3y+E1GNX7yMKc7A5mDUcmRXgpUlUjAAg4DW6ZBULm7kEpSNrHtM1gWZpMF9R6m2nn57u6wBWeMVyEUkrEpER4xG1va0syozA1p5jOhQhpHIns024zdpt7cjgXJh7hx2WxaRJZqWRImpEmSCyPD5//0U+//MkP3/5tH+nKnOV6PoOTJKHimZZAcBF0Dmf1YWEGMYvoNoKIwQk6ntrxQN0u3dXSIy9QpEmmlgDSdut3vDjFnC7WL+Ps6Tn9NiVD+TYuKbtly+yts5KWQzns5Yh6Wmthm2lzD8BFOaL4GXQSkZ+9e6yZW7AyNCQxQUFUIlGUnbLnXhrPzYBZSvvy8589b/60XVcOgie7SYLWGJg8uRahen84Fq1N61LLjx+fMlJZCxYKWVpTz2qwgEWgEEF0zvnFuy9voxfmVnjuY5jZbW+HtbSyzegR83z+4rN3t32WUo+Pd7e+7W53D/dZJktJZDCW+1OaucmhtfRZtJ0/PedasJSDJwum38A0u11eLp+9/ZnPMvv2cv54OK7L6d4dkf5qoXVky6rHIx+Pk+XdZ19/8TZn5YdV7bpXI16Xjt6EgqTPEkRUmpvpm/vlbik/yfHx+sP78/K0LXGsojKLgAOhrRLCfUZGOKWQuerkR9cT2Ri8D58tqGLX7DQjIvQ1LuwMG8R0OGSp92W590J9avBSFhEuVdPo/OG6+EJCJbVAewaa6rnjFjPGEJuUkznrK9TbpmeClImZG5WlSF0WOhSGL+UAIHKSaKW6T//p1//qH7/9z2ie5OtNthv/L3/9d//X//AXc1+ef/1yu2iCToMREYMTsJwgY0iSjbBwBNw8wpMtOyUoqsI8UBvX+p/+83/667//q8MJqHu5W9kP2/nyb/7sj2s9+bjGvPj55SdfvqXj8enD9+tDezx8Fm7TfHa7q/VwXAO0bz1s3j0ciXO6RUYlUkrfxxwOEoYvFLFKCQkfYLjZNBQ5ZpgIJxMlCgtHOc+t1MPSFgb6bvO1LOe7ecKlUKv6OtB3ShJmozkiNFDBSApuZh7DAx7ZRaVVDSOzVlrNMS7X2aim3pJW9yyaRlTaIUZGEIXBMqVkUmSAWfVOq8z+QpbEfNm2VpfIV7EJq7ITgYgZzlrWKtH6vLj1Aedx++Gbv09U1kJ1lm6RtuNm/VMnSl99QlIXUs8It5wRadDQJe91LfQA1uE+M5e1eB9uI5I7JZgRSpEzRvIRbDZHXseYdokojrk7Z7nddA71fe7pjAZIxAx4YBfixOCGuu53x3Y8FNYsy7EQdnkhXvyWf/DZZz//+R+TRJgxV3eDJzwpWQsMo1KIJ1ijqG1myFrrv/jFL95//Pjh6RMxIqZvyS7cypa3yIVxd9AHEVUVwJFOxEkyGWHjUE/hGHYrdTWjDCWuao6irDzOH67r11+zR/T9+PhQW7l+fFqOX5IlIseYlZen99fHN1Ucn16e62M7HY/vnz7cPRw385uhGch4eF9W6cMOh5UqAfx0eX/3diGpxFE4P//si0pLt/1QBHdvgZsU2j1yhEU+rgeF7X0EpbGwMDKX2iRyn12Pi71sNbFIpeiL1qRlZvbY0cRSlqLUaFcqX5wuL7f3P7y0T+c3We581Vc2HmnyimAnUE62HLOnsnAtlmuwWY9eD8w7X2/pNxpVKDlY0s38dC+ttaUl89M2yqHOsFVPKuXy/pN96s1aImpK2fN2ECe+O9vsduPYxXeBlRCGBxkAEYEUSlLUw/F4PJVWQqhKdXNImWEUgEnh8eXdFz9582f/9OEvuaJNqkKfrtvf/Pfv8mOefzQtR4vYMpFWnRLGlShkjmFMgFru7NDJk/z1jl0SmBbCY0atEWRPn94bN1Ze94jL9ac/+flPv/wDCwfj1//0D7/9+189vPvsj/7089O705s3zW2E5Bjj7nB3f1oi5u22X68X4eX3+CObw6yza0aTVss69v10vCucm+3D+hy3btN4NamKGyM8QVlJSoYLR42kve8DW1jPOB4OxYxj55zMALmTxyvsjQumRCSIZkqYGixhNOe0wWVlrZDp3vvzbV3uy1Hff/ubtQnVkh7gQCOj5NBM1qI5Z5LZPqSl1uaTmFswOMvd3efP9l3AOWnMmQQh4SAhalVmD4awyiTfxwungBsRBLlgfvjnv7x/9/WpHLZ9u1zidsmgNsXDbboyVSkcboosPOvhaIxWuAVKLNBlqBvNgG1uns09PGSDYgZYokr2eX0Zn7YrRvYRnkpX9Asw0zIkQ8CVZJ8jiFQJFD1R3SsKzYie10teyuAcK1zvRvm6zirU4s0fvOk539QHzpvNyCxJwcLCGnDmBNcmZY7ZpOyIGVFgrdK7z94dlzefzh8vzzeJLYoDs4WuUU9LJYZWLU232zUTKSVVjSBSS6vdk3Q1c9YCR8ZQT+/z9ng6qmfsezith+Pufnna3h4fum/T7baNPnB3X7SK9dFEP3/8nEHsXht9/PR0d7g/VJK7EsgQ3qGZ2Qr5iKYClfNutR0aOAqBNo9bK7Mn1nJYSBx8GbsULWvbxq5NsLDvYFWK5EhVmdNpzlZbefvwfN0osy7a3VhKMZF2QI6iFYiLDzo1kiqPj8ef/MH26eOn7z89f7wtm97v8kYOL/tNiiZMufL0gAWnw0WZQjSWcDpMuqdTZ5o8ORCcYv5c4vnhISmFGSPSk4TB4KI25u3TVTwKixcG85Zu64FMsLtTvJB5VRYC3HwOgKSsVNhyYeha47RgWYoU5wFySk4oSyJjDkgcKOa//eO/uNx+ex3fPBdbtH22fPH+Hz+hy6muHhRRZg4KIUqDWLpQB9wtIkXIKRLESGvKSWnubBRJ15eb5ywFm1E5+4n5hW+fn774s7/4U9UQ8uu5K9//q//4//zJT/7wsDbQWB8RNW57BFpZ66fnT5mGjISzTq0JFJglwtPMogqSyXn05K2Pft1izJihhyOvKzkaE4UlYIGdZwNpkJCmsxPSMbethy+VllJZpRvBWQKqEl49jCVF1zC26dEp05lDKpVj6e4rl2JJ9rzbFrGI1IeHR/GFkqadEVmkzBgRiZjEEdVBLQk94Q6qS6axv2zzBXQ/lRaXjNxgEHlIKUn7hHEFS/qkaUYmynCyCJEsTdOjqqqwe9626/cffvf++UNbT3Xeduwas6ZGrMqMddEUzayQ8DHFsURRSJLN7p4z2QCPsDHHHOHkYrQPndms+otcbnOcDU51MrxEJmkaMigARyqh2GDoEEq4DSbiYKctw8AnOhrHeJno++FUf/L5fdO4vlxo17vjKjrNoS4e5ghwFlXHvCF0kdknKAA3C9YQlYeHtdAxp539hjpnZKQkzVKcwlkYxLe5e0rRRb1mzlKKgJAdponiQZKu5Bp98oGfni/rYbXM6/WMHeuyHtuyjX326+n0Jp0i5uX89Pbhi4gMsFtWLU/btZ0ObqQsr5raUlll3W/7WnP0nbNeLs+fvX345sePYzvX0xphLeM8hm/93d19hlsiie9P95iTiUYai6SIomrgBFm0Xhwicr+sKmWyng4kJGE951iKPO+uaxXO2S0KBdHD6Y4T09PY6U3l5W39Ev08/+nT+cPldiexDDuSzIwgOqzHzbqbE8AZDnZEIm0kVKoUn1mLpM9yz3GQ46IHT72MQ0hJdbiy2PPenwdPKIKcAtxXQSv+3J8v12vsdL8wBRGFvwpCGASIlFap4nQ6ZGHRSszKVNMAdUmkJwUIgCa20/L41cMfPW/2h18X+ePDL//uefcslaG5m08PAhJ+U2RnmhzqJZJiGI2OkVyUkmdghIoIscMdKZCxhTtR4rYbL2ir/um//pMv3n5OMRjQpf7p//g/saxh+9h6aROh83K2rnVp3juCPMTnQAoJpk1xj/2WOYlJuVZoxMz08+159H2/jYVawSJ0sHiVLGVEoGhSergFDnpgWgW8LIcjaeXqtCUgXEp4bfq68C0dnISKKLdtgoKCICnKpbAKTfKCfGUVZHeiotoYUtoBaDXyev1+DAShp6noAoluO0+hILQiFUkwLypChxv6dr2RM2Emo3HAEcmDLRBzvykva2vuYMi2dY7UUgF2EJeaQF3V3G3uoz99eP/tviNocS8lsQIWYzJnQFkIllWklgyxINs74EKF0NZyN3waT5KtUQ43kHJv2/Pld98+f3jqcxCFrJqR7gQgLTwYNh0EBkk6wyOnQjV5i6SUA4SzG2LY5MIzNG+I/UpvHipXm5YHfpl9qU00MziSGmsDz0Qqg7gP80gpHJlzTPKsi8Cud2uZX725et+v5yiSOrWI0CosDKYkYk64gprUZIgg0MOGcs6QiLKQULLel/by/Gn0PB6Otzmo8rjcVhBAhqzLCs8v3n52ub0wBwJj7Kfj3fXWa1pNtj3uHx95jPPTdTJfMN49PqxEY8a+jfWg2co+7fHujjL4oLaPy/dP8u5xGo1pxj7B+/l8vx5UCOFNyProbpQOUuJy9lGO9/u+3fbrKqckrW2VxDa7qBatj0e6erd0WYoQJJk8LMMRpDikXtjqV5/lVy50t3249R+2/O7y7up18KJKlo3rEGPG676YkgdFkLMpA8RJNPd1jsMqQhVcExbeqsJcVi7Jt/e3vAWCSYkpzby3Rdzm9fkqt7hr3HjvY0bsHMrEXIyg7bDUppVM404XYRkUhEo0EjxsC+4EEkESIpiJf/LlH93NpLb/8KsPn37zscpBKLo70hXGmdNtJiuxJNhbYFMRRgyHBXmESkE4UgRsGZGRExwa4CLswR9f+r/7/A9/8Yd/NhII9r4XrfscGL0U1loNl29//PZ+XZJ9Pd31tN1mWlQuSJ8WL89PtRYwwDws9fcup77vuw/DdEGdpEFUJA/LGpRH1gmkiobVJDAyqdWlaFGp7imioOaZ4SHJSqxaRswY6Wlz2Nhdi66VRciye0oIk3LxKExuw6KfX25rOamQx5C1lKm5bVLdKwURtgTlJEomdlZRIN134iDO3lX5wPUY0o9U3Z8jTYwIZKIpwTTEHbB9bCIrgpApwunm4AQoUdZlYsBtjj597vvstzhnJi9SdEMvtQjXqrVWSmm8LN1HwcqTId59B3VO9jEBQwwgKqSAbi/49jfPHz5cn6ZzFHFKcJ8zmDpNBjOxmb3O2Nwi0oomESbCOYMhMITVTJ9gNzLSSkkcJjfTUhdhctsUVEgWKhZuoBHc9AgzRGRmdLiHkTsli5p57FF0oZCFbz/98rPvf4jz1kUXH5SVWRbiKqLRt0gjyqSA03pXpMIGEERSGPlKfdWX3KbG48NnESEAddw9vCX3OUa7O20plfS67xDVyv022Af326kV84DE+brfbL8/Nb47LitkHqdHn2NZ7qSKqgSRMbixzb5fumU9nt5a+sN9mx43y37eHk9L+gXlYG7KIloPZcKmhrK0c7/1/QWUKNijr7LGdJ+jCJFID2NgUfGK2+YtxTITSGZhTbN0JfDIWVXe0LK/LZfDsX397vl8jR83fd7Wsx1NVEWCJIun8YjZCNyRMwliaJ02of5wUCmNK00a02sRt3k4nPrYn354Jg8pMjCp0Gwxl9LGuG1P45C8yG2/mU+LoCqVREWXdanteChNNKQhY9nmJpKJpVNq0fTdrDc0pTDCzKQcb+7vxsd2Pven344Fp14NnjLawcaI7swIqcZRYtetGUKNk9Mr0kSSHEHpSh7BDspK5AiPmEKUnAtqWPz5v/63i1SKcd3MBm6xufCb+7dJk9W32xPzdp2V1n45v0QkpW/zts84HUsppz6vt30QMTMPN1Tse4xxu922jCJOq4hTLYfKKy3rEmk8fCkyM5g5QCaUIbv73idZT0+zLWDIljZJeW49ncijX3fP1IWXu8pKMPPw1sismEGW1nOf+96fz/N6ZSulNIIAAmnCbVx7muc+67JyFkRazeBQYcQEl6QMJvOsy0JpHBZFzIOg4TOZGKTB4OFBRMfwkT6jk3ApWkhSiB2T0oQOS1sy47o/PV8uv/72/fPGNrlxVkkRr62uuhpxJIZQq+sdHYh2EOXiblZKi6gz3dxG7MN3zexXev/PTy/v9z6WfWgEIZMo1EGiTu6M9IiREaLqKg6uPjX3aFWtaHKSb+Q0SiSJhko4BQ82kZyk3/54yahleYhcJsY2vLWiWYtlCC67EQshJDImhk+T4QBLCeLbGPeokTV4O7VV3v78d9990908MT24EhW1SHdirSQtgCpehX0CRI7iIUQBJLRqES10r0WlyOXpU9FyXOrot330nLUtRyCFc5x9u/TTwx3VZYqPOe7qiZN4mdftKlk37qVbuhuDTuv51omddT1oni+fqPOqh5OWVN7wpCSMUmsKMd/p4VR4kBc6yINvQzTcy/Ba7kvQVG1j37mU48MxScDKhRzJLEQTcApSLgw6ng515tj2FJFaxxyDqBZGXaRVdfjIutZj5Id5OX1xfPz6ze3psr+/jKfdr/2wmWxjpaatehprwxgFmpLwyFOTU22lLsa2zSxQyklYjuvlu+sModKdSUMIHGsrqdFHcDGd/XKOzKJVOBctC5GspdUWVY2ssTC3AfKypI/Ce2EGEydXOkZSUmTugkqhonl3vH/+8ePzd7tQNM89AtQRNHmdPIlRzKdR5+VKVoIlEemJxuRSUqh2HxNuJSJRSTgYlKBkYpn93//7v/jpT3/WfRPQp6en3/zzr96+efzFz/5F0UG+1Xkj5ax3Mzg6rt9eiYzZruOS++V2aF//7BfEq81+fv6UHsux7i8Wc4e9iDy2w5GXLHp8c/cWhYw2kGfv/TZLkQEj1gzx7mPbtIhWTqQGMYOlaELaQ0YMxe02xhiAlsrH49oWkLisRzdnziI0LeZlh2Jst+vlY2ZKUmch8rXUhUuYn3Ex8EqLpwb1CINFckJXdQRzZBaHMSnpqbTz9sRpTCW5cHiqmQ12YaWRAE0lkmyWe3gUOkZshEmg9MrrgZa2zz63/PHT9Vf/eNkHHarev/my3a8PrTVdmBYS9NFHjptvl/HiFAmzGJFKo1pkgohTuYT6+2+ef/1XZz/f2lovaTNd3CSJuSZoYkBRMyuX2wyAwz0GN9GWNJQnMRvvYcxsTHBaWYwCqUmgUIZb5Mun81/+1d/9X/7D/xBgFtoyjyqDh5ABCEhGJ6gZRsRE2h5EQiVLKYRyve31CHCz3E9F3h7vfnd56vXytryNDqZpEchEMkheR+9ei133zGpMIbtOpCyurBSEgG9z0fp4/6iFwOmi7e6RWCX3ftlSH9vdYd+2OTc9nEamR459l9oc+fH6spzWu6XBldIohgba6W7bPyZ2k3Uux/CbYuKyn+4PrmQWC8v1djm0B6ltXra1VZtm+0XB8zaW9T4KTQQoy6JcHouUggizfbrU4oX2jJjzVBY91WGxLvLpfCMRWoqysIcQT58pBOGZTimeid2LLKdTyfQpfHp335c2f4Z+OfftRh87vd/WndhYgk5aAHKEFxqLqCoTATQzudVUaSo88/z0stVMyhVRQ/eKuXLGvG1jokzbqUQtwuBWWimlMTUirdVLlULNhkXPTDNvJAqNyL7NYCJikkCmlATIKLa8jPn8zT992qZSSvoWZAMBpZnhES0jBRp0jHShCEWmI1gLJatxcBCEjZQInFvMmVFFGmUNK+vdH/3Zv44gJH79/a/+29/8b19//cX9u7fP13982sbj6bhIZS63QVaVldAN4I4g0lIe991/97v30ojmdj3vRMu+3YY5ixYaKns93JfWpB5GGDxAuZ9HWBdoOEYEkccMCTq1IlW7T5WkCHNkgIUmYl43H5GZpXIulVS4iS6ikshopd62aya1Y3NzN7tce5lsBEsXkIqyNMlGccE+RNsOV2GHE0h1ybCxm7YmkcyMgFjueY64OE+HVJXQIqzTbwmPEpFFCMjgnEhTTqT0cS0tGRLg0EpVI4ZdX7bzp1/+6u9vfXv8/POf/eQPiB9RuWYmYFmz1tb25r1EufRP19sWMZiLpxjC6Zo5ySQH/fYf3//6N9vtNlspPouhG1khKikJhApRg0OJw52IkoKRhYt5Zmal0WUJZ4iIFo5Uot1iComiJXOU7tcIeMr//td/9/Xnj3/yh3+U7ha5s5AETAIMRpKDfBsbi/LAMjQKe6SNWWXNRebYtDSV5OJ3d3d1PxuFmy1tEZLbvs0MqSrCIkpFPB1kSiRcE4ByEpORru00bvs4b4u0dblDCSAQhsTDoT1f+P6zh/AIjpvfiBJP3lD1cOw0A32er49lvV03asuh6NOnJ4IftbRGI/S6jaB+uj9NW/vL7X5ZZ5i05m69h7BKYx957ftdW828tAZRmHTxVpuAL5eL1NbIzcMJkvnY1vP5vC7VWUEHGeFMu83FcWxtMJBBkXBKVimH6+WlPRypFCEQqGMfMaWJTetipRcmvvTL3bvT2aR+9c5ftpfLNl+2fOlLd7YgN8OU+8+wamm6j+wcreiW83Ro4X4bt3mnoObDbef9oLZUucWwbaBrlbosK6pwoaLZpBZdSSA6HcoEIvcIuBYuqjaCiEQYr95szX3c0oTYoB8tP7z/9PLjD7dQ5j3FpVWZABBirmBSxnRCRhixKwMAi7oBnk5muakIwNMnGBopiRoohiDO0pbDid1++5u/+f/+5f/vX/3FT9/94WHL9600o/zofn7xx9Nnxy++1JzMUOK59wSVpbEh0z09BpNLStQF0LpkIy/w6YkRYbcbiA5r2/uZWRxFUpKJAOEiUpOQZiIhxZXd+xQSlWpG+z7ShkVyq6VyUgARblJUlVS430afM0GtLkRMhNi7DyPVV71jgSzS3LL79vL0HhYB9Li1wwE0CIIZAU/invVUSjKciIPFhkgSSSSZTSpr0apEllvACgmSbWYmkZYwJ4CEps0kEV3a/WOofPr48fzx+x9/eC/L+uf/9udvP/8Dn8OHJaUQORMg4QMZZipY0Z9evntCdlkWSFuPq2iMqe9/vPzmH98/fRjIwuxpPCmMkFIGJ1SQzgKypJBkGAJKSty4KvPFPcEqlDEqhSPolfAVmcJgBPtEh7VaJM3rIE356//yd1+9+2pZhJmnzdqUtcSMpFmbTIeUBe4EiwrANCWTPYO1cCDNM2WE1crv7u+/f7lVqZFjc+5hZv7u8HBgkUzhJJsuzEwBJw9iJuQC0Y/Xl6Ll9ObkhPN+8du+lrLUw/npOsWWQ7nuthLbdTsK3t099tsYt1Gyrcf6/sMPPONuOV52mxSGYbA3p+PS+HZ7LryYpm8vOjpDAij3x48vT0tZI2SpUmQ9Xy7Hw6EVfP/DN2/ffbUNp4phjogmypEFUllKimXc5iwQmilFq5KTjuE3G6XWw+HgvoHKfru1ViLoet3a6a6th2WpThHh276XolXa7eUSPVcpIAottRzeboB7o2Zc5yH5tNx98bAMQ59P5zNGDz7Qsq4ulTTQc2GvVEhlocsYs9FuxpATa2d4KZbpxFLp8XCwUoZIeFaVtjQI9WGjMgsXkfBpIpFcWCJ8jsEsAiKKdCcSoiCoByVf6mFsF/zzr88TEAxGhjtNIii7wwyESaREAXNGJhi/X4FlWXwPSiOIiAzETkIJGdkShZg5k+bL5en/8//+f83Yf/3DP/30j+++/sm7YRsAy8ncIq33cdeOwj7n3kpb1tVoiEcmWOHxavddSbnVVF2IARL1U7/12rgux8B4eX7erkAJgE/Lo1SR2qq8gvHKNA8X4Rjj5u6cCpE5Y79OQS6HSgykk5tQpvLoHaFVDrPvtntpSxB1C07jiO16HTlmjoDXPPmk3JiUPt0+3a6fmngGKXvaACHdEmAmEqpEyOQRziBVoUoUESAmTyPfKKlpwagzI2KwFCbxlJkRmYrUIuDG0g7Ht7TU27ier88fz88fzvvD2y+pHr3PTJveKZVZuocKr6ozdLfrb775hx+/+7VY05L79cN0Fypv1rvvf8Rvfv0jvEaKzV29aDqXGInokCImwYScs7Ao027DyAUskIyYBFaKJAupkZoDCyWUsixF+wxysGIWiBCNkMQRKRPvv/n093/zy7/4d38yKTYzJzArcirzsdGYtGXtvk+KqV5B6FDWVGcCSaRZxsJFEePtw2niRKbTrMMu43rQE5IoImG1njzCiS3DJRmsAeUgTAUmBLf99nC6n/t+7r29Xcrx+FDXp6f3rR0EMVxOb9eXj7fnfVtOh+Wow+YY3ZnL/dqWk0wbbvve7z57c72cPT1EBzak1vY4ZtSa+3798EKSKMCnuS/LoXvuHjLdRdc3b7md4nJ7sx6S977ny9M1FUWZI1xZSE+Vh9vOI5PYZ5Gy976Hl6bMRCQ28/5wF5QxhnNoQVqfMlSFnZaloujo/Xh/nHNnByBX61KzNu59VznWUoiKCvVxTuXycH/44mTXm03DTbgWMLlSCLvEIktb28vc9P7uNBKR7TbyrkalEWZzlvtTLFJCS2TRqJyqGqTK64YuMSslFzUPtskOTjJzKkKi6YNZRJRC1sU2+VSOV2a6vLeP3744Uo0zfdAr+1/ZSchdBWNahiSKRRfaaWnkhTxyQB0RQUsSVL05exhRBOeAqwgi1eKHX/0aS6Lk/bs7M1IgvEeWEU8sJMzff/xm/fptoayBcHcK8umpr3bF5A72tKzahGutqgKzmDuC/LZd61KexzVvu0io1CaHw+lOVBjwsW9+U9Eg6t3JWUh6+uX2DLS7u3vhEGblxDQbNhLhkU77zZ794nM2pojYI5mI0n3adr0GjMlqOsXLeUPMG6u++NNaLXhSlkIlsnQKoqxCiFRaWNgQazLcpu+eAhXRmpkkSMpAiB4RJbxEdItkEtH03OOV+4eakGW5K61e9vP18mH263W/ubMmS7pFn7FFcBMqnLd5e//p+6dP19v55dZ/3HJv5YGDHMRaqlTqh3/8x5fffndlX5smLNkI6sxOoeLKbFVChMZwT54IymCRyiWuA5JomIgkYjiniGkqD7hEFqaS7pxMJQn7PJVEgDQz6zAyTvzyv/7NH/3BZ6cvP5sAGYrOokEhOh+QbrxtGU4EJwtQSkwrCaQU1RSiqUkUYqxx/3jynWeQRa9VwDSUUCKZy1rm5cZFhOGEGVAIc4aantqhNrllyFqXvUs7TOenDz/erfXuuEaQzdhg2GZg9g1a1+1yvW3X+8d6XBcnCiIfc9teHt+8hfB697hfLsdWabrWw/mylcqL8Bdv3l5e5ezph1JnWltPn7cjxmTS9nC3DTue7l5eLgvn5enp/fl6/9np/u0jUiiJ3NGImcgAlQgfZovS6XiMHJIiomP2rfcIXg7LQ1tYsPtt9M78wJCiAWS+Kk+kBoNBTesa1JbF1uXWwTCStIwqJQldko2Op9MY83nup0JulgwCKmtTcmNihdDhyJVYi9wU06en86qNFCyBWmgTpYDGHqkEFaAhJgchwgUJtFf0LmsAlJHhROLxNOaLjScc90zXzr/5m2/6xQWIQGaK4EYBjxmJpMTwdCJnViKuCBUjipmcYKZdmQBGejAwR2FwiJgHo/epzKk+EZj02Zfti3dHm59qpYBZ2m3uvPHb4+M3H3/88tYPD6eRplYPdLphRnpgBFlCw5gpjIx9tjwR+Pn2kddmHjGuAVWWYTFGdtjdaqerk1zHnMFVWunufUykayJMetphWWtdkbDwglQhs8ElYSyRYeGSFxthwwB2iWQSnubFghJM4UIzqiix3m7RJWUp7EnshRUuKao8k6kTJRAkNOYsal0JWTyQKiDOSBFxn6LV5m3oWaQUFocgAWK3uZKKcDL34NbueT1svtvtPC4vn55efvzh6e709bosw/O8XwdRzBg//ub8/OH906frdplOC4sU49ICMZ3Ct5AAnb7/9vnDD7cIIHcGhUuRZZLvDsBdi4oyCY9cXDyzZ3aKBBVD1cpJmFMBAyuRIqxO9aX0QmWm9lAGSidh4qMDY6TnDAOImQn1+br/1X//5f/85eeBGkE5XIQt7HbpUgmRmhQBUs09u4doy4TntJmNdMeglOIC0iP7lAgzMZAoRHRtN+uHstgEkksGpdZMCmvCTMUTWkT26wjw03kb4XfLUrVufQrTdr4ty/1y93DdLnnbiyw95of33wdIWcqgWtvL2F9oY2EjcjfzaEsrrQawXfsSelpKEYr0EVHXNYFt3zxxpw9l2AhSLfcUY5uHstxsPl/PV8HIfVHC3iFErGlJzEgOd8qUmESaSRnGESk0x7DIda3qPnekGYqGs8rKIYwC5ojBoGNbzefed1YdY65SxCKMnMCghcmFzr1LBHkc1jWZxhhCNbGBUoJaW3pOULLkjA4MEbAKkddarnNcx5SkItLABIxMZnbySXkQstG5CPdhPqMtAbZMIZsghxjASKYhnPvs0344v/xGKuc2ZVA86/e/+aSxum+UloQAiVsiQyRTSJJjciYQKTRpCCJRkoRBHAdJTukuoQNgAczSnVwoKyHTwXJOv787/Q//5md3B0vb5hAnDH+Ni+j5Ot+8++K8P92/qaOrwCSNuRT2GSaJDCQFKGN6CrZ+69fKcmQaPk2kbreXsEinogfmcn3Z5stvwHuylPZQ6kHSAXPvi65V1rv7tRQa3YVRtXDa7JNCmIRhc/a2LFnVOJLFZhRmJmEgAU8mlldAOoQzHaRRDBgzWHEkxsTICEFozXSwMhIA4CylBPWt73V9c6x323ZlgvkgCsBV+Hr5SKyH49v79XjeNyptWU+2XRzdqd69/ZqUe972cbs+X69P2/ff/FDXx3K6u43t5fpytfn+0/M3v/u+P51fK5SZBJGJ6Y7IHULNiDi9y7ffP3361N00ghAykKIKCAUWAIKpGL6koVpKJtKZE5RAZI5kDY7izDs7h7WAkiRNH061oVVgfXP6xdvP//mffrxGEAXBIj0iSGEGi0Brf/vtd//i/ad3b0ipkKgQmY8zro0k0zRcQFuHBVHhEWNkFIiRMwjMOYnkqGpp3ujgoiYKkbYcwrO4PJSF3SFEyMwgTxViiSBHqg7bx96TpNbldDrOaS3t8Xj6+OHHSpxy26UfT8v5fN573j++he+b98PDZy/nvbwMNOJG0Qe8+1jroRFhOR6281bWEzE8HKSZBF72EUR6OL5BJsOcsguGhkvitlWVbb883h9rlb7Ucd6zSJDQNNJyOW+JbMdKxOzdvDvxpBSS11oqBSLAWrOaja0EqqgQaCmbmYGEGIn04EBljQSBqUpW6Q5nDsQ+rml0V6syDd+2sGVZPT3NVYgZDBJWjjDsU4QoOEEU8rql4SL7INCJVBNBMSRdVVg1QMlonJLdRys0IDMiQSqVYqTwnpRC4lZcq+rmN14Lpvax53Uca/v2tx8v0xzFmTPD03vYBDi5BLHKyOn5Si3NpAA7jHVpyiwUzMJeGDGIOFLZdocBTiiEkgQoZQThz//jVw9flLBZ9BBZAiQla5VCenc8fvv97+zH+MXPfupzcx+Fapq7QsoSYeruMAIzVgpAyOcrz4g4IjAAiiDRA/EaQbdtu/gI7sCUPJ/W+4fPvmQuRbgeV6nQCg8T1aWuDLI5NG24TbNhsxya1DLNEZ4xnYXCM51e9aaC5KAAg2eQcHWvkhbZa10VOn0ndpCkp6ZEFgQXxuw9WG+dFVSScN1S1lrUx+AI1szYYCq8bOOc9ImOn8lxudzG1WJdT0WX47osVSj38el5PH+8nj99eL7dvfmJnO7OfZ/eL/3222+++ea79/yqO0sDOUOmz86a1Cj3xnOAwvz8Yd7O7JOCXkXUTMqTCE4E4QCRTHeiAUJymltKsEjvnCRSZZIVCVPyQKYspPCYYrnkQVSdeS52mX3dQNFzdDMeU52CIEEQjbAZ6Zv/7tfffPb2S2eeEdMHK/U+3V0olCmSQ6zn5BT1jEyONb2nsFAVJwkkaHDT0tj81NaQAm0IXlXLa50dsEBwmianSHBNYjaNjMggwEc/Lve75rlf6UZLO+Ycl22LAQ86PHyG7rxWG52vEPd2rB69vd7KlUXqA6e8HuRHWkJYVRr2rc+RrVWRaCqR6HNPTKRDluv1/O7+joKD6zZjacdFK8Y88Lq+PQwFWG7Xp9PDm7I2j2FmQmW73bjScrpjb68XbRkxZ1foNA5VgMMiOJTC4COCpSCgrObw4KS6tCpikV5VCUmZ3YdTFuaFpBTpvo05kqLWMraxeChTaLikzSQWSQlHbnGgRqyu8jLmdFFXlkKcRFA3CWclDyBio3BFDOPCWsowg5AkFanJYe4sTIwbIuEgp4xDW6bF1eK857ffnxE0eRjIQ4Ii+PUBLAFLDhI3D6Rm1khhThZlSnp9DSBI0vIV5BLSyKcCEb57iGj0+NN/+/jmM7qMp5JChQFhUWWqshb4ZX/58PTpj/7gX/ZB03bR4tLmQKKKKOVkmo6JhICQYk6qWavaLoB5TEV1ZmNJJvIAAyiUmQi3Mfs1uC/rkWKdTpk0hmmppDLdM3KO3W0fYxLx8VSkrJG5MJmHsMyZmSksUpQSw7ZUEJWWVIRnklAWJgTDhyMSwSzCWrUU1xkTifTO6QIgC6GCBOTb5VmXSpmFdJ+dIIxBmMf2EJB9jPu2fPXZ57unlKIFEbNf9v363fPz88vzp4+3XR++Sj7s/gTmT8+3v/qvf7ttw1J8JiygnO4lwz2nIjnFwPAe/HIesVF6IAlCQCbncE9lKpIZycLJHl3Dk0swEwurUjoRg4r5Ds6wpRQGdeKsRGQymCyMfSBalJJ9O394dvPx8TJBkrRbpFCTquGRwE6lLt/+09Mf/8lYDkwCVTKKquX14DjJXZiNigOQBDwzbEdxR4YACJmEbE5CmhJz5SbaTNpwCIuIjpiRRFwyXZ0YRagwBzCUUJajtqVlJBLb5epESzmW5bALHVt5+vDx+fmpPb57PLSPL+dybOvdYrfZ7paZtH96OTw+mPD68MZeLjmNC4NLIXXraSGMfus1vN4tNkfv5h51KVVVhJeHt+nIMGm6WzCVbc4VIswmwUifA4tYBCkIzE5pudwfM2E7ZVBRFsB9Hls9325ST7b1FZVLmZJOFr+v74VwkCQltLZ0SkTYrMfjuL2QZ5Ga5HU5gmHDSuG6VEQldgIIqUQWlgqqFBsVE241XhmeNFNQmjgQ57l4ZdYMn5JceJnB5p1pCHE6hQcDBESqyCRPETNoxgKPSCIaRILFkwKaHFknEv0a54tbcOScEcmVHBJW3S3hRUZ4gBTrxHDK1yI6FZrq7JkpQuHFkiT7yOoZGslKpuBB3onHHD//07d/8R9+Xtgk24xg0shUpmSKvPQxdhtE5eMPH8dPe8XBg7wAVAG3meSixKy1UsCv5vA4si4CBHlgJnm6M0uSJ43wLuRkBOB1S3CB6HNXXZZWrPs4G9fGyeCEWN/7GF3IEKjtsJYmSp6OTCXdPCyjaVViOLuZaElWpirpOYfqmmkRr4f0ycTEEiDRBVCSxO/LwSAiIEk2N0oXLsTiL9enhRepB1ApXIk8Z6FYEsGOBGXl4qwkvm3b/ul6vj5dfrzupfOXs93CLeeFpMDyH//un16ettoqIqYJciAlrXpYTCUjpZ2jboZ9G30II0VdVUcikSLI1xxIYGRIreReIzO4ezixQsSJSJQzcm85axZVsRnGLAUeIZmHgUnEjAQVzIMqptMEgiXQaqWM6UbdUpwED+3QWD+8XJ+ePn6hh23uojWballtZhKlyMxEUE0dGc4QYiFQgkkNYdlDXvfNM8wz1MQpI80IqqIRGR6gwqnEPIOYUMjSDJR6Qt28M4uu9cOHH33izeN9I6pk3ad7nB7vTusJnp52PN2dt6cJkGO7zXoQbq22xcxZSU56u9ziEg9vTtftYnNbuGpbNYTEJSf3aFRpVQ/L4aVRd2MuxBKFGuvlsnMta5Hdh/ssi8aIg7Q0zDILv47MPT0PWllqN9/7eeXDbU4qa1uWZFpFW2Sk326dOA53jXJu++7KTAtFILxQHduWRACXevL9VgpqPUQGg4xiDqusrZTz2MTCzEOgoMKqDhCXVE5MQtbiwyukWDLpmV47L2Q8FGEzjUoBCEwMJFNEcCCwwITplgGAGc0khLwgzMtMYBxL2+IO3ma+qI45ynYziz0og0LAlBlJgzgwBgAmyyFJAaCgMH5vjkYKiycyGZzpXYmcyrRkMwUyCME57d0X7X/+v/3ibj3YzJguZJsN98zeA4E0JncKm/t1yPP55d3bNZI0G9tgyVwIEpU4iuxuZAZH5CCVkdPkGtQ1iwaYk4jGsNdkBjicXovwHjS2ru+/39+c7jPT02k9EJTSt3mlJIISt6VJuJ0/bXqoZSnkxqkarVRRgk3zMIsIn5hDaIAjJIHJqOCEOEJYWibCPfK1vBiEzAhkciDDXAdRIS4AJGVJ5emW04k2bES91QWRmc4itJShzIjry9Pt6f3E/v7pU/d1+H0fM9yHm9ajgH77D//98sP3tYiZj1HkmiZhO8KAmpOzWmfwoOhXnwYCApSoHHzUwtlBNEIjuCUV1JEZ6ZmRxKtLkZgTmIxCQRYp4OAWHmMgIY2TimfJiCwOSPXqnWLC13VdgkMmu73mIUwLN2JC8ZRjaaeVn8N/+PbXbz/7eWOBzeucWqJM35tILhycgUBQpqQRN07IFK6VwsOOJJ6FBErWMtlTiJIwlYK0WiYhRCJzZqSBCqiQ0lJftqvO6bUst/Oe29649ZzrcvDRr/suTc/7XMsybmMpstuwsZ9KgVAioorWqu/eZOSxyHZ9Psrh07Q95tK33K7rob3/8X1Z7w4Pd97kue/OtKwnM5/DCR5ErbZh7ohxdTBK5Z42XJVViTOsqfo2wKzJHDnDpYqbzeTeN1Fph7tb76jl5r0KKafNcBAJ5wQFYTglPR7vLDOZpC6GvNzOlLmeTpHQUpRaxHw5Px2OByJOidF7kZJMlOzJM1mkFkhxKCPEmN15CSKCF4Eyiki+al0ZQwLMJYlnBlFq4QgiAli0DnZ4JIlzKpf0RLgxg0TADrDA0zKHEp3K2mO1ja33GL2EJDxIYxBH5aRBnckVocEetc8UZVYpqiolctc0IU6haSbBISVzRsIiE2nWOYsNaov+n/7vf/zmixPlMsck6ongBAUhySlMyBLkdFqX6/n6zz/+9u1nf8ZMmQZi4XBExJzhkRgZkdR4xeA5Z2L0MSNWhgizskaCOd1j5mRYQImJASVKptvl0p+fkyhrOd7vo/eFmJmUazudjksh8mHjGna9XWlwE4FtRVst5BmO4R5hsd9uaQliJ0oIvx6phAJJVChAYBJqr99QFJXptpNPZJTCgYODE5RGE06kUnV4H2FNiKR1cKK3IuvjSbjGnjnHdnne7Pz9p8s2mXV9ue45hlNASlG1fn36+J1wNUjmmMOJYOB9zz6Cdjg7GCp0iTGNKBXEyIhMD9AEF+020kkCwqRFPXLOBIjBDK5uVemWngAwQa9hWCWuIYTkwAyOSclQinid7O6IfttdKxe717p5DvEAqjKP4NdlhblqTedx/TTmT+ryWEkWnx7TyOecPpxQKxeQqObIAXImxcwYGczMJYU9ZEwiy1KVSVQLQ0GkQmbEUlzUPJiyEITZ0n2fQqK3fntc3qzanm8vCSnl92UlKUWL9iFalsv1ZlFEyuX29Obzz37743dvltNnp9PT5RzjJqW2harg6rPWei+tdDscD6TyxcPb4Lpvu9YV5YiYfe6lLPf3x/H8CSnh87Jfkmiav/vi7e18RpLIYgZV4j3CrcNrwULqNjWJGMNiG5OV6kLpWVScKOEiAsuVNTxDKCQOx7uS7snKynPO6VOgTZe7BlMQ0jqppEhErOtJXu9UVJbHewEy/Vjr1l1aidl7JrloaRaTkMrKicxUqUkwIsv0IBCJNGA4pUgmyDxIIpgxU5K4Ckt6IDlBUCEmBgmnRAJMHju0umd6VuaFlpsht0kdFCwxCosTgTQkM0ERQoEOGBZWlUpFBKlJA8LMkkACQoOMCOlwn8ScDgbSM8L/6I8+/9kvfvby8h55hZFKMkNJPT3ZiTPhAS5Ep5X3vl+3bTorYN6ViwW5ZQZnuM2eDs2SVIOBMB+EVGYWUk12A3MqkSfcM5gQwhl9H60tj6fj++fnMS4qjMm3fou7mW3NDK1LOd2BFRG9Dyp1aeQeSWXMzWd3e4V1WoygSR4WPohgAIlyFo8kilfPzYwg5UUVMYbtmguHcxpJhod4IzTnDDYBBZBEUqVA+nYJXjNuiFrL8Xh/r8vJe0a/7fun6/X5H/75++vUuzdfn2+7+TzUdZsUyQR++fSpW1A9ZJ9pLmFOkuBkNriNrIFZ6BkWTEQ1yMIgmVXY0j3hDkMRYiUbLIjpE0heZGWLXUiUWyRPn5SF2WeoljRhrkwW2AAPLfvEIuNQvDCl00YC5ffbTV+DwIaSqsqcbD5Z9xXlWNeEJ0BFObvbeWqzMGGJQmKJYQQdMUWJWRhlEv++y+8SZJBg0jle4QscHlQOmSUJVVRfa0yZCPHgzDzw60ROxt5thnrN29jKoXz2+Zvb0421nrdzEZ7bnhcwl3Z/avVh7P2y74e3j0Ltsd4fRPq23a8rM7+M/Ztvf/z8eHp79/mHcSXlpR6Hb55ox9NwW7JIsM8gB4DNt8Py2tEnCC+Hdr5td48PBpRSjlxi78FtTl9IWClJMp2ckClOmLlIMeF9bHozEVlLGSMghZAWFiSpwux3a43rLZJB7guPNBZSIUqoch9gTs7pZpnqxiqVOOfoRnGJ67Gt4hDwUstLvABE7BLBUZTYe/oaBBOaDnKwp00yrkGJAovkniMpnTjDidPNqhRNwAMilplBSA8CAio8MzwR4ZYhUOIA5owbxU48wndmMg4YEUyJJsWkiMgMTxA7i5SlKokCxEjOADQ48/VrIxwcZqFgRiZ2LWGOSWaKL/7wOLczZzjvDhk9S12JlFQ8dnNEGqXc+tiv27RZXi8IgsIMFQl32zNyhpF0zbWEQmijIRzkUsi1aCaPEZ7JLOIhnhJ8fdmez082tvuHA8kp+f7tg/zD3/9XqGehpv6URPdUa9u2Sz7RmAeYM4kROyY8VLCux5g+Y3pkePS9CxSICCcODy9EbqosS11iTKGSAhQxG1IpbNay+BjM1D2g0uembCKaEomhqFxqZHLKoZ1Adc4XJToe3mpdI9LHRnF7OT/9/a++GVROD1+4SQywKBfRUEua3Z4+PO1xq4/H8UPOKdOCPNiZfBwb0yJsNKY5U0nyGSFCQZQhEAkkJ0MmibmDc2Nn4krFIjyNXqfvGbfEYPY0ScGE+whSyChLUAy2kNQ1k41Za4A67TAhn1zFZsuE0U0yiifCByxx3DZ/Kv5wtwI5A92uzB64sywRIqyVxZTDkKARLkGqVaCKKtnDTJmQybVUEY9gRCk1SZOKeV8WNg+kKzEC4UAEKFlp6/swM3OltSi3aYNTam2RiPDL2GJ671YK66d8WI8097aKKs8xDsdjvz7dH+9ZZFoe1sNX/GUr5cenH63Rvl2Z6+16rcvRbW7z6m4LvzXrgBDktC5jPsegejiazcbteH83hWeYUktDEY2cnH4h06UdXJUI5pOyap3dmb00Slp6d1VX4kqFRG9+C/JayvDY574q0i1pWVs7z02rrBCn7L07u3n7/bgWqUV1kfA+3MKMFXPsUSsBJT1tSgxQMFcGQcmDzJgDXDjIFEogluJBnsn5mv8mZJRI4zBNDqssCAuSAmzDLEhFhCk8mYg8kmCSnEbBCrvt74M+beO6u0fBbbhH7bZlEickJnMyE6WnkM0sRV9HOMwaQfR6WAN5jAJmSk9PC3Xl3SgTMJ+Y7tfB//Lfv/nFnz2wGIidfJqhqKObbYKplFVUoiIJC7/cbkiM8+X9j9/dH76gaEZWJH1YgBgsLMniLOyhYR2jMivIZ5Kya4Jy+mA4R3z47vtf/+qbth4+++KehH/48Klvv3q8O2wz+r6lQPjlw9Oz6OHLw2PVuu/7PvZGUlR6ePKyEKDWx3gdH1MS87K0Gu5pRNQjXMHi6bQTVgoC1z003e5buVHf977WVYv4np4wIs8gyZUGkhjF5w67EUnRYwYt9S6sL+tX7Xivh0NybLfn7fz+dv3wj7/6ofvbu7dv9t1zjkXFAcr1s7ePn54+xbS+j31635/TyjAagkyyEdpE1+SMfgNN0kRxzhQ2xCs8XZSQFqMyKGMiQUXcmBMMV0QkG9VUM98zEkqEaaCEMDkH8pomRUqI9/SabIlrd+LF5RhiBcYZxpcxdDiE4ZmNSkmSjM75PjqwPEgbY3++XkPaSQ7qbcfeUpDsYBFhqkFO5jSmlALiJIYkqFVuJAtUZ/RM01KSycJLoVp534eqUhhFaCIpKFtYZiCBVGg9nmybSbHvXVE8rTKdjne3bS8H3N/fPf/uh4/fvH/z7u2yFKLQhZSolmNIPt9ehFVDa9Hnp6ep8eW7r/ZPW5rfPdxdrqNVLbWe6EDAw/H08nJpSzFs7sayeDoJs5PMcHhZyx6u4KCa1q3fTu/uNnOeqKxDiFNAMpoD5tc4rvetwnxCZVw3kHabEinFC6VZ8LLipGbBlCXroiXmHuZVPVEPx9ZjK/Uu+963Sz0dPELL79Hdb0vhVtLCdusvLxwWnHsmCG+4Rs7IGOGr1NCakzMlXAhAlkhDk3RbJktmdSMlkOxEUls4Mk1KycwF3MNSFOnOSekVSZy1UNCgcrttH7vdetoMvcyyG4XRBJozmaSEugenlcKUlDpFhkwWQYgSJZC+awQcEEYypSZvOwUyePI+0yX/D//Tl3/xH74uvFkMIiHStVFG6ZMkKQOmWEw1I2trWt5//ylCrtv+63/+7Vef5eHu4eAZYpFsiiKJKVECiDQnGOmYKUItnSjZETEHRgSX373/9Jd/+Ust867Rj88zr6ooeb2cP0qXkMKc1E0Q9OOPHz5787Y0ZZLdnVI1K7OF8GbBY1YlBJNohJWiSQ7rmDdYAPyaMONydK5Ok4EIE61uwclVdVFlpCmPfRcmIqJUD1OVtFRfzK++b0KoS3Eq5XBsx2M9nCLsdnuZ/fzDj99///5j55OW4/m8gzMoWr1rubT7dx592uy+vVy2nKfrfk7vWRiTIEF3zBXiSSZkSR6ZaQoCVU5LC6fpxhxO2CBOEcRusQrFZFOdMZmkZAJ9I4pUhAmDGdFYIAVJQnMYZ+uVzMJICgjJHlmCO9EEVyPwCITq4nMYA8lKzDBRP/fxfC7rHZc5xSommUyGZwa7RmRiQpkQhZUKUaYbJY3JM8marLrcE/MEJIMoMgjKwbOoikvJIAZRzWmc04EAPDlMMUGF9frdxy/fvYmsezeP/Tb2FInrtUnLkc/ldnjztso4PNy9WgxuMUWkkcjwNZWT+9i6yHlc7pZHG9b7fnm5vPvp56XysFmOC5l3615JDnWOmypDtJC+XC53j48hGOY8s4Eu/YpDY7e6tKJEk5rUGecOI1kRFtILk2gzxJxeqrDAkaUuPuextuEWCBEcaKWpAnzcz6fljot2MwLVyNB6Hb2kK4mF5TQRedV1JDkKxwyZbJGp5JLlzcO81u3lolrcjDKVaYQ1F3GPxKtJrlCQ0it5IZAVLKIzp4MkUaX1gEdG2qLKSeTBlKw8MgRJAg8TZoqgqh6jrFRT+jCaA86YI+lGYiWDAkNCE2q0a03OpEgWUQVRMhO/ChmkQYItDDlpynD2bkIUOS3cSOk//j/+5N/++c/jFftunrQIa4qPOQ5UKVd2yuIF2Odt0r5dnjB3hp7FaPtwusrhbvFc3TupvSbPlNu0Ru4Ks9haknCNQCpnWAmfBsBfLpd/+PXf/vg8jy3ouB/LeoxD0cOILK0gvQaIyNTI7Pz8w69/J1/85GtFQhSMYNHSmJklrL8oOILAS8LQby36Ni7DXgo1zgJn5XI4fU7t8Pzpl0uTEXtmTk9zA2Eg2pJLqz7Homo2nEIAmkOYmANaDSjHthzX9e5RU4Ni7Jftej2/fHr/4w/ffnueUmjxPj9BF2Jh5jEGS2Wp55dPCr65TbZgq9xMDaOzZ86cFHNyKTUn4DOZkzKC4RQIEWUiT8wMSvJIZ0fR8DBSD7h1ZiC8p2fAggVqAKUUCqYMi0AYC4EXo1L4quaRcGsBkrFTTuNDgoU6IwA2IyF+VdAqbR6WWalcPlzeG33xjtey3OnbQGSaOqfkREZ49A1tiBzEj5FGGtN3EJE2Es10MWLCRKhUyDKIlfX3/SeGQDMFQgyKjGQAJkwAkZMeSMV1hEuhosfJJZ1VZfSNpGpSORzaeh/hnDq2cbveSIDH++enp4Po4Xjo+7x/d/f1H95lj37dHh/uDuuaBGKOjJfLfl9LLZVA5vN8Pusup/tH0lJGJU+JTDeseol9PaxwVy2BGJxI2OYalE5E0bjsYSQ5t524pacbdncSomErv5KHKQMeLMIUlkxaj1AlyswglmHTN9/njsNB5JDoXGXM3s/nWpZS225dhXIbpNXCBHQsdcYuweKZoOFWRBYucx9t0dd/MTEToiQvosOzWIJyiwlhClXKHSOyMoWgZ/cR0rRM37Nogi0ImR7E4FaWSRFhPkdsU6MGaLt1zHOVuTHC3ZFTIROUxMkMsEphZglCIwFiSiInJcoAmB1hrjnDTkE59GWWq82/+A9f/PGff7HZM/sidBJ2T22lIrsKTYiZT9ufX572Wx/9muI+h0KcAmzT+bqdr9cnW3JdSCTCEymTaQwTDNctxNhFIwmU4cHk7MTet+39++/u7+Lhrb6873G+cauPVSQQEH8Fj3qGhqqA08y+++F31/38+HiqteLusRSAlbNIllruLU1UzLoniuSieTh+PsabftvS3aaL1KcPvzV2Yb/ukjQGbT342B6KHutyCkHVQ2uPVQRzfNw/+OjMjYkj7bAe2+GOZa1NmS1jzj5mn7NffvvNP/zVX/3y03k8fvnmsy/fzsBRlUQiwsIGBtn0OYId3gkm0iT75jyNGc5MZDRnTCB/HyoTM6tgDE/xqDrgWipmssPdufy+D52THJY5wz0ThaoGjVdDGSWbVqEthmV6BDOTwHhWZw02ZoRtMVAohMy9pzjJMF+CA+FwINjRiQqUfR64dJ/np9tXX3z+cPpchLvDwanu5BSC13RupGRnLqIEDOozUihVZPWRLOnhAc9ycGZmZvfDstjswUGwREQS8WtAYjLrDKfCcw5dlpqkc2y6ioGv+22VpRbKEoc3h7F37qMW7RFXm+WwlIxS5GW7rg9HiHy6TZbFrkk52lKgettnURWOfbfD8bi26tebR/C2R/ibN2/73D+9XN68PSzLYVyvSpHh+zZyOTSpiy6DiHJEqZky+01lkZFrqddt383uH5YZWZosrT0/vWxp60Fqa46cPqpKmKe2brtgErWmrTDDx77v7bh2zUX0s8NjjzRKUpj50hozW8CnVxYw5NR6TMk4aNPAoZaLRKQlixf2xE5knrLbcSlmY1J4CiNQ1EYPD6pwOAECTItSJM09aaIFmFjc3RlEyYmItOEqmtO58prd5u2yX7YJIx12DUd2rbSKvvQAkJncGROODJFKSEkov9auWIk5B4BBEBRwokSGyQDdfO83WuPf/fm7f/N//IJiiohjipPQ4db3H77/9vLpx62Pm2HSVLFUMNaFVENWvQ9EaldqzO1qtD1/OIhRe0xQn6NptUjikWyJyKQBDk4FqZF7DnLr+/m85awr3//sJ3f//fzN9TpPJx9LPxQwL5puyCw1xdN6gpIL+7x9+vTydC5FD8vTu3dvH9/evTmdYItBuIqqZEqYjwyhWCSW9Xh3/xjhwm3ueTfPZr1vE9ZS+qEJCzdpWmoqjFIihEqy1Hp8c6q3bStUWjmQsDYtku4Wltfz7XK51cofP336X/7z//63v/yn620Oph/HruvjsR19CKtGBLMmtbA57GZ887k10TvhG2jnGwt46mATZc2k9OHwIGQoM4NQy0jkzESOHOASDM7kkYWYhXoYERNYECllshDICaCsxC1UKQMzhSOgBqLsS2AWjUKcwdyLhBLNPMRikKd9CDcOIZplKTa3AUrStCTSnuklTnf68z/+CZfjtGQl86u5K2VxV8LOQaJERAhCCV85WVgiJMwhGDaGJUuyCBia2UQREQmW1lkzAafqcix1ynBLLc3TKV3d8uXpRypF6TgzHt/cz5GGFOa8jcp0O583uj1+9m67YZ4vn7/7fMOcFJXVh8cMrUtZ15y7CIXU4fN2ObeVBNr7jTX3fj0U7dtWToceyVJPJw0LSlvv6q1fS9ET1rEHELIUmTOlzM2EJrPtyNNdM5FY9OhQT5Hj7bLv2NelLnWxPmvRzjGHrdMjyKLrUjkkA2KjlEpEUltyKUI+x5gutVWOOSFSfExpFUKsYaMPmwetMVOr7GHXpFjFbqwZ1Vk3k6a32uYMcxJSJTdAI4vIqrLDM4Z6ee0tZQKsjqEFjLobO0Momcg4iYzCpo1DKZUKFVy2D7ftu5FP3fdpIxDdKeHpQFShGjmVhBydQqoC/IoVJ0okK2O+zpMISeGhOTuyRjCZWb92tT/9P3/+h3/y5buv7oYZASxpldqk3/3yl//wm2+1KseYYfSKlm6VC1MshMYapS7u03m+LWWmLMcTgmFlv15TVVWRMwIBA6hGlSSIIAOEjEQgA/sFY4ullMjW1u3NF4ff/e7l/LE/H66iYGaZDF2cChMv1Yq0Vpfpt24v++D9Ni7X/t2P34vYX/zp//gvf/GvZo5gKDWXQZEzMK67b/3Ng3JWlqU1ac3N7hRfI+YYDipJFpiF2CKmOjIlmeBJPJOUj/cPC2diUgDX28fsHQjWw/uPv/vhx+++++79f/lvv/7+MiZVoeYaz7f+zW9/9+f/6tBjFyuECoCZn/bN0jJ9zulSQrzWPHgO4FaDg2hmBYUFpyAVARGyyBCYIZmhzJThmcEKrRoBH+wkCRdNyWlE5N6ThQmUSKKBLTyyEIKbohrTxFQ4RDhAM9kL8xwRzEScKTWFTZIJlNl7voo0/FURii5G1f/0X/7hm8fj3s+qd0ETwR5lggSEHMqZPDNO0yZoJDUmcSeGEBdnGrYzijJR+FICxrVqnzOlRBZ2JgpQJnmQQwUOmyGChlAPG9HVfL/WXAk+FznUopsNljy1NzrPxtFHL55rEbvdutoSzkEz6WE9tkLnDz8sxyMbtm2bcwrk+eP+cDgc7nX4ZT0oDwTJNkMpOTM4Rt/ujm2fdt53mfr5w32juF7O/XZWVDc+qgrh04g+tkMr4YOg5n2aQRZKIswASqyqZeZsUY5yF+zkJNvkJlcicY95u44tI6WWwqIeQRTC7m6p+irGCh4zIRHsKOWYxdOWdrjeLpPnndYYtKKMtFqKRLYkUzaV25xlHAqtbLfMIMXKcXYfwVQlJRISpJGBgOriQaTu7OmTQWFRCitZqVSYxAg6J5/P+w+7XywJHDmVqeyxDdrQhm8mxNWKkYMDICGq/Ht5J1EmsSh2n0AgzeFWHGPQ1M+/Orz5+cO7z+sXf3AIZ4m60Onl/OPTeUME+vxvf/crRV2XisZhG7X6xVc/HfNGFJmaIdmc6/FI8uPH62Q0YAneo3SgsBRVZWRkCgQ5fTdToVVZEU4UM2YG96v1q4MoyKgAkccjH47C4XYZ27osZA6mwExetXz2xeOxlCIox88cftvt+cPL+6ez3G4v4/3/+lf/6fuPH7/44gFM6dm03a/HylksQzJtbuPjmL0oc2TqUvUmstz2MHuvQtxWJvGY1tPhPZjIi9al3uWMy+3mNkqoxwuVmU4vz5ePNv7bX//3f/rVN+dPtvlipQXdkKQoAfnh+x/uHtuXX321xZaxVg0bF/g5fIZ5lFV4HGQzubLit4IJvHFNlhw5bDCSWeCYMySR1JnFWJJYMpeYTt6IuVL3ndDCabokAbwQhwZqid2Skhw7au4Gm1RZFlLR3HmkNXOH5I6JiFeSSSJNiCMfnKZPjtrWZaYlOELcCBKNEdT/xU8//xc//4piG7j32DUnRCLYiQZnIRdM6MoTJZMYye4WBWsr67IenrYdAeapugKAmUKLoidlJqXza3VTjDWUMwIzIU3DJrIo7pZGJ8ScffJkjhRNYDj2l9uOdrqQ+/P58XTPpc6Kp8uLBPu16+E0pRwKV4WznW8fD7VJqSmtSH188+789NG7taVufdS2HNfjdF8EMeY+QrmSLDJvj20VLJieABdOgQP72I7rmqxtFFUwKNJnZFWpVZG1iKZ1UBDw/+fpz5qkSbLzTPA9i6qambtHfFtm1goUSBBCNoXspnTzYm6m+ctbZGTmoqWnmzs2AixUFYCqrMz8lohwdzNVPUtfRM38BRNRM7Xznvd5KpNljt4JxQp5ya52meNRZZT44Zqn1tatZvocIzKWugI0YRDMkXMepVTP/uqPCrcbZhGRKnZ3iSjbos57v41hU/MFmeKVeFn05Zh3O07LQqzdJpxKXUWW6URBKkIRr+q6wWLhkSxEkjSOW4ourSUymEE6KFSAyMqnkqcRdwYJmmECgzOh3MUHHQaqAAVnwlUXcgmiEErJnJaHRCmOmWkRQq40Hcd0K+vpj/7ka6n36b7JW7/ib371ly+37/vAy5ejZlNdtkXb8lpSJW11re8RC8k9Mo3CqRwWRNDyxo6pRY5+nNaakmWlzBnUzAczR2aAjJEZ4qOQJmLGyB7H9T59sgAhlMIpK+v703q4XUdf7qaBdmKm2E76/v1bVZo2XhHXICyVlx8/PH51Lnd6fv7mtx+///Wvf/3L36Rw2zTfXZav3r9//9UHdvz13/9qU+0wznhTy7vLibRwiBCZheWL86pta1Cpy72P8Fw3HTbO23nWz0rrfXZWvT6P3/3Dr7779Lth4z78N19evvt09yMLaxbPtMIZTJ6mkCj0y3/8+3T96kc/Mszp7OaMSUFA0yxbmze/1kU85GHihATAoXs/MpMDHoNIepgksTDDORXztfQISJgnRiQXojrTiSk8mpIWbinpKenJFKk60YgietIcoASMiehVlkYenJQBApickKiEogSU6dKnRVWKqDHBcJJhednOb959GAFNPTgLUaHWY1cqmqFQxuYRfCiAADNVp0hWZCWux97DPDNBQlxN6kSeC3lwTi6FVMFpMa2ySixpwXNoOmoM90zRvY+HtsH9mHfwwsSeuN3ujrIfg/sLi0eOVvA07uvlTRvF3R8/fJMkS3oV7rDT2/ds4fc9Bm2nlSRBB+m4dhIrTdtxe3ZplFRq7btLOaXyJOciYnJ7ui1blhPX03rcJ8leVrn3O1TDs22LikSEsoy5N6mvsIQZAqLkmL07UGt53p/dMo2W9RTd7sf1kNhqA2hKhnJPv2Cb/eAiIuQe95zra3FU2ZiGobaC5LgdGXI+PY5xPwJQxmkVmxlI4QkgX7cl4PfdGKgMQYK5qC7L9TZ4RmVmCoYRQPASIdBXkjozuUcLck8u1VMsDue5iD7UD/am3z4+AdMdxJkRDFVtgNFUItvTNbVBKDphJQAw99DgFCYOoyOQCU6Lw6OHjMBf/vUnX+R/+BcfRh7f33718dOn/Tgu5y2TVUwLUSnU6ruvf9b3ly/z98u6gtLzoLiZhVNl2UoRYiutHiNuNk1sCVfVDE3uww9ijMEsDFBkgi2TeoYCGHG/7j2Q8HjNSKlUXljGNe6BxV5eNF7KV2UUX1d+//6slX24BNeyFJHQnGTuc1mAsLfyZlsf352+/4fvftfH+vbdjzVuP3z6fMz7h7c/Ni//51//+tmPNHtb6bJWkCD1YTVKT2kumB7NmWpDLXZzKrSda2HCAPS0378Q4unT+Pbbl2O3WTE4Qa5JogXwNKNkRJk6RZSTTJBJv/m73x73+Omf/DhSABLAoguzaFk3PQZJqxR+Sq3BL/cx91lSMlVMjKwnUDnMMkJw0qoACNxTEC7/fzhcjoxXAi4po9XCCQypMdIHU0lhhDGRJU0gg1RKhgHuJMxCIDJDIkQyHRkDhCqUPi2ngxFKsJzsOYlWKWvbiNSjCILI3ZfSF2QQUgBWBmladR5S2TKJw4gSMdyP2+HCVqRo9chKEoik8EQkJYdRKpKYKBGWITwA1sLEcxoQulH1+64Fp/ODVtn3+fvvPmrT9+/fbo1rleJ+W2NPEPTLpy9KuJzOUdhsUImnOcX1rJfj+tSkbpeHW/qn60st0sobrVGInp8+LWddSwsjgmgTQDAzRg9mLdt2acdxIwcnlEBCka5NROWAvvQ+jn5ZtqLUtnWMcexoS5VFCZlkZmikI8xrKnE6xu1e2gaUrSqYbi9j9rGVtpTF9plk9/szl3ZaLm+g16N3yfW1bg4iZA1Obv3e60mDtRhzspokCCPWyxlkTq6qDHY7bEpZT2Q5ZxJTWTa6h8WMLEnkFMJZgRDM9EQqSVnOlOSeKjUymSChlAnCdCzbu/X46uPT3xcWIVEqIbLo3oI32mZeByUxGhFzkhNTTA6TZBFJzdxBRimUaSgj/TbumLM6/ff/8Pfk45/+8w/38aWsWbbz48O77/7xuW3M9UhuWblubzyY6rMFcfUlxLu4WacbT+87Mr3VZQxLiVr1lfPhvruDsoDSrYNKYfEMCi+kyOV+HDbdw5iRkDmD8KrbOAXHDR+JfKnl3uk+Dl7WS6kZkWECMME92YiTi6hQsxi0Irkvip+tH370zfvff967ewVntDnx8YerGep61p0Hzc9u1xfrM3cfK2nenbfreubaiox5n/dOgVyZivI19x1dX39wwmEczmXUBdS1kIZ6VpEMuxcNTxgHiJXVKJzCM3vrv/34j8OOX/zxnylhJiUocYCsVF7W7W5XbSok/ToCZkxCupAMIJzzFTcILgoE5QiuzWBwZ2+WyX+g4qToTmmsm7P3dBAhZR/YuMDd2DPDk0jFLThfr2gyI8HuCI1UAEyDPN0QElp8jloTpRkiiI4MkLYEV+GVL6ettdbj2GglqohcMic6sZISyIU5JVkQDMoqScaHzdn3p7UuxAl3Iq+tgCLDlralB4SzkCMR4maXRZNg8D5sqyc4wolK6P35+uar9zdYP+ythvt4eHhYlpqjH/cDsep508dNRfrTeL7dt8uiPtvMwKCBOadkht1G7XtYQn74/ImJtvJwqXI1Iy0RSSnH6JftMQGeE3GUU7Ub9pxeeqXWoFWqZGiMjLJjJqwFqbK7ZrrNCdB+v/r0bXvHEiD38GldmSMpLEUU0Crl0/7UliwJnjEzlVuGF0gfPThEW2u1z8FKCFqWdeREUKMFNP0Y/baXy6UuJ4kAbAAncD23lbbbtUuOpsLMRECtI8aY+7ZTrWW6jTkvW91f8Hl0dmpaIrtSCjNYXhvBt2HqpLWQJCH+gCSLV+5JFlVEfXv5ybTncXRNZm5RR2mz8EiYhZCaAJ58CyW6NWek8mv2GAN9FBQjmtF5zLWPHDZyJPHs5a/+6+8uF33z1brPYJaEZ/RaeAI5p6w28nnguNtYdvvV3/7m/jxKxP32dPVMTw52eNEswdHydJaHP70EnKJPT+EJq4BMn3CnBETMsk+Eg10zS+REKtICnomgUpnPBc/zuBJXKfee1WQaRySBmGj6HBmtSJiFz0yIehBYFrCkoMr8SSvznr3fHUjBMEgtP6/nt0/43HsIlsyn2/QxfA9iPXpHfc0eKXkjhgYFRQ8assYiiHC8dq52iVBmanBKAmdkr1aqyISIJufKjYLvPFKZC0vYheQ4bn/5N//hj372R28fPszRfJpUMKtoWZdFxS0IRafm3fNcETZ6DQwwi7trZIIz5yoy4k7JJ9ROu3NYEEVKpgjVZUV9mLKPcS1oE9S5gp21A2QekcmZSsTyKkSvnCVkUs5g3UcqB7MY1XtOD6vcFAJ2DXIOM9csUOHKdNLzZdUq0y0kFV0oUJIyZmaANbiSCEAoQQxBZLJLGpdEzM5FmMBcuMgMFi4M7jZZiyTlhFJT0fAg4fCQ0pAOs4rISM0F2fvuBhHJupaMTAVmar2sx8ttayeJOsjWh+XHXLVysJXKJVehHNMQGdW30/n29DxzrmsJn0fcxFh57aPrssKrpBHbfu8NUonmtGhLQRQPVJNltWkdPnw8qDaWZEyzChpHTy5zWwVY1vNR+hGz9iwUy1LN9CBvi1QUD3dKDNuIx54Hz42LlMpFaVC/jt7vsq4xoZwt65zMkTNDtIWFY5CDpW7nYh5UeQBNaoR3DK5Slsb3YcNLay6p8G099WMG9ePYJ5EWSZsX5q/fnO+f9+4By8oZkERh3jMmvK2qJdxzmItn1uKZ07RyJtwBUeJTOT22n36KX+/zRXpmmi4lZdUCGj2YKSnyD5ZxEWgmeRwSlZSIEJ2pcNbDLIfQLEzTcwwwrutf/F+f/tm/ao9fn9f2MKMb3YOHe4mQNdrL95+/++3np0+3/bi/HEOCKQKaDqlEFUhQCIIirzpebP+jScJzrmLE/JzEwx0EYZFMmzGDIl7RTELOI4y5VMV0mwTQXBf9+v2jf//c3ZlomNv9xS8tWdmW5DR6ncctugzHnIeRNUYHRIwmkrVJNS4uY9nvnlypKdJ0raft3eV+m3HjjDdv8CN4v/en78anz/ARz/O6taVqKXx++9WHj59/228/4A+zHU4zLgcnwHne2tRxmMVcT1kOBgVJYZRIgTClZeMFSoIeVIzJeXw6+ne//POfv//ZL776J0t7c/idyJZynsOE2qmfjrxr4WWgB0eyZLh0Z1dwybJGeeE5BTzCBZGzkQ8ZRppREhksIitJeiRBMg4GKWNSLAqakxDMQpOIOMkCMHHyLE6AdOKkYJB5DBeihBmphCeRVyX1mawp4iqV6CIoNXZMz6jmWpVYcxhjUVUKThodTOon5oyZJAgUkqayR8wiWghOVDQkKbDq6kdmZhYLL2sq41ApLHKHhWdZWDKUclqAScdxP0gUfL/u1+nndyuQbh4jwHJpLV9uSiWbZtHF+nBrb05uzsAg2XgjBxn233+ulXXCXZbaRBiyeohyHnE/bL55+zhmbOuDHR0NFZEgMbzKUmYMgjZetBHIiy5B6PNIp1pPWTV8SGmTOCvFMWdkJmh64yKQ+8u9tCZVXslBVZsjC9eFm80uQubBRbbtnIwkMds5i4CcONJUyGOOOVe5hKd51HbyTGAHIKVej0OFYFgcHbPDV1nCblyO83l7/kwRu8csm0jqsMylFWq77elZhDJ0TFe8YsYHAE84A0KZOWM2KemcM5MkQgROrKfzNze6PX36RD7SRPUhVJzvm+RhcOTgCbE6uZQizEBOzyyDJJIQNn2gh3U9cg6eDG2pScwfn2b/T/2f/Yvy0z+2j0/P1y6ZxU33bs8/PH/+4TvrGQRPAzMlkQEuqZjIWxpDlkGTPUESrdRHUElMTw+3lCM5CNnnKqxMvs+uCRWwks2g1wa6KvEaOSIGKb09/UTR7tfnfc89xvWgt7deDLHidZstozLKuiwWSbnPwaND2FmFX7lmZRWKTGMJj+QEI0OElB4/vB252JzLDu33y/vz20f6ZvePP3y536+zu2dc3m7Dbnu/lVrk6PBOdWGGFfLCa10opDkTpalR8mJqcK3hCHiSiSVlDEkLzn3I3ZIVtERNfPvpV1+efvjxN//sR+9/VKdy8WPZ7ECt1vhlKhshWSYs0mYyghZlKmSHR1oHFWZD3CSLg3VJHyopWCjJqSc7OVeTsJ7OMKpE6h7OmqyvMSCnOXlGqcycFElGiikCRu2moFBSVk/xI2xJGQCRVCoLt1xyp/50vX/76en9T9+cuTTPQmVGJJUER4A0UBJsqozMNpmhQQwZlAkBCxNRq2vRJYwosors497aibmQTaE+CZRG4RC8sj9I5YhJVSJCm56Spai0fbbWVLbnl08MFtJ+76PmHndqyxYkI3DSLx+f3hQ5PV4OO3Y7qB9bPVlmhS5tme7AH5LGhTF8hvvj+WGaH3OOeePNualXPr48s55a2/rx0vudWn3YGpkx1D1h3SmFBUU1EeiGsTt6z0uTtS1Isj4MoqXR8dK4aDLPzJgkUmrrs2cgMpLIMEkVJEySiRkJLgkoheVEdolStcDJ/CDm4AghUIb5HF1LbbXBQ4jltOWcdh18akAN8rJI2fR2h2T2+35pi00rbXu4nMeXHsbdY2la2cI5iYgDkm7mCYCFxR2HZxY+YAIi65McaSGndfvpcvv0+em3xa0sa5RIhQuyRwgdGJqmuhoTFREWHxMjk8SM1Cj3LumSYzAMJeeAJHKQ2Ocv/jd//fnx7Xq/HjZEUo/P9y8/9NnTUzU04aL1dY0+wIyKY7q4ENEffuoo05iykSjVpDnJMyWDnEmCIpMihUiSPfaGRmgsXvB6iWeSwhPknSiV+LI0zQuyZ8/jvt97GEAxX/Mhy3UMaydBLqoJpsgE7umRzoniqMRoCr5sbuN+fUKSFuWTLm3dY9nH3Ipto7z0+3Iuj2d6c9H7bbWZv/nHT9/9/rfCLJIxpwYnCXkhpJJp1fTDg9vYKjcpjhxDDEJFFj2CzZJmOlmziTEPZYsksixF6gYPdO/973/134TGNx++YU+pjVyKUy3PsLvyMiItA68zzxCKmQoTrZRpngkQIVzRODkwiDwieYLGZDGDTjjI9RVRNqZregoSyAATOIAohJiDhJ2KCSkr3C0AilMtJZIiMnNQWRYRhjMvVBA+KNbTcqaT3bodPes5BAfciJxTPJGvOYtKSoUaKJAbkAgLd2KpOhJhWVZOqQAXTc8RIE9PEJW8m4mLlQSg0OapLGPvAeKAJmtpl7rokHjz9Qk+77cBLjZ7BRciJL58+fLmw1ey0N32sMyTvuTA7Y5MLriOYzKd2nkrZ8s45v503HUub7b1hy+/79PfvPugrfj14KDLthBFxLzf7PRwCZPnsZMFa9O2hWTvvfCaWuO4kyRYSWQeByKrtoWLogsD5Mf9aLU6hvmc7IOmuF3aSTJfnp5USwqY6j47FUrlIhyWlOlB5kaCWtTjSJutCAH96BEwn8wKkjmHIFm41NKPIyM3LarsW+VrrkbWZ1lbzFDx7UF3l8wY5vfBRQTH3La2jW1/mRNB2BUhlYIQFGCiUtjSzZKzcE2MGZNFyIUgnXtVRlglfHX5Op5v19sT1V3KM8iylORB6WyQKKqlSmVPN0OwR4/oCR5H0Dw4XRyJGEI5Q91oihN7+qcf9r/+8+9+9LM3Y7/6YfunUe4lMCYGQQQRKUgkiEoBMYu2JEsfEQwYURVrC2ojQNKQYPfyyttK4qJi3f/bX/23n/3Rh4fH9xRStHHLcUyfCkoVCpGwNuaRuDMygiySSeeImdynpZtnpqGhIU8jXKRQgmJXEc/qdpCzhxA1yilERde1XRZdXp6e08AUNjOTN22SSGo1I91ZZFnWDDKZP/3mw9/+6rvrSKOQiEtrdSkUMGCjylx5rZktCuy4va7ErlulIjyYSkT1iaBBATPLGqzVh2SAlihJYwpEuHj87te/Kizv3rwXMaaA0Olh+9Rvf0ANMcVkRgIx/TU780YM8xlGRVcpTcqIWaiKaGiGW/YsxJM6KMOAdGFyzkkgigBmmLKAMpACEc6kDEBf6X1cGMnokk15E6HUSUxrbWvVZ98pIpW4tlbWspykpWbmCGMGa0YK0sOrVGVkQkOUxAgOGQQPn84qizA3RAQHV2jDHMLheN1yMGJgokVbiu7sTjqPrCnFyWaAHCO0qFqM2+enuCyPlwdcjSh1VefwkafL9vn6dHr/7lS2q+ce8fZ0LszHy20pS+9zfr49XN71DAO9HH1blnVdvhwv4CCmtm3sTgwO/3DZ5pz7CCI1tyT36N2i33tb20lb3g6mprwm1Li3x4vZMQPexypyrtqDCLwS3553tFhLqySe0d1FqEnzMa7367Kt2+mx3yYAUMGcrLAwc/jM6d2JtBUtetyPmNciy957UnqmllIbmOjlZW9tYSJwllqGWWFWJWRKKXVhuw0LY6Za2Ls3KpflfO/XLvkyZmE8VNqovTtfPvYfwszMllqZAMBBMdKhAHE6u2WQkTJyEzL2qS5B1G3cP92O3/b988KeD+e4fRbczMac5tE1QiFA48RaK4VfZx8J6x3RAQ5LZk/v0Rr5lJhDabg1ngwWhpv8/a/uoBpKz889XRKTQIWbJEdNKiGpFPSKLgpCh5u7cIVHxhQW3+2Xf/nLh/OqSxt7J6NKIZpMKcn/6f/6+7/926eU8795v3rvqMXDWZtkRuzEJpxSlEYxv4eNjF5IXjxeRmrwamJiUCxtEwpihUrmJGhhJclwEWEkwmVSiHjJ5pA5Y2tv2vs389in3e92e6Vvimyms3EZ9/3IZKwPjz+zflT5/OHx9je/+XanhVI3wVePPuR4cRerTOV5vMwj22kpZcXhJCqyhVitFMnOi3DZ2fIYAuKSQ+VgkkieV1dMEhfKjHnbj//+y//xX5KoNHhIHXIp68v1iycrEUdIMkjCoiQ03Tt7aronp0XRLjHDFaVoq9UGWx7NBjhNnWcvJu4UEHBEkBsjJCdBiRGaocIc7Ek5iVgzfVaSM1fMG9FCQiRL0ZVd9xFXojbifFoe5LS0i5zlsM/VzqqU0CShnIwQVmVhMkME8qDBWQQLoniq8ut8zRdlJ05ZfaCBC/OwUGFPHhMczMygQHhAgvlOvgLhpoqCKOR69GMJPdeLmd9udyaw1e3teczr58+fqMj29s2np+f+dHv/9k0yUTAnXm735bL6Hub9dH54ef58qcvod16X7XJ5fLjExFra88uLooT5x5cvSDagVazrEiOu172287bU7bz1p8/R75MeY9kU6VFmB7mJ0NjNljZrszk6O2tUPgdzUHy5Pi/r1pYlIofZVpfd9vBgtFVcRUiXw23kYN9AqNVnp207JRJBo48IOV/eCqYdd1nr2HuYC9u7h8tuE4QxZqHc2uLuk1kT1Tkph0bGjB7c1iGzRj4sLXLgmHv67ubXl6ynZaGHx8unJ8S0ax+arE0RSW5ORxJRiluWQhODqUyf9/2jz33l9tvP39+PLyIvc7/PCVkv5+Xtw/Lyd/uvjJAUPQhJQjEEKYCgzBF+swidFGFOYeKZiQAmN3DYMJZOmZZISQrr+Q+/+dSWkkngTOKVhEulJKGk8JIlSRwdaYU50UoEJTswI2+O0vWv/o9v56H/8//zf2DK4GEpGkzU/uv/929//d++l9Tf/PKHf/LHH9a1Hq5MG4CgI6lbitFKEnUhu43DDCHDbl8+38dAUEJIqtZaJSlJJtC8CoQouCrHNY/iWg+/ztxXPVEIYSvCXB0BKSWpVF15rH1M68PneP15oVox95z88PChnPV4fN/Wr+vy67/73be//fjUi5I2lxjZX557Pw4nDqe3aZevHpSvJha5q7SAYM2CNHOWUStxlBlJjEoCGofkKm8lQmimzq7yw97/++9//8c/+kkSg3Aq5WRyVZvEFmo5qyzETmawIGJ3J1EEWHR0SN1ZOJEEPvGbbMeTX3k6G4blJFLSyJkURElJiSRICSV4AGBxRAIJSYoZvTGRkXPLylLpcChVyoJMRCxky3Kq21LPrTwo8vlxecyiM4NeX0Cc6VFUoTMZ6WoUTAgEhQmMiEpmZCRhUnjEIkmglrQQTRgzI1gJtfB060FFluk5Y5dC3cIpkYAKAfr48GZ/uo7nazvVpdRJHhk1SNaFlO4+nz59mmO0IjXz9vLS1rael+PYR5BWWarO2+3p86fy4T2HxH4P2JfvPz48vulux4TQFM3dmYWRGciZwbVIxBgTHpdDZj+m8MrG1O+3o5RSl4sZ+tHfPDwicJjPxDGmrIk5dVDZ9PJwHkfsLwNSlMuI6cytVL96grjVYd79YPCX5+etLYuitaUfO6uk8bacmKWnD+tpds62kAaxoDBJrUnGcFyv4/zQmDngbtGPpxShQvASExA/L9tt3JjstK5wGnMPouH2ef/UnB4eLm/fvv3h+4+W4RbdrakiJMUDAcoUIokWaTb2cfv05buI200wfEQcc96m3V5uHS/Xt+8+vP36g/zVr4pxgIkREc49tO22L0pmg8bAAIcoaGSM7MNNCEx4TbfdkDHTg8HEGYVmQI5swmAnaS6ZBOZSzCWFSAzcdGXydFSnonmE35BAjbTJEG1//Rf/uC7lz/7NN0nOrGn8F//hN3/+X7510iZ+/bb/zV///b/6t39KmSqjcyG4O0U6vYrMk4poivzwcnx66T7Jgy+PZy3hogwQ2TQd96QlS5ExZ/Dr8UTERBjw2tlcEuyJVhtHUnJTRGZrq0gNKTGq3XIKDp8ljCNgndpS6eHtm/O//ddf/9mf3f/i7/7ur/7833+353pZ1lfeeqEUAvnDw1KKBpU/XIMcgtKtj9gNgwmtIkESNIely2QdhbtAZ22IIzvreq5x6/06eiWtlTmhW9X7PW47tdKiIhMeHACRe2ZSplUSdgqLTEBJmMP95bgdlABZhCMO8iIlhCwQQULMHCyEIAoAlMEuAaF0UjESeGbTBSyDU8uGKgSLpAYmiwhaV25nX84kD7bP5/ePj++++gZqIsV7RKSQBisTCb+qQctMd+vEFJQkhvQkJhJWAalyLZSSsynlq0RqaR6QDJAXAXGSh0+8kYs7rn6zcGU1eLjr6ndfsNuBIZb8cvQ3l0veQ9oyaBY+bVg67V3w2+uNp1Xldl4p5369p6E+XlDwo5/82MeUWpWySPU5fvj+ezm18+ndqho51+1sw1otQrg9X9fz6VyXHjM1vV+lMdFZNo2YW+GOeb0+t8ZtW8NDiWFZWTRzWl9kEeVKocJeYMlC7GSYvZpVEWu5H77PQ6m9PZ9f5v10akVUgWEOEgL3OS7bZYxuyqpc9cTdMb1HcD0lUeSwGapU2sUBS2qiT8fnQqVqE8IYY78eSsF5qu1C/ZpicmnJ8XS7hgiy7X3MH354+3j+0VePH7986SMFzaaromDpPkjEch5zVuMquiyF2e79M0igxJ7dbJ/dfJ/7MZCyPdQ3zX5/FaQmc2KPiUFh81ZwzD7DAYl0TjLrk4wyKAcliMBAJkcyBCDm8MolRFm1MBXKQ8R5bCkCCEfyK5+mRgQLEBrplp5IiawpmWHse46V+C/+469R7V/+z/9k/3z87X/8u9/88lt2MeJhmWi//uXTn/7p/vhQI7UCRyazzjg4DiaqVQLUv9y//filD2YrJEbpgU5QdgivxGr77fgy81RHThKLoGMMZGSyECJSl6bEIKJkEUgyYJnFI5QpOQdXWii9F4YVY5q328cEtJ1FdRDadvo3/+Kfy/Hltn8us3FCFm0zJ1kXJqZS6x7XGcdWLo2lj91jWMylbo3YMXvY0ftSG1vdLRyzH9c09kHGGVIkPY/dutW6ZCgY5byOL5+FtZEPMrMsRYXUJlsMUgLAKHCoxuDEDCGekcPdEcLBSEpUgGKAlEBKrAnSapE+M0jAGuJMpl5msIuBQ8CRJqoETVYYr4WCHJEQCvGlFOcYPPv19qMPX/+zP/l5FSZN4ZIl0t3CiXWigYDswpxE6RBh4kQGG6c2zyQPAOu6DVa1VJY9MqiKE0WKqA1TIYISMWkWYvOZkStrTpsch0C/64eSqpaZlio/On89fGRbhtucdr6cXp4/vlw/f/XVj4rw6XGLjJfnO+C2j8fL40xkKQhGkNSo9XR72vf7sT0sFHH/8jG2tSytpwuIMvu0WhdxgDXMp1Fbz5zOXIvPIKZaMmYtLZDTZmUc5lrUxgykgApLzP7U7/V0cjCZGaZznmo7e50zpoSRr6VgeKatA3pZ3KOQjlqOMfow0WLpy6KN2dxcyBhyauLhZt5xhCNejUU8JkXmGMdWN5UG0oi+UPBa3LzjEF7CNSOJ8XY7Y+I+ZniKTrh++W5sC21tnT7D2cItrXIRKeHOAYow+sNicK1n6ouFAQmtWs8l8tpHV+/Xz4+F//iPfvSfP/81pqULkVjOGMFcLHnYa+RCPWwGgtnAGU6vYQPC0jKZM5LIX/VilEtphYUrH8hMqjQXFU4J9leuSCQLU74OxDWdkhgVUIv/n5YxJiGc/9tffHs5ffjV3/zq4z9+IS7ISmRGY0Cvn/0v//r7/+nfbgxtdC+aNivHJDcmdiJ3j4kI4SkxcH6UN28v3S36nZzeXL5hAvFYt5Ond08G0mW6CVGCMlAI8CSNkqoQfm0e4hVz8TqKFo95ECULM4Wop/u8z2cr7aalWMaYePn4/elctb1Fz2dy0wF3IamVGFYBWh94smbhEA/rNtetrcKELNJ4LCInQ5qH9yHpSZjiJoW1coR7uJfwSibwWYpsy8KqFNLCTMIswpJQPIMbMZxQOCCNIgMZr77wgDtbaMKcXCM5KRSATWZIEkUmUohDnMmhTO5iIBMWcRRkEkVwiLiCC9mJGhH2nAnKSlqG1hLI+/32s5///Bf/5KdlebUosbpCKNnMR0Y4d6IiVNOrAFUbKDwjPAudpkumEbGoqnLk1FIISEsoUaJJS4+qjZQoY7duGaYw9sFG7kuiggtY9dy8Wzu3+z4a637/EpQfoy9SPXv3YRQMNGLdTuxZ2/ZyvFgwFZlxaMi3v/5HIXvz+L7o6en5k0c8vns7zZJNlrjv8+3yUBFZyQj7tIrSREJoHnZaz2jKY5Ig0mL4wqu2pd+7eZLyx0+f6rpdVHO4Cdba7t1EWOpmCXgsqpkOSKb2gBN7hGF28yYSoMRy88kpBAqQVpWkMDCxh9m9i7Ah2J2ZU3gRBtR7QJwJZNSoHDFqWYQ4GT3utVDVZZ305cuzy8zuJqpCSKf0D5fTbdjT88tuRYW1oHfi5Fozwv3IpNbDmYIzClISzhFzcpbT+uHpenf7QuqWHFmVtpPMqLun3a/X2+6Oqo5pZEhzF+RwcllGEgIJc4SDkATSQHpIZlqOpBQyDjhRMLfGq6i4FUTJCocKkrkLqavBgo2ZxaggPSYkOEGEKYgSivBIWMJjCJX021P87/+v/0SUiaSM5DGIfUhkcKG/+u/fXj7kn/3JT6el6qXkEgmzG0ARqWjsLUxsKNz+p3/xi1b188uVDl5Pp5mDUCKoZz8tlz5sjCsDTN7tCIOKpEcp5OQLSgl2AMQUQAaQETZHZM6CmBFIrlGmu9EwtaM/y+2431+gm9sBOSgiOTbywRlFOV1jLBIYe1Zt9SJHLOXx7S/e/fIf/yrs42QxMjWvuRZdrmM+z5dgYlIoaE5enawUOJrlzNvLy7sPjww2phr8fqm3c/numBFFKN1NFUSeaUo1E6ozIzKqzAizFHd1U0uQUAaFgYIzMjiTwarKwDAPhACFnAIIYlZUeA4mrnxKD5EAWatxIlfxOx+WfXVuVUm0lazsP//ZL37+i59VSu8mrIVFhCwDTI0qLIIzA2DKBDNALNkA0so5UUUziIRFNdMoQMpprKkuHPC0sXARINyd6bC51mo2MlMzQxDCYtCRynvRJvfb3VLm2Iti7DukbO8fsoeaXGTz1g/k6xvOj+OyLBN0F7nFIS9fHlVau2hZ5+xLq6JSUxLqxcb9IC69GzKltbC5qCyrIu3j9z9oFWi53W42HMqiWZKE4uV+ZcBmJuk8SVvZfGfhh3Ud4yCbJJWIjrE3XsIILMFMOScxGIVJUjMYhWaS0wAzhLsNSmEUcs6YwAwGg+bR21KHYKYxlv16M4r1tGmooYQJYbYljDls8OuXHOwQ87lppcDzfucaWSkpkykpi9JDO9GT7ddDFVLkmNN5AIWKUEY6w1JBzkB4hL++YErOr9+8//i8Wx7KydXNwnVhkVO1zy/P/d6Fl7ROkQaekEgBKc+hcTjbNHhCmcOItLPMiKIGDhkanpEkSckaomUyOQRcMHNDEwqri/M2Qh2QPNQlIZbGlIJU5kiEYwBQ4YiT1iP8NgapeGYECSchleRVachMBdTd55P++f/5W10uf/yTtyRgQqElsPscE/xyffndt98qaJTx8z96/6Mf/XjfX4hVVMuiScicFBuyBaxWVTrv16dj0MP5rapf7wOvWQFXUpFAMF65BBpTzB1isCAwQD5r+vCpICKaOi00EGAHH2jKcy6lunTIwVeYLsVsKQKZ1N6+qafn54/Xez89fnMq7963x9+/fOqjRDUtjakdbtd+QxrVek8XTJUAqSUBIUii/PTp01ov37x7zLkzydvTyh/o2xvPQVQCIO/TkwopZ4kSe7oHcQjpkrkf6lGQqWQUk0BJNNUSjKgSUC1tpnvYdNcMoE6KIhIk04KEXidbIeZKrIVEh2IX28MbyaWyVF+2hWJ//+GPv/mTf1rz3ri4JzAhlKzIAEBUwPvweyODJbgqbRbkoslcWGfMUkKCg8grHK66ApJIKfrKfK4KIgjY2Sc8EwRLLqMPcAiR+SDRIFIpqW3x4eQma82krW1PfXz6+PFyPk/t0/bHb95+eXqJ25evT2+k6Mf9mSNFSyPU2m63677fL6fmyBnC+9RT6d0EUkQdJmSn08kJwYIUH/709CV91PbQrYOk6jqtc1FW7RG9T/XkmK2eH05v5t7nvS/r6X575gIpOOaQhEIjMdJWkcgwH8I6fYqUqkr2ygwrKrKPnWu4hTCZ7axEJfd9V1W3jkA4dzjC36Sgyexz3O97AlXylqeHdYSJEYGJ2d0qM9y5cmrlpBLDEYcnJ6+kSR4MVn7z9qSc/X7f3ZlRtMwZQgSSVMIwRM5MixoxmZzQPYJ1+fD+5y/X7/fjWRmkfpVUKVVwpL/7Jo8eH/vIpGJ1eu0OV2ImBXEGZTCzhzNUnADx8AQLoNMDGRyvNQ0PdpIGZs7IGEjNGubMRDSRRCFEZJGOFCJiBlf0LJLS5JhDicSyJTwx3SFsmWSootOTEF5QSiCSTD3w/FT/9//Pb5Z/Jz/9prgoUylZO3o/rr//+H2fLlyV5/v3l9Om6zyLbAQuykAyVypy776coL4H07KtAzaOeRwzUoX1lVlxJERKJDPD4eZTiSLAke73SBjsldE5Q9xWDycWEqa2+6tnQ79WnG252/mGy+2w7F9Id5ZsyfU4juNlZEg/Xub9+tgerljvR7BvQnocfh8HK69awzKIZ0CiIOCSDrIghUT4r7/99cgPP3l8SDO3RKX370/j6T4dyZxsxEAShwlzgpIITEQxJJxTU4oTGTgpAsggTgcoGYnRB5EFcVJYgBLE5bUYOysX0EI5pZNwUBpAERw6kY30xNkusl7aQc/vytc//dEvkidHCadMB3timnciVlJBG9OZPSxAnFzBNUMzZC3VpwkJRYKUqWg0SlmFABoZQYyASBWGaOYchWmYl0pOxg4B0h1OKmW4QVgzupl+ePiaEU92u99H5fJ+bYcdff+y8HaqUpgf1oWJfXYlmuNYR6rM9XxmLQ8ftufb9fPthZLLuj22i5kd92cSef/V+6PfCDmHoag7kAnPy+l8uzGjHn1EGMZ8+3gOwN05/MPl4enli6eXuvbdiLO+uUhKMXeygzIJRStFDkRWnm4sPG1I02VrMUOTKTNsiPJrgHQce0SUCmYQsVNO8peXlzeXi0gNT47kWsJzItrWaLhFvBz3D+3Sj/2w46yrFQ2CaHXzsGGErDr2m1ZKYRtDjS2gpRC8YE6a60NdFv30/WdMS8hairvtPqsoqk4LZyEXzpJ5jwzhCq6aBYuPYwSOma+XBt73FyZuS3z4cR7++PTbZ457o6bEgT8UqBXsmkYZr7tJqBbuOZNSGIBoYpJzpqYQWBICQ+bUNJUaKYSStiJ6MoMoEghjDi6aMQaJiWYkeVKFW1oSqIqIZ7Kg1DkPRFLgdY3Qk5IEBQxPcP/c/8v/8TeXf1e2R2pUCjfmfd/n09OLiITlkuWHX//+49eXn/z0x8dtMh3Jj1zAjsh5HBbzpBlE1DnqSn3SMFGukAA7JRPBhQn0unoJghBrRhOJWWdasFAGMjQF1BwTOMAGXsNnJlc5cWyZazs95vJxIurbn16/fXoZz/enF1DHIsXVeT59+UfKsbWT0QA3eAHP0s6l+Kt7PgjmTFwk4jZnGJvl9FSStPmbf/z1x4+nn3+4ZA7retby1ck/XXMQYuEZGSF7poQDUbXYnEhShiSJEXmyexCBKqhN3iNTIsHJGQgHB0kmk0cqoXNYJjFHuHMKUdgUEZ+mAmF9qIVLvbytyxqd+uX08Itv/myhksdOSzOfJGDOxHSntayEyWla64gJAmtBUUumUEamGVlclnVap9JcamYJSymccxbnJHYCpTOTwZkZzu4uqsm9w1+vvZQ8X+MFYrXe+822t5WA0e2IuT6sMky3bc79GPe1vbkfk8tCBMuwvi+q51qt28u1u9rp4U09XeK4Fafs4zrsYTtd1haVkE6BoOjmY1qGX2qrtYbb5fw2mC/rRuQ2wxgqhZjM7fBRto1xIV2WwpZHtzCkioDBQpV03g9Evm44CgsSlZg8bi9H1WVwJNuBHZPXbeVg69i28/04qpDQyqLSkvs4ZjZBUT1zceZh1t3W2ogzpr9b32smkFo355XB3Q9lVS5c0J+vi5a2XbyP8ISsR9+dEjEDliKcoUlQff/N2+frft979HtJWUu5x6yIKjwiXnXdwDL3a1Vmfs3jl3W5vNzukIeF2OyIkL4bAcu2tPMLlRr7ymJE7m4MzWRnEQkSzmDvh3kqoBLIAGgaEsQgYgaEkMmC5PBQIXKRyCJEgSANgr7SXTgLa4CKVBThJPYRM1VpklghAwWRznCidEcSCxVHDUHCiTOEMN16hD2U+vx7+y//+df/y//jFyOf0xSht5cZSSSuqZLLy0f/3/7ff/kv/7X963/+Z5XdufQZMm+cCy3VJrQ2xKCY5pNJRFGQJU1cRFlAllZJMjLDATJzG+FBlJUDcPPIHEi3wB1ETBYwocUh5laagLxocbuzu8C14vyj8/x8q1Lr8pCykh0WUZLMk+P0WItbKm2uc2bc8pqM2gqNDoeny8i0zOHCxEDidc9Jvnu5We9ffa3hYz+kLLlG+gAnd7e0XEkzc8I9p3MSiTCJU0ROQgqcINNrskNeCzweDkJ9pR0whXB6WE5HVOIaERkgDuW0JM6z6lLL+ZEvK5W1cCMKe7Ncfv71n2ir3eaijUhKZRZEGhFUl6RGZBGThWvWopRCM17dtUOKBrIU1UrHSCJ2luDQyoM4vCs3R0CyBi3JFi4kCUpnkUaUPXsimhROzHAlqpG61XNT2scVmsT0ZmmrxJPdcdBhdj5VTwJJH7GPY+4v37x/t1GqlMN9Dlov55m2sDLVdV2ySsiMOc7r+e57fzlq0WGDSz36ve93sYXLllq4gIL77c7FMnPhS+5ubj0nFUZUJIcdyrRKIZYjbfLgnNld6puRzKLMvN+fXXltm2ohiKSyQSt7VZvc73Ndm8/IgbqW1FiaRid3aqXRerKs+3FoVc5yu91VZatLHwOGjHKf4SVn70S1C8FGqnMWSvIEV/VhUgpTIZ+tEZOMPsIjPV+FiQISZgbOD49lifHyMbpNn61UzGn+SkxloADCpcCnz0x2CJZtve1KSk1LoJVmp9O7sNl9f3P+/A/t/ttf35+/fIT6Q2lLaUDlAiKxpNvL3g+bSR5WAjX5OLySmqVNeyUjCZH6VFYQmBSv2ZMkGBHJHKoqliA00oiY+WqjYDKiACNF2CMKCQNTk5IFyiwU4elEIGRmSpJlClOkjBFK/KtfPl1Ov/mnf/ZHu42np6d737lqxIQQBAfTDP73//Evjqfr//rv/tdLO133K+WLB4+wex4iJ3bnOfD6rECeMyiduYE50xHp6a95WzgnMsUyg4goI80DCA0fzgeyJSpQCtgoAm4woqMyk3ujFtMGZiny8O7CKYVbhk6L0JFTpT0oRaVLThuHM52IbgPZLbslF8mjw6amVFUPmA3KDix7hnOWlOdheHIty6EeJ3bAw9m4iMBZWPdxsIoQOF0YicwMJinExHqbadlVEGCYwEmVCKTBmdNBFk6Mkmis5FERzGKBZJZGm+rKrMh3Us4XFSVP5uXxx29/gmxH35kqlcZMFg5mhIBY9JRRiAOZQlxUmDwkYkYaijKrePCyrPu4pWoSSxFyWxfOQUbwKp5R0pPrDAsGxGdMKAkhB8kk5aI9Mx0IrSIeWlrlLFlgcbjZhSsdtpbNa439oKDr7souGadVVd/a5xsvciczt8eHx7v1yihMtJwnUCFkee2DJGNyK3W6Fa0a/lD16oULO8L6KMntXKal3acudY4enZT5VLdhTpQEOuy+NCGi5+fnvR/bu/VBSyWe92dpTFxsQnmZ7BPF+l50rrKICBkyaSuPvL4gqNaV5wGbRHk/riLLHMahq54mkmstKZS8tfLUbxWVgoR4Mk6L7n1XbgUUPL3NSM8c01yrShWAk9iOuXAFDxWUZUHk59s1lST9lc2nqQWhhdZ3H/b9ltd9jGcvC5GsAR6YLJOCmAut6XakVWaL28q2nCht9nFspZKWnJi5PlZ6+88vf/oLfPf7rz9fv5OyhnkhPLx58/x8n6N8LF+eXq5LiSjLdPc+V5Pz+RLJTx9vtx/2iFBiArFkVDWCwolrh60JCYfSgFfRkoI/HHC2V4M4MaPCo6hTpqQgpFGxnEwcpB6YPGZz0iyWrWaEzPDu0aVUUI755//+y/N31D4ItbzN+1B3TY00yhBWWR6X+v3vfvf3v/z7f/Uv/sdtsUlG080IMGA3GR1IW0jdxkGlJgpIDJERHozkzIywjJmAa3jvAYQHgd2Dg5KCQiEekco1kEIIjpGTI8IZ8Wqh5MxMVI4UgIPm2EEKC6bVYojGoIhWpdbqfMBarr2bVL1IO52W65cv83nUYN7WcK2amYzb3t3Tw4OvV/r6fTmL7aleqPFMYi2VCkf6uSiIZoQUoY5Jr2RBc6EcWZOMuScITBwO5Qx4TLRkojk5k0thIBITlMatSlWQeCt5LmsBPWwP775+0y4FzEUXEkIRjxQqVYgynCS5MpgJpDRhTNBk5mpZRk68st9HkFaHN1rW2iLnESlUmIRsSnKd5HMM4kQyUySFSqiA2aalsNYk+H04LJmIgDApeI2nRbvZvY96LpRxKsv1ehepDG7qQL9ZL6elaWuhgPKiRHTsndQ/vHnf+ySZ5hzQfe7UPG6WR5etYVtorx8/fvrw4VGI3Ki2sp1yLa06jW7Mvh8vw+zx4d0+RiQffojZ43oKT64FxEU3AL2TAetpzYBbKMTzoGiRnTgLMYRlWmnrdd6EMMI1Q9IzURWMdIQhr8com5YQYcICA14smjKn3HsvZSEQkWpyIbJwXVRh26IUmT6ZAwQkm/mx35u0wqUNEMe+6ACNmTozJOS0rGk2e4nMyKCZnKsknAJct23V+vSCuQ/KBNNscoycRCoiCYqoUu0I3rfk1fUQo6WtSjZz2OI5PO4qjMvDup3PX9223/zu+x9ePlfEm4dFVwTsfGJkW1cxKj/cbt5KRayLXK8zkCyafxjywPUVDsJNGHQrKU6aTTu7OmcyTSjE4ZgGkmDpIOHkhBCEGAEmMrCwECZr+uSGppRIN/h002QNXoX9VSMEmY7//nef9DN+8ienhRkhBB5EKFnJZoYH/fjrrwz29999e7q0RQprImaTh+iThF7FeZwgUNHFA94PlJW1iEEcQRocHJlh9jofnekhnrDciSVTzNXdEs5sQck6kX3OSTkrBlMJAwlTmqZlhNksy8Zae5iKskcOE+U57pPuaKdOqW5nfe/RiHpF40Lnr94ekr/99FTZf/zTn7WFxvX+5uXlOuZhdOxx7DFGaM1KxuQw2m9Bnk2ZAk6tuxNPJikuxEGcaeIjSwirMcRCSYKNU0ZAjMrMgxLMyaCYbkifJZWoIopn5WVZ32zruem7d9v58p61kgBAK8pw+IAkk4C5k8EXFaGMSEEwA8HoAslh+yQgI4S0MCwhsmRSLXyMkKRSWYSSvBIro8NK2SIIYa0wIzSkFgmb02CSmTNyquB1VZAUFu4UxkV10fPC9+OuSURSyjLTGb7IOl1aOy/Ct0+fqD2AW/hR1sU34egU2Fpjw4EZPB5XVanX/anDT4XT+uG0LE2ZhKWszcbeah3TEiqFhHD00ZbFzDnomP18XlgiQCx1ZLrtxZJJGPXxcZlzvtxe4Lisj4wqXDLJu0XGdql3HyrCWiIhrDGPvt+kbgEZlDPmzHk/+inLm/PpOMZIhjIhidj6sDTWUKdKqwolRdEKkAdbOL+eB5vpQYLIeHhzMZpmQYVmP/aYqapoZVmS837c023VdYzj3g8VbaojKJO08MiRC96WN/7l9tL7y5zirIxIAHLMuWr1PESX8+nHOrfn+/cLRlus6n2fBkZIEy7z+jInifDlsv6Cv3l7Wff79fn4QvXcNg3nyKZCgvbjd5eb7Uf/cpv7HaCGZWWbyUaeGUkO1EwSDMYCMQqBVKOafPg0agISIpbyyt4GMpBUNCLh0dpKILU8OI2d0gRMUcyzpq7Kx7RIVyIQH+EdyWlcmEL2l/zy3fHN14sEOJNEICE+JlLq+Y//5E+XbQUIxnM6MXtO36+1LdPU5ph+l5SiSwSHQ5VBtKJ4OClnTh+u0N5tJidrcjpGAIlwHjOIBEls7hEuJED4OCgjEUbZSoVQhIG7j0HEpeiYkyDEJFrM9+C8HyMRPm7pkFoBbd4uqtM/Va6Ae+D0wD+p5f7y5bj+rtT3uiwbSzG7H8dXb+oMut7v5oN835RRg4iPMXVZ3r/7qu9y3F/6bcw9SYkqGzKUmOO1lURhguBQcXIg6LXXgAQlSEAUSYRtLdLQdErjZdlKrefHh3dvlvVCE7FSlMrJjshCC7c2wkCBAFeOxOtmm3J1SgVhUkQ+3z8qn1feiJSCmUgiePByqpkBylKLscSrKrHojnAlRyBp04p5nCFwMj6OuA/SJUu6Rxi9RoRFkik4nDiI9ePn7988vj/VlhbHfV/XbV01Ka/7bikNi7/c+/Nc3gfEjT1BlJjTX3SYTRu++7FdxoeH932Qcb3PW3HftuW43bfLahkZUE4Qex/J2hO1cCSZT0ncjtva1oe1GXwfEylL3cp0mmE5ggliPGxbt4fLRWaQaJpNv1Y9t9PZ5oHhKzGOSZTJrsnXPkm0SAu3poycg13Weg9bMrSd5uFkWArHnB5uMcUnU1lbi5jdJxOpM/nxOi6eZgqitrgPUNocBtMoh09lOqX4zEnmwpTZWGZh0RZpJCsHaHrAVBp5CiucEKO8X7dD8TzGbpyzAMMjuZgH0Ro5e8RS3mrZMu7DfhDrLVcBLVqJjbUcN7/14xqjcbw7n8dp+3z9kreoTehU71HvMf12NMGmOMyfX7oNblm4yUjrjioiZkZ+JDpRpcUirKGGEyQ4mMPYpzO9IqEBQRChkLglMbPUAAgQNqo5U7JnIxEhSkmYIWYpHDkpA9lcq72OnlwMSmX84PeWITnzD00G00TF+Xw+n96s63ZZNhVRXWbs0Xm/9lMtDPOZESvBUwiZrwcq02lOaWoUEZZp3TJZYuarxoHk4JkcNVKSdgIIDOLpjsyifCnn03r67sungSMMRGsCMAY7sbw+h3BDZoBCMzwDOYdXqnaHWZd27rYzyUYrkkxqIFNHO8nD6ccW7lGcm4kSpkgW1m2VUst9eNum9ynzptS/evPw7s3XmmV5tyzy/v78/P3vX3748oSY1zGmiFamCCZhxQj3dBcPzlCjV9B8cCTHiEUgJ+Yym+Jh5Vxoa3VtvLWDOTKYBFZLkiQKF1IpROpCiCwQRAIWqQMk8IAPyjppXOfz+L4u8XBawlM001OY1iJrbTPHmK6tNjQ4g7NQue+7EXORNHSzysXgralRAkLETuqja1IrnEjLnBlJEg4QKYHSXUs7fGwPzWd4j2TMtNnvNo7aKk4NTQuRar0NpxiP29nDCZwt9V74KJ9wtRmacm7nEy+8pyDqUpBhfcxx7/1OyHV7c7t1ZjGCrk2kbqcWielzuGlrPl0UBkipyu129L2PS9nceOQQwm73Uuv9mNf96bx5a+vTy12Gn9uKQjnnfkw0lVKqqKb1vteWWre983FMw8IiUjI8C1WLSXUZ+/Q+6tau+/MC+BxRkCjnWo45qOignBZbE4ESpc0s9ZLuC0sgIViSxzhe7kdRWbe6tmW/TynyWFcfg2XmEWNOrhIRgdTSLA9t8ub95b4f80vkmE0khCk5Y3hKZ6kZLBq8irz3e8Z45iWphrurnDadfg/lOg495rzo6Y9+8kdj9Jfrl/NxvHv/xjJ++HTdb/fbuC9LnVdOuKIhhHMmDQjlMEVaUXYk9Yl1Tq5IUTjliTSD95R0GpkBUwSTmBlP4sIgRGSmz1Rk8EjNBt4ninCBp3lGWQhZprWSQ6dTCjVGCM+e2Uccn7180KShBg2pW501vv7mq3dv3hWtQlaUZhgRbWU7r+Wbb7759vtvgSnCIEGKiAKvFIIc6eIcPo0sOV/5zMSO7GNMhKT39J7BCuGEA5wxbUw3Dnz1+O68Pow9fnv7XeRdShQuROFRCWKBWoogp/dMyszCHE7pOCiIiezq7F5PefiFKzA11Iw9YbQ7sra3S1n72EUsmboXR+GIWhMSYSpLuZRzZH386i0rEy9bXR91uX150uX3lw/l+fPL/u1nJybiVE43BLNRcmQhAELgQGXqCLAIsjWmS0alxno+aSwguEqtq9ZtE4WUmsI+JwlYhINAmqJcFJnEU9wNYSGZljSUIeB+fAm7JtWsX7NwRFAKSFIiKY9j2syiTJlaBOQ2ZwCtrA52uKgS8RRjTJBEp+3cXo6OOUsRgEMA9tc6PsI5U6nPUSdzI22pbNbHmNv6UMGXx9Pzfr3bWB4u0jZ4WO8RtzfLBUT96My4LNud5XR62OOuJdfU9dyA9BGka7/va+TS6g/X23lpmy4GLcWP660tTU+bd0tlz6hcOHK/Xs2n5ay6blKV6Lpfl5Tzm9P9/rQUES3HMIEuso40B47Rw7E+ngYFpl7W5cq3Y96OGVgs3H2Ow3LZlqZU22KOTrsWCg8jCdh1vxVZqjSCgMpUK7VdX/p6lpdMs7mVLQrd/K5pcKMDoJpJSQDIEbe9VyJSKnWdffA0bQlKhGIk3ElLrvA+jnkISyEOn1wx4Smkm1Z926732/1WpicjMon0HjkZNZh0Y5aybsTHbj8c8WlSBkdlvrx9O3P6qc2XT30e1N2i141a1Zhxvc/zV++Pd2+/+7T+/re/X5ZclMxiDFuF3JBIJU6CkgzkQbMkFVtnosAlM6GcTBT6WtRTZgY8iNmJJZOTAs6aA0lOJcBAarEoJcFJpVYRJoMk0+zgnMwpjefQTEJUWmaH3KOeNZyVQBzn9c2f/fzPzutKXGa+DJ8RWRQZy33Of/z0XR97LXIcnYlaubRsGZRMme5CSMMrOjM5wjhJmcIkLc3CbFrmiJ3AS2omyIMTBs+BT9erWbw5Xb7055fx3McdurVgywmCMO80OWWfY4FhTpF2eXjTXz7OIxaNblOsFwD69m6xlVLA06a5oeakoPBG9K6du3KfQwVuzmLDrmZhQ+qyPXx4XPgB3Eg1qIJzUlzevdkxc+H3bz68/+ab//Q3v7m+mIAS7BGcUNOhlpwcKODC8ExInM5ca5ULdKEtVEudlMQmJbft3dpqhDDBI6uGaEmIsxl1kIogoihYhRXCrNOnBVMtPxzfvczfVUjs46ovl/MbhjoHq9LaDvjLGIVLFAWxzbmJRpowEzEnTqyg1MoKGZljFFcX14oj1obEzACnI0FKEU0pwtWZjuvLUmqES2xhe13XQQ6Vbo7krSyCUlAN477vl/N6gu4Wy3oKGGesq+zH563wfTJzquIYHQyO+PzpM20P520TdgueRgmvIEmuhpenH8B4s73ze9xfvpwuJwgxF2KeCKN623ctui3F7VjXJfo4blfeVpakaUuhqoWCa8XMkZoCdTghfExt7ehHuj1sj07ZfahkkJlO8RBHrTrZ+4ymr5aOnPfRlkYilHk5NQLc6WF5nDGE48O62nVGlT3QWiMhHoPIBPWybeP2tPLakS7CwXwgbKqkm2WQc5ZWhItMG8d9xrHoRvYK9AuJqCT0eFo2vj8fX445mZWppoYjQ6YFhQhVSDnrSfP0fP9+zg4apWUqR+bldOq902EZFAliJkZriqBiUh7fv3z7yXUaR0RaUyRqH4IwJRtO5IR0SZnmfk9tGeqch2fB9GodwaU6XIhhFBmu+QqVSE/KXGQiJPV05HCkImuSshjx3Z05dUkzJqqF0pHOMSUFitDj7ss5H7fNtoU5JY4/+dlPvnnznl4RNFhEKChiGEvsFrSLSkk/hJx0SY8Mp1pc2SyF+dWRV+N1GBUOTLckZyQs03SMNCjIMgYinYBgNyXGy3G33Ne6XEq79nEfsw9aSRfpoNWtHsYZyJgek1mf9rldmp6rBLmB5HIdzxWd5VZ4dXNpoQ/LvCtFcAyb13tY55pE++2IMSfFYZYTJdppOb29fBBIra2WB0Q1m5nOUlDq41dfT6EFev7wFdr6n//jf50vMwXBCSGOZMplU0IokQq9LRhIbLIsy8pEOdZSZgQV1lJO7x/bIlUpko1QmErUkucEcwxur10BY9IEByfo4CwSGojjfrXbqLpJJrvd79d1PUtpFiD2RhlmRLxt5wkZFK0pF7XDCOjhq6jYlFaDxcNFih99aUrpMgcLmDRJZoLd1A1zOGe0ptu793HsFkeQDLNL3SZowLWwJMJM23J9eSnED2ujt0tkeTpmcs65D8vTsq11eVwXmPn9Tqfl5f6y+86s2/my0HkflvNaVirM+/2ekaXUZTuH2aIyyfroQrKsTYqMHuTQVo55u2eu61Zos3EbYyciVvUiNVKcTqLT5/7y1OqWjOOwlVYy2v1OMd+d3kBL8KScDO2zRwQJGCFOivW4v9QVExajb+spCSE89hSPdCNRleKjK0NIdvMA2zFBaK1WDpAFTyoU2eYM5amtckbs+7qUUsrRRxgDjqA+UAorNss7aZRT6btfbVBEqRrmRdiQI0Yt8vBwSfH7fvPeAWPRKK0yxW0EH1DLCdGHtw8lR+/7Rxt7xp4yoVFrW9aH8DHmPPoBiVYyrDfKy0n3P37/17+6W5dFmhOMs5VgPw4klTLCOZOTOJSountiOiQmEUUpSKYMj/AkLlLcwzBImyGTwJCULsQewk0CDgsmRuJ1TUFgQCRzJqt7dT4Ygz2ATCLV3m/F122tU8ZpPf34m/cMIhAhCiNihocRJ41FRbMijRENhCARsrBFCiJZimRyRhBmCoUFMhkODzciRYQg4EZME+4MimnEAqaAB6Zj3MadDPP44XN8fJnKP5SM01KCn6SqXM6n9VRqGT7NexD157k8nK25uy3bw+fn2Meu+kSSLGef2Cqfl+X51gMKldvxHKmctfc+bUDIPD9sX33z8KEsxUgiZGmnyk2ppNXr2BHCLIX03emhaI2YP/n6/Pyzh9/97rM0TiJxyZnQhmrTB5hFuAp5JBUuxS20oMwQA8Xwy7Ju2pJgmQKsvJhZqYXIiwjitT/uygIfyXw4kkoYqsykOW9PCzzKJRh+HBk2xxQ9iYjUUnXZjzshCEFAhTRmBAxctKyWSdMWpIRmMlXr1oQk4aMPhGQokoLJkQ4UoFSOpCBlYt5OPkcRdQ4ryzhs9uP8WHMfOg7ZamnF3O5HRIA0SawtLeN03XdSnj6V1ULbZTvCickmWquHvcraqedRtYw5qBAlpEpydVArVAr7oOPo7dTunLlWMfbIU33UWsPsen8phWqpN3i4V8iIeOVfoyiUhgDmp1Ml2+0glzwtJ3KeFlA+9p5pycxMYVZJNj1d77uWRUUYgZUp4ccooBI8hw8/UiRoViZyuyOl1IzUU73nfr895fBSdLvUDs6QsgilRdDNJzeBe0SvIrkYvbZXhdzmcb/KEkRgb8t2iX7b95vbWNqrPygKq3sO4Xop5VyOvt+frm7TM7gVX2VGBSSVle4iCy+rsKTtNp76cQ2dyZ2ElrWeWmvLxT0ZGONufvVx/PE/+dHp3cPf/fIf/uGHL8GUFG5+HzIYAlpSkT55WMLTqGTh0FwyI6jGUKaAjMJUOAgGno0kky3AwslwCoQ6W8I5U5UyMpOJKeFJEkGRNtjBkEAQCUQSgvCctuf9lg8rI/Dh7TfbtiQmi7S1hA9kg+2ZwS0vTRXpiT2YUiJ5UHKVSVFYkB7Tk9MKH2QZVgD3iKRMYRaSMWcnmoieZAF2ePoU1Iz44fvn2/NxfbpiRuS4Z1hHCUX0f2CnUkE163Hanh7fbd+8f3Tda8nx8rL3Y3mzkjiZn9pyvfkc97rcIqK20zH2VcpJT8/7fu/3o+bIjjE8YISNTz//0Yd3lw9r3Ua/S4RgZa11qQTKWTaR2/Fi3cjtJE2XNXNYl5/88Y86BaRXLf065zE9ukssjQN0+IzUEbQ5SbFJ0lESpVRNGmstmsOMPKSwUTiIe06RAR4qBWCnfG3yMLJwOazOdIqb8X7QEYpIoknCZHG3OBiRyUo6h48xllqFYchMKiJjOIIliQjMpJypsDlbrDGnVEqSGYNTQTbSmVKXOmeBJpAgRLjqCK/a97ksMmUeSZJlKe3p5draup7Ot2tvsq6ykfLUY/Z8004pfo9eC7LvEDmUPF47/bRo26SARAwLM2vs6cfdCLm0ZRw3N79cFiCPY/Qp2PNxqT4iNYRIKAMBz5gjw4q20trwXU1ihtZ6O277/L9Z+pMmWZosPRM7o6qZuUfEvfcbcviyRlQBYKHAbrQIKcJecMUlV/y13FO4ZbOFJNAYasxKVGXmN9wb4e6mqmfiIvIvmJm4q57zvs9zXtr2HtVmZI26z8GCKA3YRzoFAckyq8LeJAgDgZjfHudFhdrKUWl9xmhtfyRmGnFwS0reWnehWYhEYWgOvEYXRsVuIKqyHV9+fNu3y46QHJjAqAiJ7gaBW5s2Y56F0LJ5Rr9uybDGvbetjKpo2LK1tm1DwHE+hOty2SvJK2cDsUmAssmTfnh8efM18zypC4tSyJnDiwAIQIuA+mWXF3/86P5GcuZaZ8RGXYC3TVQwfX+s44v9EPb4eOz8p3/89PWHc+Q//e3vXmu8nROSwn1LTlEmYFuKZChWrSoJljNGENdqzkiUjIGJnYQqAFQa4BJKSVZsS+YiyQQBJ0BEFKItU1Fb8YxbsFlBoheUFFekR2KixfbTa1y+wib7y/5VQyYMkkwPYKnZqU7J1QlYDWL5MoeWIpiCLp24hjsDMyeCYwEX2Kp8z7oXsVpG2XIfXiNgRZkkQXIQ51rD4r//0+ff/OaHKKoCQqrK4UleMTGinwz2MIIohdvb+Jff3b/ff/f0os/fvlyf+zlu98/rq/1TLj9arV7jzdfj7jwzYtNr2V21XS77KGPD4iUEGPihP//s2z/9uLfWLySHlHIV6lYMqLycGFiQJc4Vb50R8OrETbZEbteXT9/62+u/ECJ1AUyKZGQhrSKsudxxJO7IVJLEvTdWYgIt3NzgIdAJNHBOcUJBJILCKigTR+OcyIrEAQieFEBixdMTcB80ISZWEnkyOJ6FJrJtXYd5QrH0BAXkd6/YMk/toQTuHakxRSYRm3lAFVYh3ws2wERBxkqaFiSS5ZDViItTSFutoSpnZAPKiEzAo4lBhtzHJGbu25fXLxd5QsrHym55wt3JedLTvnPDmR6Fh/a387bG+XJcIa2nQqMf43HF/nL55n6/0UycALHW9hZ2FvaX/vSw15HTAwS6CusGXjOH21tI42I+1yPmYGy7HkxwKwurfb/c5zByBrg7YHUhnQ3AmSoCcusC4dl6hoteOYyhYOtrec+OVJGFrKedgq317bSTMlmFRfOcWlobmk8EAcKQ8OUC0Ao9/atPLwWKVJoxE9KrOGoXjZZFLKTcMLCooBISmwhs23kbXIWqWxdtz2sOabzz03kfn7+cIpI7vh/CAIsAQvD504uPR57+05orVmfalRF0VtR0BXGCja61afCn2/0HWPfisaC4Vk1HaaGJ2C6Xr2F9+fz9Dw757aXzdf9w2f7u73695uNxUwxyqsKikkW5MZGXUxkRMLcBRJ4wBu8F2pCbcwdwWaq1ZxrISHs3WasrOgE3sOkQyIARByNgRouCLACMdJxaWNA0pGgNT+I2ZrjPb7/++eV6qcIqSAt59y3mIyvKzhx9MaRPWxIJ5g/kThQjSqm3TCgf2qiYTxcHSAtgYsGyzDTAKs+wAkNiMKgo8zpH/fTTD5+/vzPSBJOSiJWFMsVmpWNguhM6O81MsNV6wU+Pdd7987/c+4vy9cJtzuf14XrdrKuDyTaSM9d9vH0EvioMt8KnTVGIN9xBzYh++fEXT/seBGHYWbAjQfXeMt9xUgnFIUnX59dHBM1OFpzm5/XY7W1d9+a+l1skDtDMtbMyX9ZcFyhzmMSMU1OfWRGLEgR7U1WMqp55EIGSAKBXEhAbIKJjUkZ5GQeQRhUTVoJXv48z7LaYC2BHbZQOFYQzckQ974K+ajw6YWG7Q5OMHRnMqIELJMpOCFpG2EoYwGV5jEZbhXOWE0BiC9qRHNJWBRZgBAZWis0bQTwdz7/73Wfd95ddf7JZjpyZMLpQ73JPh43Ot5+ASLsKLK2kdsHOM4ozt6YklLG4IEJvr2vb9G6PVu26X3DYT/nGwBHR2z5urwKk+x4Ay07ZDwDfkUQ6RJ3nLCZlFERuMqEetwdUXJ97QHilMD71XrDaob6mp23bprrf0t1XR4ixtG3h6QbIgsy2YiftWWVruXEXZBznbbseURUJQcDY3RZWlg+p7mOIbM6EAJURBiwqDBUQZYGVsRjR3SITEwkqKAlEUgvlvpzYgIsKpQjG5HzPWMVa1iEzcE1rrXVtIRXG6zF8GSg1bUmayuglBr09Bxnzdj/H3e8kDlDEQp0l1IadNEmayK7XzeaXsLeAN+CHbAqoyxYX0fDH7f6IiZJRJ2jtO337zcc18u/+6w8MTCkzLUFK6I4WDFXZQFumiyUVZbC7aA9wFySBJFCGRFMnqCNpZp7MTbHMIYgjjDMECaMEa5o5RHq5uwpqKiIIRBWHFAZe6fKrb//ol7/6uehOtAFgAKoos9NGyxl4C1Z7iFuN+QhQEWUclML0fo/wBgweIsQBK9lxQ6pKz4ICglhR6YUAXVIccPoIn4/z9cfvv9yDCFgTszTCxGiuNTMQyQDLApgcUh2au3INiBl1QBsPtPaqV7Kbt0/sR3QRZnlEBRVDflm3s9quPWOqQQEEQFG27bg8PQEzQiAmcxQGV3EBI4uKk6PmNKesrrIs3bE3yUx0bNE67dq2B4IS7fhY2UkptaA3MLiIU8OKCdBXWfcFGKKti2AVwOZgkEsrwU1KOYgIESFo+kCkHjmyvjDIYqrEte4rLGV6woEMhcYys6Dp0Y4mTQEIwDJ678ShZZsSMs7TW2tcpAHv0ypIQCIscJ9dmCLB1q54S9faWcBgwPs+R9SsEAAqRZvGCBvr6TiUsAiQ4AJMBUl58wGXJwTamp5fzkj8tD3l/TFWbFoq/RZjb1dB1nArunSJlgn4zo7eLpwrNsUf3n7YP37yZcxN+DIrGDrWXGu1psIQa00LlZYRBcid26X9MF8n0XXbjr45po0Vlc/btdxv52iXA4CJAcD8LGI6AFkxeDPPKieEMNucytJbvfnjzNikB4LPqcR+f6QH7X342lt/aXuuiirZ1MvueW9Ny5IwRdtcmauQOQuNCgrG42RCZlIVNx8DPc4d59PTtXwQSrx3fyMRaLllwbFdFBa636lw0yRMyOpUAEc7HvM+zJYN2UJEvBKFFUhUBES2DQfP22f3TE0kLMHtspvdw8MNWuubfGS5rjxO+9FnpJ+BGcn3++N+vyOlIhBtDwcGeXq5fL3yxx/O++8HpFC2qNGgSGQyRlYLUlSvFKwixWJMAKYFFQSkBKjJuVU0qspWyYlpBUEVFVke7kANQDCSASpQlryb34lKigBbZAQXA83HfNquW+9IDEC99wB3DARgJoEO1apgIxqwFqRnehIiQWFZeAyUOLExalSgUFZycuTMjLXCAtNrWgQKFlbhiPXw6ffb4/XuN0BosYoWnAjmIOnBsArCq5CBrDAQCSq9DJILaKwEsYoqYLiX3db86fPLz58+fWjZQ3qlDULxYCVZdMdsBbIgzRVg+/DhhQoZe4IByirAxljk1Agwy1mygBl5zoVMFd1T4za2996DC4EwNqIYZbPnnq2ogGFrG/D2YQfIGPO8PyIhRJE1S+ayc9tb8hkJBYxLGzQiQ0AvfFQmnwHki09ypaKkCavKHIq0ZYmFEQFwPWo5wB5wyNapgcjrGh60oRKWYB7cMiOAGrdlVoi+01V5t5JAz8RC4XeSn2dFZ2Rb+Y6/wXBVKBTsaKaiMp0RZI758vKikK/rDCxY3rf+dvsiTe9zrNu8Pm3by0fBBgsd+vHSGG3ZK5pDRvStqM45xprX45qJiP2Qth7jsj2lw0G7ZFz2TQHPsgxv25UdiqI3HvOcY2jvgrhf2mPc3x6vT8eHdjRMgRUYkMs5EbYe4cClh8x1B4Rwdk8GQ0ciMiszCyzW3EWBBRPco9KyXEVQaK7ZCAW4AkXbqCKEdC+gmWiVG0/tbFEFiChYmV6smp6MrEiG5eWIrNohcnqM4SpdlSFtmh28S9bMzEiLQGE8Wi8Gc8hwW7G8d2WPqmoI8NTPeTJ11ic/H2/jtvu+H0eWR0SgJ3NEPW37h9bHOX943Dw90JgLRTfROdZ0h0olKXo6tss8v2C9Iq4FFlrUmbyyqLwJcEnbd/r4nH/0R9/8S/z+9bdWCR8+7V9987N/+PV/l9KGJVAeRaSYVJmAkJGACK0Ts6JTMJZmjYob5jVAQ6KYIIZgFVCERJBVeiRLQVElNeFJ5jU60lkQSgQy/PGrn3/79HwAICsDYFZoowBIUswCwKqkLIVKYIXdIX2GCwRlsXfuaYaQpCG7RBhmxZoADsWRGeHEwAzouLyg0tcZdgbwuOvruThzVSY6GVxdPvPDw9MKqAu+Z0eBixEyyT0AQxQRihJqoblngPiEV381lA8fn7JIUpgFGHykexFl8LAohuO7b35xvV4IguAMTEcUUmFA2JdjY0KtygiAIiEJKdaMlYPZzzRn5A3D2W78pFeht0QpiyYNECmTmDcGLSKqfT/WDM9REsjWGXN5xMZcWT4JE89yF4Fdn4YhoXr6GesWg2hQPDCg77pyYtZW4nQmdyrteDTRy3ZpvO2bIuM419YvxEclEhEARThItyJkSkbBmJnYlBy88l0/NHxVJjNIAVDYtEDSLgIKmAAWXMEs7XI8vgwQPtda7l7BTW42b8N31pZAFh+Op8kwRtLtRgzZEGddrl2RMx3KbZ7FsbBa29KyIRxbmaFo+/z5i+zX/XgKy3k6N5Gm53l/vP2215bEn8/PxHxcnjxt2ThHSJOjP395nHq0roBYCTHn2GQLzEmRs7TTWkbYgkSpG6/GOL1g4tb1UX735e8ldQEEWbkcCZnP8/Gy7YqMBe/po0SYViuccbudt2JXuWQ4FAOocMPKoipI6VDTBPF9KdaEKsEf5hzX47BRqpyKjIiPoCqgqkxhGbWYZGWoolsR4lPfAREse28RMapAe1HdxtgZL8/H49X8h89Pm1TTVUiUF+ZcE5SOi9b+8WHr9nqbN9empNX3ZlAWNOYigta67l8BHOmvOV61revL5fPbWMYM2DCtgFF+/nJpDM9X+vHr8fT88a//p7/+l9/+/h/+8Tcc4JkAgcCZdCr0QgCHIiwRFGW59EbcKPDh76fI6UjvUQ0B5CVuifnOgLKJRrhYtocngyuRgFI5qAXKFrB/6P/uf/q37di0X1iw0SaYBYFAUIzg9B7qXvMsCCRPLTgJM6IeNmZqd++luyBwjTmAMiMKEoASqDIxZ8JkMI7E5LtbEN7n+PG39/FjcWgUlXuIYeBMDsQMYocgiJwVkdJmklQiJhUwteDymEKkwY0oCl+XdaDf/MbO8fj6q4soQ+EweuRsyBvvNQahfPfLn3/78lTMOcFyBDAmoOMTdy4ooQjL9+MPrC67kG4Ci/Kz38yrQJBkb6LEsOinL79hiYseCwYAKBKyWZ0FgtVRlAg60ttZwyaUbKn4Pq4QQ8FgB7XiDAZej5W9Jaflmva2Hud4Vcq9I/InogaUovnV9i1TP2rf6dDt4H7hPKBqjHtBsiioRpaKBNEZkbJ15Ivy8CUZjAXhgboKgAAEbQaGg1lt3PZjb7HGMMfEE3IpAYJOAxnzB5ESpL3TMGDEre+v8fjYOnkWBu9tlEHhS1cz6Ae/rrNO051hJARgQ0DPMtWLwO42W5c1bsNduG/bkQkIo8KD4PfzfOJr1yusc++9iGPNQmJuThnzHLE0dKwYo7Za3NcOzZSwky6PiUEp0iL9uBwE7VwVWApkvpz3pyeNfKw5VA/tzWzdHuu5HcSo2BpueJASzRmAXBWqikRXlfm4u89934tGZKQzEsRcXaMq58OqwiWYIUkgOcK31osgUaQI0bmJkWM6WPTeRlWmC1AKQiz3EGprWWppYw/+vMalb+kBAOM8WZi0Xzmqgpg/PF/g4ff51n2S7htLlIFqQ7hXpVZvepGn9fZ4mzFOK86u2rQnqZnDcihj2S9dtb/A+ZDaPeTt7Y1gWIVXzQFPH67fPV9/8fUv8d8QSg+3T9x+8fLyu5/uBRl/KCP7lsBKWOQEwi60mIlEnqFVKwO4pUZkgBEjlSJCcIPoYQ+AkyKTs6oAcO+4Enpgkd4hdHHTnLB+9avvvvn2+XJcC1GYCZCYA5ORlUB4m/7IqMSWsAIBlTGUmatSA5fH43HbimaD55ePyjsmEWFUuU13YNSM293TPAowayU+xrj9/tc/PN5snZ0yI5ELOVpklSOwEGEpgyFXFMEMQ8KoIAwkdnBLKGBKyjQiWRUFuSZW6g/jtNv49pfSu7hzATrACXc0+vrl46E7YUOgWRAAGEgMUOlnSkeCSqDHY+1bUxFmQE9K0t6j5es8LVEadsVW61fffPXx+fk3P/zNfDw2vda6tVwo6lV3i2zsICDWhDa8rAGoDZkJ6X7ec3pDoOjrLOquXA8oT/7s93G6Qcw58twfYFFUGI2Pl86/+vjHH16+zWpJ0MwAeVYXgsrwQNVW0mYhERBDeghrEVeGZ7XeOqJUFvfb8EpUFY8AzMaUM5CKwAiwqWKGY6ke6IUIDV3S9w2AbCx/3B8DiQ1PIa7HikoQflv3bLhv24rzct3cV668Hs9u9TpOagc3Gefnx/S9cTKutJiUiwOZAETifvtpU79++jhtZdVY50VaUE3O02ZlXqiPnJb+/PKpY47zPGRrnGNFuN2HYcPeDwFIH+d89FaQMXxx79t+gYSYMAU3SoiFCQdsGRnT/TFUiJEpkqGGvXXV+xouQsxb8KoqcyV+6rtFFeHnL/P56bJf+piThTKMqq57MzMHFUJAXFlt22JFxgRs4e6KgROQs2RWWmGmwHxcGJP1beKa96edeu+GvsLSvW89q2YaITbWmIuLmJtXtowqgK57fwob81wO1vYdEBFSpLfMgJTOpCiT5ni8zjfPDDchFlXMFQGnTU2VZKYOL5fCK63/fnv8A9DMSg/+ze+/f758+HB8cL+be0BePh2/+t/9xd/9P/+/RwnQKiAU5QyozCIpqVjGswMuc2PZRPZtc1wPXxjpPpavTRncwh3ooWAIAYVSKjAmQiuoAJAGKAicMPql/+mvftmImFhYFJFJHAoYkKgp2sQqrUqmDtUSz9aAUty8ZWbx5j0gF72tFT/+8GPTC7O2ptIokYmy1jnTV4kVVxhSzPv91//wu/OLkalbBicgeIpZVNrGwZFmUcWVmAmeRgII0BWrwLMwiwMDy3BpkWUmADLmmTateX2JGj5/9hVhkyYOayW3Yf7zr7/DUh+sjQXBA6Os0GkjlwrAdzgieo15IjUSAtGCqKLL8zXu+HZ/kGLUgggi/Nm3f6K7/sNv/mPeTmcpQsK+FTrVwBW8GNNSlNu3H7aiQkiYCTC16+Xaz0c9HgMECFXEAAB1BElEQVTmurByA9MfSIg6uZEIqdp0NZMf8Tywfffhz66Xb5cBSCGTJ2ZhoVVhApqVbJcOmimFiay3MRoSUUIlsnihEr+btKsY0QLRwgsCVban/R0JC/hOnChkhkpECk9SlIMxxggs0f7y1YdO/TZ+XODBreF2pjM2IVozcdtPgLfbIOQieH3cXbhJCep9CJOQto2ZbQD5ktpZ+769no/t0wFpjzkbs3vIrgPWY9z2yqfr8/k4s0ISGIQmQFacbvjGXdu2Q8fvf/ryqVAbv9U6MU5KOMfTh6c2CQDuj8/YO2/HtcS+fIatE7ceNOBE5kbctD1eXwnweDqmWFDNcyGCNqFCLDx9sDQl3oR+Oh/E/TwXQFoUlGnAxh1ISLXWXGOdY/TLwTvdy8qhox6yuZ1VKQ0TUra+EmKlZiMVt3qSg2kDYQOUkFxZBZsxmD/O5Q1b75PzYffL5TlX2nJtPRQo1QuihUfdx2Dhg+EqIAQjYrznvoSvV6Wd7X6Os86xWKkLSz+EOGtqYmVyOz59+O5j//lPX17+5ae/OceNsNz4x9/d6IM+f2RzOEIh41c///radQ5T2ZYDAKsApPUSKT6LRobU2kAfPJGhM5MLwlixRswiHiUeKhnkBpBQNID3kqK3k/FIIYDAVcKkMtP/w3/461/87GsRLC5C2ESJxaGQsFFVgki5o4BWRngyKCA1KQYDzMCJojaAUAl2C7/bI9wrs1ij1S7VEE4DwEJYLPHj79/+7u9/f7uNgu5BKfR+/zSKyGQAi8gCLvaowgzMomDEjCwQKnFKzJIokUiKQMYAynfWKmDZMAjg16Dw+ekblovBgnAo4IM2rcmUrFfuz3a/RZgyKCMLR6wmLRO00Yqcvkg0IEAQCyFBlY8myBhRBszKHo/ny/5v/+SvfvMP/+nHL8bUdDscB5FjDkWLoARhEWF0lZmzWX2knbUzaWh9iRm5H0iRUPjgyuvlY8yxbGY59k3CRyBq+/j1N6HcQyIzzLGIgIuRiO63e7GCcjFW5qUxeBKQozJCw2qYgAQ+pW/nTDfbt5YV6CGA79UQEHajKmhd17wRSkKRdHPAKJEqUsUu2Ng93ezjfnkrc6dcqZ0w0dKFNZZXLYDcgMuq81NrWRD3z28XeQbNmZTBG22oba63Rz5m3T3i+fIBQ9aX2yRv+yEqYbb3C1isxyRiA+KE990QE173p9f7DzsoQVDB5WmvTd7qgVTX60EDaWJFURPLaLCxtMSAW2jv2fu6n5S0HcdKT8ZzLvN1fX4ZlX3b4jFf+iUjdJVQGxkqGhXuIIU787VtZS4AEw1687uP5ZRQSNuuHsBuWIWeW3ARIEIyFQk+VjxmP5qF78DRKW3/vDzZriwNZUUmJU1X1KXIQFkp2kNhrLMx4wjYAqUSeHF5psZ7aon6rp3k8XjcpteA1og6yXuDwZMQN2mXq8yWr/fztPn2sKYqqlVazWvGWlUlwvLp63+9XX/5+8+//f7Hfwp/hRq/+/2PrB/bZZ8QWfHtp/3/8j//j//3/8f/O5IBqwreV8qLwCEQsANLoEItmEG0EyU6UAEpAYVHBWIlZbITMDuhIoJHYVMgzMxEUgZEj9Ten562JABSRGEhImEsZiSghpjARRGADBI+iCCRInjZpCQiZQYrq0yMVpBIBAFEPRPHevMRVsWVrBx+h6rXL+Mf/utv728IoA5kxAiQoRmBWIKlyO8lbghrmIEYxAgdoZigiiJgBw6s5EwoR5RCykIoQgiERB6ZYEy1f/kycBud8YCm1b762TfSKFEANkxRrjq0HsSA6/UxxZQveiBysXBLqCCbDkrL587AovAeJ1cWYNkwTQkzC3o7vvmTf3v+5h/fPv+AgC5b+JcOkEGGGlkVAxkq22kjueiCyOfH5y7Wsvx3P30/hZiJsRFwA3nu9ba1R8KqQXLQ0ANFUwjfS/BQgAiYWMC6IoCJm1Jjq2RAIrI1FVVRkQVxFTgLanGWIdKmyogaqcBQVYlA7Q/X48T06trLZVUaGkgpNTF0TMKZxPJ6f6P7+dXLB6ge00ocQ1RaU4iCaQHJH1+e8nEu9LY/t4zXx01ZEiYQN6w1cmKAz2O/QJSnwXsTIskiAaUCSTmhdpa3xxugeaaiSN+zYgWwcEVCikIj5mGBDI/H7XrdkPLx9oYqSBKCReinndM3y6NVbFsCg1VBva77hZFb4dYjc+/iBIEs04QktKXFPGdQbccFEdFWJH553PdrKzsbNMgqTA7eaFu+gN3TzFukb9cdkB/32wasW3fOUTMxXZyccxKCHwKTCJlXZXZcUG4TEBGAGEIKEh4529EkMMap0pmlP12Mq3LmOwciU60OlZm+HufluDxdnpb7eY77dElRjicFAI8shyCm1uUjXsXa/RFrzPDYpEcj3kErRyyzzGJp2y9+9vzNVz/73fe/+e33f3P/fL/d7Jv9QJJKKJj7tTaSFUaAQEVQLN1MDGFXEgSPGEAEZDefYAEz4q2geTAZUCJDVTkxU8dKowjGzOzNSwgav+ccRBCLzjiHcBM5KJmKobigILMIHUCyChArI51QkZJkMRch2pQFhLC1nIjjVAkvBAfydz4tK3NMACRu4PPHtx/efojf/ea2HqXIr8CYpFGUDtisUrhjIVAaF0A1KoxYACt5ATNkYmQVAmZgUBFjmSuQOJRIEha4WjoBMEs5zlGQt7fKol98e/2jP/uOrhuVYbEZJVlRACVxlaNVmS+5RtKRVSKXcoZQd/M0aUpIVMhM6SVNEDgdl7mvpH6ELIXrL7/7V1/a9bx/6R3nKr/fhpQjblgJD09kPzoTsWWt1raZp+r2/PJ8O1+/PJbkvOIz8ceI2HifLHcGNtIFhY+PP2vXlyt5OGYhRhYABBRTpQeLsPYAcoS+tT9oyoqQ0yohs23CSF7ktSyXUpeCXCe5A5Yn0NazGNgLwwO5CCERCdAgJwfKj7/7vO3H5eniHrtu3skCkKAd2/RXqrQBXpAZXHjddqDuO7yOz99kSFRnaZe+1vSYjMygRnH63FCA1/2cl01jlGdIO7zS13lG7Kp+ntfrZVXsrStKx3auMWtS0m09juPSGng6i2rmGo9k5jRk2OWKhYZpvjqzbDDevjziyM3fF8EdOzIcm4bg6216rQJsvflpyghN3Rca1wxWh+p3s/Hl8wfZX/Zn5ADEcA4yq9IMEBLhINS2oRdFRKY1RmGbAQhWi5jDiEqkojEG45jQSFNhYmqxm7OjMmZEMiPi7Xzd2yWzHFwOToAcbr6ShBcKwVqWsW5QUr1vXbYGAAXBlfpynGPN+4w06thJS95DLlnMILZrky3LZTxOm8NvlVtHgitLYI3hFUKSW/v4y59fnj99+/bDj59/908/fn795tNzFjH286wsaEwBXsqRSAXNIaDew5dULJqQNtKzSuKWOQLYHLgM/8DvlEJzs6RalJ9iq+YDKPIClCQ1Iban/u/+4i+v+2XZYH5iTnpn6jdakVG+Khj/cICIKCaCjCzSYtmaNmxh9hjhG5Y0NK9EZKtclRHI1RAQoczjNub4nP/82/s5J1U67lUbpSs6IQYM0SjPKmcBLhqZyQhZC7PCurRIiAIWkqohlAiRRkVKDOWIuRFYZBAAZVUhYKEVii+Bk19/utMfs4BA0m3Z1mQvyqJCKsSE3tvl2HI/WEGhqBwBi7UQDAdQMm5SCFCwyQWyZxgjXC/7jz/9xNCFusAsavsv/uT18dPvfvzn6/Yy4HquzwiPkkTAVYT+puyJbNCas9J+OyrYAeXL26MfdVUf7Q2pa9F171TyOV7XWK3xdtnv83HFrXcdbkBoBQREiTOcuCM3KGLARmArLUUIGSAxhNGyKKQJhUVAbJ3qzCpAYVJkIItMz2psOS9A3MgjMFODSXdbQ56fLtw7ID1uo+8baXt9PNqewATCc8FTa0j2+vr2cn2ZkRgnAR66P9a9oIXK2xgxhzAYYYpr40vTsZwV9+NoGaz7l7d7dOdNoQgJSbC367SoSPAKCoO04dQQMG08guDxkEiivhHQU9991b5dgaCcuCLnGucM5svTnnEUb0Fyn48oFNV2PYIoo9DSxn0/dozFUJWJSFRBrQH2TdFyUi0h7KpxLljFXaOKA+B1nsq8hQWIXmI4NM3aEAN8KUnWsjVo0z+UhQlH3cvn1rsVnr648rKjLw9LVskKZOImnz9/6UIimbXmHISgXXnTx+P0tXDCtgmgq4iDFJLHmVldFYmQXAKetv5qxtDPOR4wuOPBT4wt3JSEMYlqVT6/7GHb4+1cvio8EUj0OLYIdos0r2qX9vXLL3/2s49//LvPvx75pSNi+bRIRS6GzD9kxKlAAgoCcCEJ9+WzlSnJGbBAOQ5Pz1qMhaAJvKQ2IS4axIgBCAmc1BiTj/3L+HJ9vv7ln//Jd3/8sxJIxAQmJpQEDADM9OlWTC1CIEVXY2iNIhsuV9B+eVorCfOBfMs7AXEVMWAKMcVYXWA6JUqCFeTtp9fXH5YNjKCCjAypHUGCsiojAyi8zUSsBQjBzBlFSAghyoJiGDPAK/etIMAIgxkEhhlLAQY7VbBLVDBkGBOr5irFQs7XW/7H//abf/9Xf8kIESuTw9WQGrYqKC7d5HppSI4l7760IkYyBM8sEbY1VJoAautnZGBVg/D1/Hzc7m+EjZqojCh5un7iDX/6/T9vVznuItkwy1lrJhdWskcsuLM8XQ5dMR7rTop7bOvN7JCjFmeFbgooWzU4HO3rp59/e/1FZynWc7m7FRGQ7O3IZUJNuS1kKjmQOOu2hurRdMNKpmBApZ0TyVwzzQW4zfhcVNrYMwKSWwPOjBDdAMBXQtL7H5ZnATQBwR9++qEfL00aZG6dKvi0e9ejydF25EoR2b765vVtMETTsoiDZN/744zznMsWI2zt8qHJ5zk+yEdZtnJYdNEmdp5jeA6GnoX317e+XdvGWY6pnXf2WGlv68yktdbxYStVn4RE5xwXxr7Jm42+Xw0oENaaPu/7flyOy5jrdh/KLKqFSK2v24NVPBylV8LedsbMXMTABZF1jvsuelujIMmYRJQkmK2qGD29A51zHods16sXAk2RlgvKs5qx7FVTKwl770KCnpjFlBTpvW9lwdPB+UFQiZxStUYOd+mtJ+T0lYLctDDcvbya9Ji+cj3cWPSy7URFzOBE0BIDiQQprUihiwKw+TyODRIA1SrOeV/jy3U/CAmhVRkgqF4qomu1D2COXx6wgmuaKHr43oWSJoR5rciU/Re//DczHnb/bI/P66y8T7xsqi0sAQEVHS0CoYoaAVJEw2W9aiIOJEVTgwPbnLGqOSRgJhezbLzR8JPdiLjw+pz/8//53/+3v//1Icc3nz60rfGuY62MYpaAys4GC6mUKJFEuTEgDOKWlMtWlwNNy2LjOqe9g0CUmUyXBQJDJYMjRheYhYUoxIL85ZHhQCmOPICazYYHZ1/myQDAiANLCthpMCQWAmkDRCzIdCuEbK0osycQ0IL3XZYmlkm6CyWnn5nQSFzIK6TCHB/AW/Qv/3L/dfv1X/zlH2FF2nTEiiJARHC7Q7ZGYpmFwU1HlkjPqkBxWolT9ICAKlTChjgdoZIQqHBrm0dAta7XrKyEoz/rB/zH3/w9RXXSGTMCCMKznHC6bbStwmGPnVGV7k1aGcH+ds9n3fZrC9zSw8p4O355OX7+8mcfX75GWGETiHvfzB0JK8sTQBR1I+DKko1RwAoaS0QmImFDFCokHgvdvXY5ADIhk4oQHAABIasSG+hMD0DxsBW4C0utZcoktrJvmwiqSOMymwVr68JFdp5sDgXt6O7xeLt/ev4AUE65zjf3rem+Fx+y63bM4T/evujT9XWcmtY2ilzIXBOo2sddJmYEfby8FLZ12sZMTJaBY0b5vgvX9uW2xo+fv356CcQ5Y7/sKg2KQ2i4Px/CHAXBIIWRWa33jEDKt7fPINhENpENOaF8TWmajE2vHo8oEG0WDpGsqgUJjiDhVACI4oqkJNgRiSwWOG86Xmeseb02oCIhm7OJesTWNEhDMnwVgAEgAXtFhQul5Pk4j+MJgecI6g37iijLKKgEZBVD5jQC2ZtWOASo4Mt1TwNVnvMRFkxcbuFz26k8z3M45Lb31joxEvOcjgRc9HT96pyvb/cvzFvT1B2aahhExsIhugm1DxiWPqfNdZbXLO9NoLipTI+EshEH7NnBjqd/+z9dPr/if/7b/yzEXXpgQhphQ2KuRLZKr1RAWWn+Xgoo22DTkuj2PsNRYkdPrCMSUMtTDx3pv/rz7/7qr/78r//9n3/+8SczEL0E3K9PXRtVhfYtMBGSGzMCABAFYQoxJk3PZ37O0MVcmGvd1piJAIxYINQSoRAIgnowhKbXWFGJIY8fswxW2ajiagraEbRSwIBnskeRolRwIAVWhK/Ed3gwYBg5cd+zGgSUmiIJSyQ4EWpWhUcKKzNNcwRgSHciYIQEmIECJYy/+fX32tqf/MmvxnKSgoJpjg2RYNkZeTQRBc4CEnaPTRpzJsS+9QSZqzIRoRoDOMVyYqEmTaVsQhhBIwgAV/yg16N+ln/7j39zrjs0oAIsTsxVVoCeufIeeGhcOSZWDhqcUZETA+aQNEa+NkVkTN63LbIUkQlnOLgSchVYxqok3A1EEESRpO5zofYsbAUgptyAnDGLYyxIoEPKY0IWK7pZU80AzKoZyNq05RxrTIMiQCHclObjJk/7B8Px+fUzamjvom3Yw2ZS08veEuH19fbytE8bsrNRXvQyxmdb47RqGk1wI/B5L5Tl5G9fkBvvfUauuSwhh1+2Z6DJJQDYG0VpFdq5TBZ0ejo2G/eo3Ft/+vC8iL0Mii3HdlxFca5o7Qk80JwrBeF1GPLSbUtgArachZYZmV35UJUIezvv1J4eyxiFlQDQVkrfVDHTpcBtnDmRd8ZUxCoYNpGBirVvCNPPyYSPL7MXHdfDAMbr5EuPqjCfkl2QPebpqL0qkMAe51Ilabtqw7KcLBBWHTs1JMBMtwxCyMKwgAAWRaGaSBBCUEJv5+vywbx3ZGTfUArSPVrfiOq9ptcAC8Ahkao3He5t35l4jPl6ezSL3lujvgsuunjSu16BiXRjuZcxrJh3c6jYSLuqcqYnClVylnzz8z/9v/7fvvsf/vvf/6//r//lb/7L32DVpW3pRNKEafItsREiGlQpwsSYmHthXxATi5UYDIECpXwqeENeXQNKmfbLlRDB7fnT1YAoWhVLp0bYCEsSIQEjkZUJsZLTMDE2AWks6BiwTHOcyy1IEVE0BSMwCLdw93z3twJTShN2O1+/nD99H25VCYwIAVA5sD2ooIwUq4hWBrBFMYYmneUhPZi4GKsMq2mBIctxuq+0DtCEAAWpeeYl0nElWVdVzAnWDNELmZCYJgfnfUsw+i//8Dtsxy9++UuHDQHQkkSywpCmkCEkVGNWEgkAH4qFkF0Va59+ZyJgAEziOueq9GN7RqBdyc45w1tn0uZusPzl+eVf//m//i9/+5/f7AurMHRIu1QSqBhwLlxartzjx/X9bZ5NtISeoBS7YGZvRoSVR9t775XlSU74bj5CJpSKTEpg7lKy/P502aECAYkVipUQeFEuZKwU8yePJbocYq4ioiY81jzP2aQVVlMqqgBvTMnJjQNSuGcm6y485kk3Vghwlv2RJrpvXb6MMx/5tL/0j/3Vl0OCUAjcMip8V3GVQCzUMVfEQ7b+dL2SuYEti10ulsvX2pFmjP3YY1XkMqjKWQUp+ViPl+2amHTZbK5xfiGlrV/M7e31frlcWOCnLz80vV7a1SI8UoCrgBKkiIsNwZcR4dYuzFwZUDnRo1JYxjoTYsR83g4ifMz72+ebbnR02bStugwf0sjdQHHrmxbdH18e63bZnaDCc+frZTsaoyAt8GjwyPNo1+FennMOKRDoIFvmKMj+clUUjhKYaV5EQuhjBQQCJRAyEmlYGsxcpqwsZBElAdTUcb0jPLgTC1MB4FiTqbsQZsz7oz9dOBkimICYHOBmXlg9ibRvTMQ+5325K+bLhqIHICYlMIRXEbV9141oNvG832+eAWEF0C88YSJstMotqeDP/vjPfvUnf/Trf/nNf/pf/z//8h//1jOP40BixbZgVReXVIenwI2FgWGEVQQyCCmhADOgIPIsZHE5J+NO8umrD8zi4ZJMCNQKkCRRkgoiw1mYSRLAIYUCSCsQeWu5W5rhOu1xn7PpvmNbtszfe3OCM7AShN0BgRyKEIs8C7///ZdhZ3JqYnOt1IGe5JLvLmUyp7PeCemeUQCc2ISVAz2SQFqKYg7IE7FYxVCdhDhQQqSlASwuslTAREw1rHKEwsS5KiEm47nO/XrxpP/t7/65b9effQXJhbo5EQaxw+MR+7U7AlRiGVB5RlhSE0t0z3DoBMZ1cEufUBjlHt64YaVuGy43X9WkhME9EJ8/fvXXf/U//M2v/+v3n386awqL2o4JHdAQZtaF3wrWnG+OhRws0LI2rgcRimIC0v7zr/7oIhsGRkF4BpRQgACxhi+hLYWCsZsw8VzBTtIkKQcBYWsETyyJdvrMSsGs4IgU7eD1B6e9aEQAoaAURKLTISyEAVWZLNlIzgZN9jxPKiQoMMPevn+7PT1de0LUicqxvLF86Mc55ulfjiYN9qa4ltnjbZOOrTlzpgOg8NEA1m0Qa+uwEWHV2+fPnWVjyVtl1TLfXy4vijbPH9CejmcQqSyHijmDcHvaN2x5m/DI49stamGjOS0EWfDSr3mGFVcVQcJE2vuKkN4z/O2nz/uxy1MHd0bRQl8LCXAZDjPaXs91tOzHfvQnrxDUysgIyHyuXL7u9/VyPO2yMbo1PKvmmInY+GDGAtu7hHshd+FwutloG2IyIELgipDLMR8TI6AJqTSQQFwBjzEu163QlSiYE8IhHACypGCtVYSUiQDhExG5oBVWgEPMmNfj4AkDp7xL6c0FCZg7yVgzq6KovxyViIb0WOd5yutJT8/ZZGNB90SoapHSmA51lYv7jDU96y0mAlMVswhjpoeXZP35z//oL7/785/+x9/97X/93/7+H39z3k8GFpDZSiJlIYRM5GQhOiX2LBg4lyB5NGgFdPJJsh6s7xyV4/ocEIAVbtI0wzDACYOAkVsBpGRikhGGZPPFqDujmKy1vNI6AZASgkhZkqz0ygFxIGERFigTw/JcSAxVK+br+WYQWcsRkqEoLXKPbEOC2uqIsAipaglxIqwgdUb0wEEqZdwWIfIum3kYmTAl46IKDKCCGYx7QE0xq9ycQFpaCWeVN0wqTgNllTNEKoP/5r/9bZNfPj1fncZmz5oUkWbZPVOwmJAAq7IgkEdmGLgF9j1hEkKs4CLpIqK5IjlEQMSVsGd/zFNAQJsjnOtkgT/51XcA+duffqh61/w5lJIJhkUjxNbnvtNA9meCl6ddSS79Zduf9v5y7U8bbhkVgA5VhJRMREQSWchSTauRhR9bRxSbrtoQkRkBQpCb9rmCMAnPg7WhPqyelFwgAbRpulcVJnLJsoiGSsxUFOQFEFzmlSXn7RSFCKj0WY8k8HCBRrNWWFSoaJ0ndh1wVpBm7bTZIpCKHn1/ykQzF1DPaNt+cPfzduLQvp3mn9e4AIPl/nxUFOsWlelvr69vqr0JOdHbee/cQKiWsYNDbK0Xiez7ZTvefGAt5QN1ezxO88fe+vP20df7O4xdZcUcYBvsSvh8vQrC7fFQVFvZUFh5+Ppyjuvl+ObpZRXe1/2+zlYdM6hTED3e3j7IZblI7b3v6z76pT0QaCuIVSRetCMUB2p5raxEatNz7zu6jbHSrYlQQRXeLVn4nCdFNmkeSVIYyVhCQAIaRLpbehZiEknPZZ4FWO/z+PWYVnBsHZhIBM65Neoi4cFAQDTnBDPetgLK6QXFVb2xA1DrTUhAYiJt8boe9sjLsfUuDJRYxCkEhKjatATvml5fYiZWjimMUYgpvaoButn09fSzr//Dd/+nf/e6/ub/97d//w//9GU8YrwxAmuGEgMEPpKyHHrKAbiQhVJJTsvaiSqes53j/qf/9rufffXhPNc7Y3KWBWRDes8NF2HUu0Qeo9bGatY2vjpzxCgYnkUQTLAVeqxIwERgIIeMGAjFZBaZSKgbMqQzPD0eP057JGKCkMhC8PBI92iNRYvMcwpJTkykZCBgSscqD5YGSVkwWAFMCzl6oaQaEipzZSx0alILBHCj0tRus4gfCGc5NtwMAtKqOpCsJanpj0fpP/7db//VX8iVVCkTKjfKtWBqphjHe7c5IWaF7t3cUBAVkToJQauIs+5VWXvrZQYBIIiEQrIDnrcHEwGUkEK4nfXV8bWwfP/2091yAAx/fKSW/iV8R7zmbSrM56eXf/fHf9a2jfXyUV+aUtJmACcAKgOQmxEiUigzEc9pIIrMEIUO1Np0RGJnJCFKfxIFEEFKhgpFI9pgZqE70GJkEHVIZKpViFgQIDQ9WBUSkFOKJciJTgwhX1iyXy7mqwplgTI7lg/n5/1FD7/dz/U2yuj6zMQNe1hUUVhdto6suVOc076M7bjQeDzuP7Li/qyJSSHSt16QuX6KaE0iV2XQFcWwAyQGCCp2m24WjTiqatWcN9xNpNWajcxbJZy9Hesx59uddnSNMSdACRJ16ZprTankZAHyeV/jYbT3fnnHGHWCb19eCMLH/T2xLSgFGVKENcbcjj2Ex5102xsz77rKzNqo0XakqBhT917ckmPZg7X7HO7RNu09YeFtLiCPgrFso30/nmfaskVMM5OjWLgXpU2EsgICXQGR1vtOkIaIu1blO0/werlyAXMl0sBoxEoS4bOsU6PETODeEwDcQESCKgZU5gBEAqFhjszUe9PkucY57hM20qdrT1hCGiYEWQnVd9xYrXGsAFjD3jN7xAhFKI3AI2OdDkf/y//jv/vTv/5Xb19ef/+b3/7D3//dD7//Xog0ceEehLGDW5Flp/fPzkmTCbvzHvPY8U//9BulUD6K0NMQQQkaFVamrUgswWQjpgpfswO0rhhhCSt9JHBUcBUUICIytITFhsloEEIJJSTLi1A8ZmFk4P1+hg8ErGq+CggAoHGH6Dd1hlnJ4JpZBR4wIYsQhMEd0QURC11pIi1AKehChKIV1UtbMdViMCT2OpIm4KMIvBIZBFtBnUjqRAiO+BDQLMYA6N//NPUfv//z777Rp0mdGTpirjG29kwFjVplMjLh8mUMguRFSHqU58vLbk7r7WZR0JJ3mbZaSFcJQNK2XyHNmuPw2LYn8Fbrx0u36/Xy6x9+/On733HVHVJwo7jc5tqe5c/+8i8+fvjVp/ZJtifyBJGUgKxGVEFR4BmVlQiExY3zHW4swkCUKMybtNfbnQkEUaIaCERGnyIMwo+HIbKo2OO+oWJrFLHSkoCQuFFGFiYXySIoQGSAJMIFkAhsKf255938PJ0hiS990327rbNO16RzPCJGNtiuBwSC2yzgp4ZeO6l51pwxA4mu1+OeRjRpT9KNS+y067EDRy6DTS2dlecwIRKsxsiMSBS+XvPRsIG5cXjh+Thf+tGQ7RzoMWykoqpvH7br02WtVYgGq124Any5QxPKyxY1U1KBpLaNGYZXrsfpZ2/84XgGoEw/lTLXwR2QzWdjLWS3CM6sasy3MYBRtK/lkKMRajT3ZC1POs8FbKwFGIpUVMtnCIBnbxsLRuVFtLJsTUkE4lCyczigjZOJump5ISNxgwLEetxvmd7bhk3RTEXGXCqCmcAw3SpJUAkRKV8+Xs5h6aatoxB7drWTshUb8qqQpuwclqy89U4hjxyEvF8uy8LW+vzTZ2mqOyOoVAFyMmXiEzTYujGikKyMGQMDipgUCndkI54ZDkYq3/zi25999em7P/vVf/qbv/unv/2nGLNiqOnm6eGI24IRhuiOtbT1rz5cP3zcXn754dvvfoFACVFIyCCQG3N4OCQKF+G7MxN9YmLbelfNmhVj+KN8OTIBdaE/VH0ysXATGGEgDRJgoYBGOWIClTnOWLd7+nquHBEuIJWJIAI9aFaZAQAwJQCFZQV2jqIIliBGyj+MHjydkQ21mHfOsnJVR8W0Dq1wouRaUVFYGdgcEhuryJwLKMqTWbwqES2LkMkjM3787eePL896kW1JzgMaj/Lm6+XyVCjmE4UZOEYqtsoOKPfzse/7w+t+S9mfIKwQGGnnDTAzFwojSUJVQGvNIe/jztrkwm1ulfUXv/xjJPgv//Q7pHqWhqmb1Id/892n41mscetQwAJLnFGlLEBdwM0LiogAoaATb+u8MzE3QSLOeN4PXyeE9ctWQgVkUSyiFBQUIeACkGXQIgsLUYUBqgyAiKAKCAgA3BsRViRGkrBLFSwMYZUvcfJYKm3/5sM5FiDcxttZdn060s67Den90+VDVFkVI16OayknPsyjkByibRIZa55JdFHt0Zb7St2un2zdsRwFt6yr7Pdh3QAlRhgUoWgtQ8TwBYLH0UnkdM+Kc947yHG9LI8tWkYSFFoh1HHd5/Lb+XbZDiHanvaKOleEp2Le8o4ojba17LhcIJNPXHHOtAJ5Rm0hXx5zYlArFJhzpnIxnOOevC79ckArZUMyrE1RVdG5t77YxmMmIBbGqkI7jt46IlA9PCNKCYslZZUXlJXzLm8Pw8e5N8mo1rfbHJS1ITLzqigATFQmyKgMCGXQ8Kgic2dEWBlpKkdhLndAtD9cmtJO476FJVb5ekAX6FvUkCgEJ0hiHnNgYJcGcnhGa04KY0qOvK+7NlWqnRswFpQhGiSz7MKLFzSA5bUqLIEwiAKhc6tajjjDRfH66fJ/+PAf/vd/9ddvt8/j9afzcfv8w28V+W2dyLOzUEHb28tXH1rvIZMh961rbxGJBQQkhPmOyk2AYgSUzo0RXTkP4av5+Xp+b3NIExApgEBjwHyPv4UnQszKBGUgal5UgVm4PDwpgaxyFXgQBSOevQAC78ReLJAilO+eQZ4MU7AtoCDEEHZLLEOHyMwKEEpBpNQsKIgqtodE69IWoeqJUXDbkXCqExRwFkwzQtRCaxC1dmRxNKkFwQHqZMn/9M//Xa8/+/bp4+u0feO2cdAqCmA18vBJCSQSBkClSB3D7X4HNMCM8ofxdXNFgWKBjCqClTN8bdsRxsp4HGwPG+gs6I6E/Kuvfv76+XzcP3NmdOTeRbe3B/xif5LswFWYmFgVnhxcXgaAWQiAVNmbjrlWZO+7lEQYIyPVjCmbBisFEpYKKEYrgbVDRCt6D0yb4bZhhLFoxfK1qCkgABQBFRSWFaUg5Vi1kLBwSxWVJkIXPWRT0bxSnJwLFatyYed9e8l5wvm4tGMk970By0+30d5X7ZBCLQa5LYhAaqI7Mr+9/kt2szKpsnN61vXy5AXncK7cerv0J5sOkMRoy9Shd960hYd4NMZ52XOsec6lJLtwYFpNiznPCn/ZjhmeY0pryAsJ+MwECsWI1QR4rktmrlOFk5Bk02AoXLGAIEuIoksR0N0nd7kcB1bZnAMnNADGsIVU0vasR8WQFAgaNTv3XfvtMWdFsKoKFr0+7iJ8dIWaPgykcSsEzggKIG5EimEN6VnJ0INr+QhcG6l6ApPRxkXnnITcSH08Xs/7frm21pkpKguSGd3N56IsSEQgn0uTSDZWBgJI6MRpZsncLoCZaecaCiHShYCLfhwLoX36+OTrnLfbiVGa1FSFq6NAJnECbIKM2XvzGWOsEcMqCrYVhUSiHcuoIo0y/HLwsX+FP/vweLz+/LsXI8+1uByBKqMwAQNpLVt9P7CpZzECZ0JhJYYywiIhQiwqLDNjjU7aR523easEbN08BQhJmAU8AdAtqCq5Z0YnFdAwgkpIZwl5dyK6VZ2O02oGL0pAX0zcqNesd09iFBdBwqLiKigqRCCOMjCV1QTdJQFDoJwpg6BQNwQyEwnEakJAcIbvRc3ZCkIWZVI0W0JUAoZFXpVpIPgutnEEJ1pZ5w9v+87Hn157n1f52HCL5TddGxYK1AkFWATMFBE2FxNcnvfe5O63xX+oN1ZkFwUyhGaJ+S4A8XKogOQFKtfOc9hPhZkBTa5/+vXP/jmjCXWlS3se57nWzCMAnbKAuxS4BwovC+ZUZksHYSbZCO+PGSS1X6pEUS67FuTK1ToTIiIBJlAJ78Qe8EgHRiapdd5QATTBI5KKGJtyZjFy1QZwxzFZmHalZAqgetfUl4Ucut3f5pe0J+870pfb53Zcm+6QE8Og8jwX9i1Blrt386oH1nnen66HcJMgIWTaoMps3dZSaEBCgD7PTfqxXW7nSM/oiIJlUZBrGGauZCgW5t7wfp7nYz5fLizaUiDi6OpmE+p8rF2lCn68PYixcxtpWdW1mxk18rAFlE4Mqdpq0La3khgZELRtstwRmIlOcNf1mLd0l3opIGKdjxlZl+uV+laFvqYqbCTzfKxEEGTqHl5UXVkAThvbthOAFSNIWOp2JMZM67JNzwBjrisJAgq3qIo5kMAgjYpVfQ4ojPRkBKZFxdTzfm69e1ZBXvqeCFVAlVheopkpBCJyH492XKhoLHe3y76nVQkbZVVgUcjGgFhGAK21jjwr38ZDtT01PXiPyJmekv3DPh3uD8s5nhq3XQkRUFcAIRE6YhXDdnRJWr4gddQCBJurNwFAhOJGgblWaci1PfWuM0eNM95+9LRVnjFJClM22Y/9QAIkwMTCKoGAhApNKKziQkJiHp6qlwA45w2p+r4DFFiAAxZGoBNkhaiYJ5Ts/dDC9EQolg6YWAnFkFDJUMTIqowBJvLISYbd0QsXtZmVBIiOmRkansCU7sAOUOR/2LfbnMXVpAFSYVoBMFFHotmwAHNCdRFJnL6AEpWbZQtAAoOTGaIAUDwhohBJRGdFgF0EMuT7f7Knp89//HG76o4qHhljGkYTTkZ/mHALDEt63gVJPIAisqohZW8r1iYNGSbAO2oqlmEUS0LD9IwRhSTciDdLJ2lZ0drl46dfcF9NmD3j1YnZwqMDIkXSoUrgINhA5ipCVOTlUEIP8IXQ2iaIjoFY0nXOoapNdEuLUuQMLEMMoMBzhIvugFburIy1QUZneyRmAQEtBGGmSMG2IQFAeQZkiQW2ikQ0OSNAKKvG+eAZhB70qOpKes6HEh0lAttc3q7bmHeRvLaeyWAWHkRgEG3bClo9lpdH2jsQ57yfT5+eoG1CVBUAru8fK6BPR5vb81eJShiR5/0c+769PR4qrR9Xyfzp/pYFx3EoBgVUxVy+v1yQmTAZEYFs+rqv1nW6+Xm/NClqYPG9TeycEcTlK3PFStPemoin9S5lLCUEfLdBRCKc7oEAJ216+GnaGGnT1ifUck8f+y6bM0SdFo/H+OqyC2HEygKINJ/GC7cP0ndUB3LPgsqEsqqE3FhX5DAnM65SlS4dihfU3cYeuVEb5yRmELKKgiLEnLNt7ABZhUBCtPGejp4ZmawSVEGeQh6QaUrNC9jn0aiqHAEQm8iTSiSExXHZYuWXcVMpIlYledp9rrJ5u42NNxbsfWOR9MpIlgZZSCDKEMQIVTgsyjIgpCoqqXUsgEpwQuQdejs+UH85x+M+bh4DyVsTFOIEJmG6EFqBB1dAsOVagALESAVp7ojJvsbKdGUKQK8UJkFMRIzIyqpyc0/cmJWUooArqgqdG5ARRlaN1trun755Go/fjTOh0icnzrwUBAUmMuOqwYCEbaJ3BQxHykVOwi1LzVvpTntBsG7I27YzVOgsiBEMkSEB3YUgPXFKZC1IaagFJRIkmCVpWYGIBySmxS2cNmwNBYMIfa7f/PY33/zqZdjtuH7giXOMSkJtIcEbt/CzjNtm/uaZT58+Hc+Xc50WFL40TQWzFYJiImV0pciYZlhJgEVRcLfwBA6sEQawQqxtmKSA2zg9IxQFDfjSlxs2muitk5sBMZNmZAFR4a77sAcid6CjanJIbxHTpze9Yugt46KK5Y2A6lG1hxcQIsKaju+7wHUeIlq4IWW9m6rFst6f81ZWNgFlRMwyJiRgYpVNZfFqTKnwxtiwA2uaOUe2HRPl0kJBonKchxxVC8pTVPt2+3JGVOsKLATUtt39QRVUNRd8erpGxOvnL0/Pz/Z4MDhY4KrHebexPl63GvdVWUSk8vVXL63pGlO5IYB5ArJk6rJHvh3H1zl8b0wQ85xb26VpZjDrSvTJF2b90B7njQGrs/vi6Q3KIVaVqBLABG/IHBv4JhqR04x8jG3fGxJUBWE1cl9rzcxWGaq9IMe44TKFjgQX2UYsr0rIoBweBJ0BnmSjzkUPy+jynFm25tY3QKIqVVm3GVFP/VJowQGMsKISk3kDsTRsXNgoa4WPdOktvUg0CYatOVf2rkAsnTyEaev9sWYaoryPWLMiD2LFdCB3RNFKB4bxeLTLxbEckSJzmrIICyJCls2gUkpirLc86+2uQ5vSsTfZ9nDnKE2x9MBUYWGhirmsMhgjzYvaxgQESdBAZ/K9kqi358unl6/mfEsfMS0xGUaDXH6qNEkhzwVQEdxZNkSGzIi0QryfnxkFgaiqVoqIAlBVQTVmS8zCTAAvyvRY8IfEEiQkFxOIkiSuEkenrh2IHDpHUVExnjWdEFgCs2W1EBri6otXQEk2TVakSnfCFci4cRfqIkRNlKFPnPMEBiVHLjLRmUYplEAEADZIbmhYcNSeWVKGWVhVgCqcggzUK2sZIju9fnk8f/99fv1x8jkIeUDmHBSQbTtXrcyk6JWJAsVrxFvcJDoz1QZhQMU0GTIFEMCBM7SyrJYz7v4eO+BNqJjD5rT5oIyd04EQ6ZGvqfGyPX/9/AGLRSirEEAROuoZAeAoFAldVRFmhHKHy/FAaIBP/RLnfZOnhJ4FwolgGxyNt6p7+lzLdlYCXCfKtvetxQDwRAmsdXkPh1om8AgoGlylwATZWw8oX7Zte4WKvS1IHHESiNImYVk+VwJXF9lUDGtMx8fb0/FMhIEgBEltoE1dx3YFxLdxkrBVPWw1wkOPMF8FWqGBj5/uk9aGmxYDZLjt15d7eAdrun9efjRSEfRygPN2a9yZaRMEwRnZ8GWdyyMuRz/Li6kApyMCP+xBjMydkQQEu6REGdqam17H6RBIjcNX5+YZowZ422oDLmgHk13khYioKpYlARIVeN+kIAvEwgmqVlIRMQf4qORNrsyPab06BiRHP1QADHMOf6fBVrHwYVbhZhmEGT6BibiQ5GFGFgVyvt2AeTu24u4Bm7YIO8cJjaB1kAj39CJhTJ4+uPVImvPsx7aGQ4AyYkJAMbpBeHlGEaGILDMWOeck1cjFgEKcj0nKCrQeNso/XHcVKJQAmHlH4bYdMeB+v59+lz23/rQ3SLtBupIah6frhtJaJHtFs3mm+VIvb2ra9p49YgSog5yRrM9HfxlHeAzJG/FsAQCWBFi5MQcJCTuYZDKAE2kVoldVIQQSEnIBJFiWJxYzgC2U8MHSLGosZ2TIhGIVCAAvBEjm5r5mLEMm6SSv5K7Vnd3TqraVLpgtk2JBJhRi5gV7gggkAGBDJJpoTTKwAbgXiEUhMXfoWbYQYVCedSLmVekpGmWMzCA0BHR9pIOkVqDkmqKyEINrJ8uyaH0vquJ8Hfe/+/2vv/vuSaVfLjsUu9NPNdQKcnMGhCyYW9+hChPnOEuT+14FQvvKzARq0ahBvLMhqRYYWOaJXA87I1VJCbZHzKxkakHR+PplnPfwCzRquydiRb0j9YCsCjEJqrOucMRSbec5CmFrOwZ5Ge9aYVZAhSoVoEot6I7gCQbAttKhCUusmcgFnOEoBEb3oEImLqpsUAG4CKkYKwKzYDISQ6PWKtJiyrbR7XRL2JChILIe88Goez8S6hyjXVrhDK5bZvMipkDwwjVcwCxuRdJVMoq87LQFxbx12R1i2xozvr3dr09HmZ/mJ9jL9WCQ6UnQheTDdcPwtx9fN9VNdY7H3KlduiY20BS2wrf7Z5W2IlCpN1mRW5MdyOK0CgNHryr3uXDrPQPbNUQUlVOMzfNEQUx1h60jowNs48sp89w+fnyLOebYksbt3i/78dyR04MgBSqA8frhaa7JWy/W4cEOGyoKc9cWKwAA0N0LkYFUAMoJJFNQDAU4yXK1nTzidX7h1gBAtIVbskFNd5O2Q9IwNxsAuZHc394K8GgbByB5MUOpTwSauUky4bmcdBU9ztfLfqR7TAcsqjKBBcYNsFJZ32u8gGV+bv0IwMxsmzLKhKLWEjNxRtU+e5RVqy4NLODLmOCroxzUtQsqhldGZCAVIREQCG7vk93FOfM+E8i2jTdpFpnoWBjJDFCtIxwBE2k09YwRGcQK+V5OTq9AqvQkpqwIAKxGoKAN8pHlkJ1IVoyCCtyU33+u6f18/Ac+sbeoZbkACAiB4DF+LFxMpdATedRKDgJ0i17SVhVUMaFSB92QFGESBAAQELC8x+YLNWYuVEIpo96phDFKESowQnM9eX3Ufe0zFmy2l5dDIRRgLVxtl7W8dBUKFpoPVUGWBLFcqqqI3//+h3/+7fcr5yf4GdcWjsjLeCK+qRzvNeNWD3DEJkjl5WX3TcDSJNBRnRFQpCDf05LaM2adgSFYAhCCGO65xia8sBwAMX766cHYiygSSBkQAhyKqjARWSSxIBNElAmqyr21rtyiSqh6o4eNe8axH5WmCZki+oSUQDfM/c1UjyMwh//QL32nCshTIVh4MkJBFhCWlMOS+v/X9GZLljTZdd4e3T3iZGZV/UM3utHdAEiQhC5kJpHv/woaTDKJNBkJCkCP/1BVmedEhPuedJHQE8TlDlu+1vdVpItoLeDqKyyZCjGrkEHcryR6efo4rwkI3EZH4iqosGWI6hc87c8zZiZ5umJAk8d5PNGoxLL18vw01zyvS5q+vLwQUWclr16Vcx0R25P6/U0LBXl73oeVYsRwEj3jja226k/j6d081G99Qto5F6Q8vRyvVxJvbTunkbJNM0y0ZY+z3563plDErI3a4/Mbsw5mx0wGizPXbPx0HJM0IyxduNjPOZ6frtNt3gWr7JE2N2EGpI3Gk6KyeVWmUkbU6daw77cXrsTziIrBrYUQ88OPhItQocTDXt/etnZzZpZC9PftYBQlBlClgQAdvmb5h/F8Hl+08cunl7UmC2a6F2Xl1huagacSJ2EWRCQwlKWtObY9YUiDVVHl0JSxRrU0O86DCYMRCQkgKwmKiZJwnevxOLjx8/NTFn59vdPoAgAIwgBWlb6jOnRTCi+ARKbMlG2jrK/28Nd8lq335KaDJT0p3NIWQkqLjL6js6yAIF4z55UhVJIizCAtsbISI2pkiKJc6xKlWBOTutIyS/djTRCmgiZYTAVQlWue0g5mL5dKSLQs++nLTz/++LrJpw+3T7edpLXRFYGdLB0qhRGQMjn//PPv//vv/3MAX6hO/cTN81KAWpkGwAIkVMszDesmgoqLFlQ2AEnKJA/I4EKyKpMmSALT4jiH9q3h5CzyNE9d6BMa8BUdqfgJSCAX2pWwJVciVBNyqPEoibqqnJGjHBjKa28a4V//8Pn7bTvzK0mINoShmVGH2zW2jwjlmY1GlYI0ZOFyxpqICArUBBMBRLgEEKbPSTwcVkEUUkRE2eFHaCa6JXQdr1/fahYPvngZZSAosWYBcxRmGBUSkiNYhqpMu7gx6xaAosQkClgpLBsGY1qCoXDHoiosOMuLqrFc9zfKamBZmVREpRALF+uWNqEqyZkJ1qwIJiTicmRPBSpBBwcAkVCp6sBcYsveqoRxDF3LQduc/rJ98gwobwDH+RWYfRUhFfEALIK0A4lJ5ZrX6P+avzbmsJxv1+22ecS8ruQmXVslYKUiIADX1jcqBqfjnB5Z4ER00w6eD7d5XW5XkyESxpa1Pj7t53khc0b+5acf2vO+Irfn7l59bBeuKQXQLUp1Q2lC/Pb5FRmIVImysrVtXj62vffnOY+TYdBgq4y87c/RILzsKrerGhN3BcHCdZzHPJ+G7GP4qkfmXBcP6Hy7zrPoAoRP330DqXXZvC7tLAPmTARZ11LFKizMfbAXAPq+3455+HX1PrDK7LqWicp0p3Dz0LGRoLuBkGdWZOuIbOeRAztDrlySLNoA6Zxna52ImJgQ57GkgIULaqWt8DZurel1+LKjtU6quSwqY7mAQiHTLbOCZhGPtqWb53WlD9UmvQXZjHW8Sufb04vIIGVd1CrPiMHd0rlJyyqGpuAzysvKwKoxYyPRIuq4MIgiCrhDWmvZONPffB2XVVInBO0MkFSSUYBFHHOuAjAvj3P6/S9ffv7hxz9i5Tn/BartSqj5cnse/cPt9umlb8q85uNc95+//PAvf/on5zUBTSgEhLIRI/AizBaJVY60Cgqo82TXCFAmAhVhZ3OgOXESZPoGRutz0hIoxCrYEgU5VNe8iiLQY12jbycZdx9NW+oRmAvo0iugoYA/AmO1ECEotlW6k6c3xJhOjOfP5/yVcCvEAxA3fQFY4XBej6bPY+vEVO5WJ6K+X7SEYgBP8whNxQ4zHTBFsEMDzKPPyPAHh1mUH3aERMRi2s5r/uWHz6N9QkKJ8Wl8oyieRu+/pwiMTBjuBiWYRYBRtQBAxKvc7JvnGwFdaJ2ahghpEaLgpiHeAPpP9y+tNYQT4BpDIN9zFsSVWBdyLkvlXhRmtjGIDiqnAkRIIsEOUHMtx1RlebWiIUXIvc30TComR+BtO8LPCLIj+ioKX6UFmLi3baXPuWiX5PSKZvI85SGoJde6DBb2HlmoI6kRpMIc287I8/Ojtn4WRmtVUdMH63ldc82XNtJgZURM7f1Jh3g8bWNmytYWVcQUwAbyyKV7j8oq6NTOnx994+UXjT1P6HyBgsEo88BDGm77DUtZkOKKhKCwmD7bY92fN8oCzAqAEnBPQUSI1jSxhkp6BCa/n2SliFgOACRMDFw2ujCIL4eZHnYNwYioiXNG5VLR59HdwaK4FQFy1vIEQNJWlVglUJvuCFGULKjbBmYZ3pnXeWShbLsKQqRndXWpRtMH9fOw2NgBuauwkEWzLIRGbFUgCAy4kpi2voU5ugvi3loCOTIQg0mmIesZbrUwACkPPwS5SRsRmRYzVPZZWK0n+0+ff+jtWVsbozUETcQFbxZIIsxF6byYvLneQ6ajWV0UqsyuO8EsS2mYGNFWrpmO9LGPb7ydkg/KR8Thmh22KklIUdpGPx/GmFBpSx6vhnHDuFCw9DHT0/X+QzSZgH+kEOW17Ou8LgvC3oEIIKURaRC7AR8OpUJltyMp6Cy4U2asX6AItwO5EXKiYzxqJS0kwYBm0jkMCixbBOWTCACLlbO0HpOqAtfy7UmrGk+LRV5MuzwvMDuXr9RgEG+EZQ4BRJV1ZPICCiaEejvjx6/Hx45DWsCJIZsUsQLHOY/n52cFBkoWioqO7ImA3IFLMS97vF2X18vLLczDCrwa+sV5rLOW4RkRy2NZAfFosP/p9/+cB9+6FtStjQ/7By3lIg6atCwTSbLgzLxVPvWRXhLQx2DWyBIR3W+P17u8z+YJkQiZivDECs0eRNxB2xnXhZO0MzAXMokphtkAWUnpmcqsPcOSOpJUeiIESwNMNyUtWJQl+xiAtCYsD6baN74fj3rLTZp7SRKhcwAqJ6I5CJR2MsNkeisnK0UYIoYmIEzQCpagRVQlUmVkeGaxodzfHltQcAtCEcrHcptTYBCjsJ/XELLzkqeXWGF+UR9BFJC2rEtz4tf72bgDaiG3fttRE1kgz/lGPaXQzPtQwLzWUhQHAhUFjFyrKmIBJA19hLXCIc1Po4zWe7BekTxtgTdRISqq+/1BhKpNCbE1Rk4DBiBEJL7W7FKMcZ0zS+f1+PDUCFB0v9ZhaVvf/FyMJIhMPamImQXmKkQk0YwCRwRcNc84N9ouC3MHqMYcUdraPObx9oqA3+zPXgHVIIJGTzNhtkThWgaIFe5OhUBVySrmJisQqnepWoSULBFmbm4nSlNqBSu8ijIoJLIoYaBZmBkWY/p5BSTiwNTMAlUdDL4uO9b9Ku378xjbkOf+tNyuPKtggASXI3TZd8lVy1esBclhDbhiIykqYkbYPAMynUzpiXDzemo+pz9mXpJOgJCZmYwuimfwzMeyo2qnpA7rDXzBxUiFqeoI9yPzKHRcshMGASAQaqdAr0YgvFVZKpRhYUcwQkMEwCemAEjE5szAyIhAAnVEYcMNl8/lvlVnIxDi8oejHE89EQdLJUPKxeHlO0xlYdhxsUBClVcKIQmgqBdFYA+VKOKCShXMwIouFCfk6+P15epe0D8Wucl4dmis8JjnMa+NB7eYluSbODFqMTGz2UVMUMfj4cK4N1kAKImZYFmTzb94rAU9EHoR1/bD5+OnBygyVGjgtt0MhKEYC4sV+0IvQAxg5EK0yIokZOXhAQD44ePTafcTl0pnkvSZ7MjaWbXgHTOOTKr6uO67SIdiFQqwTC/YcJPCJddypIJBhDjSCQGdrCMkrHBERgJkQ2CUOq4S4d42buhBXtqfTGJl9C4izFQVWcVVEjSfWh/EM1dEoNTT1pna4+1xpfW+AwEV1uMwq9vzR+eMmFCUyjOjveyD5PV4ANOmzaj6dqtCd1PV4/UOSh8/fphZ5/2+Pd2SMRBItamsOXtrV54p9aQUs1Q6IClkKjlqRLkZKNxruSE5bDd+OAtwZr1voBBxHamCCuIUBTnvxxC+mqDKDXRaEcIV65NuX+73M33rWy4XqIyryFlugBZoYcwCQdeMqwIUpCnZ9K7jsgmK7KnEfX+5lqfgcbzmUhFonVgErPxYFjF0T8KAvCJQyyPY1ksTIFxVULBx2wmiaE7DzqKKHBl5pbdteIRdC+AWVdHo8Zi7tL23yLzujy7QRObygNLWM/zyILNtv/l7uylJua01SQALiSAsJRG527myhJ46EDlRehKhZyESN9IiT1zX9fN1NGlju21dbrzNY3FiQBX04ugKLfkSweinnRkBSHcrRBIoIurcC4EAgwqLC4Ro/4AvHo/M5TZjXVQsVQkukkWEEg6vJSa8toQFLTiHGFEhGrRY61b8EejODRthWJXnZVdq8oeP/CWH1rQok1NyOQekVKGVK1AZQSJolErTG6BHZWQSTcaZQVcKwAnVB046+IQcdoIhdquivHrOQGrEzFA4ybEmhKciBpRXWBU6LOCSQszhrAiLywGy8BL86f76G/tAXXnJEEGAwa1t7efr9Y+ff/70tH3Uj4Tdza4Vt20gwbQJjCCq0GDyWi6qCRBA84zzhMc1ozJbrIpWrS36+rDPx+OkMHzX1BH3vfWOmYAQYM5cgZKQFgxAXT0qEtvYgVpk9dYAYK6Lu4rSvGIINEZEHEVQUBZ8Thnbta5Ik06AtCxuva1z1mM5AwoB8LunoqDAvVmp8kxSSmawVjYdSVg6Aso951PCM8KbXXc7G44IgLEVwfX1/nFwzcmMs8ojWZCLrscFhVvfuAPMFbGgQgQi3NZqzFU4nm6lWCjoUOGfPjw91sUIV80k76qvj0cvXpjIzERSMF72dhuP5Y/Xu2oziPLVtJnFBmPNNc+DmRyAEZlr1jUBNlYRNjPw+dTENZpud6tEN79sOZMuCkYUAEZ+afyuIToVmPtGiFDhoeyGyczu82K/0nnfNqmwoGIU4aqInLGqjAsaNca6LifeaWtrGXLjojVL36EgCGhlsRwNkHgIO9v1mNe1P3/DhGUG4VdEqKDCN0/PtbJE3vXr4QWIviojlQWSEoGhEMszygGQLTJz0U0g01YINuUqBAA4Xt/6ENlonSsLeXQEpMitN/LKjKzCBGZsAFi1AoDUVgozWTCikhiUKK90AVJn0wCULAhPBgRlTqpal11XxOOkbbShGyNLDTU/E40wEzgrNLcmGGQmAbwiokI5hSXS30+oZHXZ5koEQh2QphyQNo8j3NaaVhPy07dP9NV/tvxqJ1MGZZ3kA971jJtgMDlrKe0ZYTPSOCKVJfb0+tLWS6vNQabBBacQbNWy2Gq1RKJ0WMnoRbcFGEXAWXSvKDiIkbMAJFCtgnBmTHwUAKzgmamZHXEtLhCHIIRYlohZSQGU6ZksBFlQhOlZVijppZAh5iUZ9fW4vrx+/fjSYUbg+dzy5fnTtHjan758/vHxuIbut+etjYqVjzUpo3UmUYCSsTN4UZ7X0Yr9WGGxVgbErHVlzOu0VbJkVbufr3mdz/uTYzXu4MDlmWBYKIgAygq2ApJYi8DCk0RUE7wI9u1fR0vCiEkITsYd99FpUc2E5bbtfTHY48umuLdWISvJ3bs8S66VdZk3GQEFxF4mjJhoZUnohQk5I9voFUXMa05p+56Jb3kaeGvs9hh9R44I32/t8TjiOF4+PicGcnZp6WVe7elGBJSxVrWhXrMr97GvyUDAzKnsVI+f37a2bftm67y+fM1KuY1aNt0fRmPbVNus4KxED6Yvx2nX2loTade8pLHZZGZELMw2dIztyzXdVi6QthfFZXdU+enrTx+fd+wC7uEJa96kZcA2Bs4QprnstNAmRsHJl133c337zTdJNK9zL6p5vuX69vbct55enFxYtLwhhUcBA5asEMIZ2cY4z4f7NdqtQmElx+pOwuKcTrnMGutxTNk60LvcqxNj01vlONfVm2gnP4oEEyMCGrbyMPJUziuqcm8bVkKjqIrK09eN1dMy83g79+cncO/IuDLrREMiooqm4+24a+vF5IQ8lAuKOLMQRxdwDCCgfEe4weXBhEwaKNtoGLkJlnvUAsUqi1iR4Q+TJ2YRRE6qRDBbHImVo7UiXqsex/mAJbp1bb3jB+9XxmIKzACPXJ0ZShB5kPg6rdzsYiBMkKajFIECHXuvxCSiSOUnft49oy6v+Xjij8ofbvmLv3z9z0WXlTfylQ6CK4BJemuklglxOuXC1CDoTUnyMgMb0p9ltQ5z5RsYsi91mYmheEKGR4PK6SydYlxktQvZooc1ZXIPqhM9KrFwmDlAMy4EIUebSHR4PdaURcKiXEVyQYAgJwJqhROAUK9ATPz1736nQ3/4yx8lJGEhxO1iaVwhHEENo/I8HwGhbRPiT1t/+P3Ljz/6WuN53J53KAo/j5kN9603pO2Soygw6nw8Xl8PbWx1vfmXuU5MLoeoQuV5PkYXzPZh71NQqm2k7zCXlUWEAyEsCwu4WmsrLKC4KSJi2mhtU/Jjjne9TThBbyqotKoQAVHcSxgQgIK4aQGumA6AiVCpG5WDFSGXgnvFyuVEO0tiWFUURyCQWCQnLFjZSir1ylCC2z7iMbWpEDLWGe5IqNCfb7htquTrGm1wgc8FEOlp00XUCWUfLLDiinRlBU+rANYPY7RnnVQQers9AcCC8DDMfBmfkOD17XVswymRk4tb0rZ3UszHHKqEtPXRSE+7DruAlZwJMWsAv/v9uHgnzW+++84ZviZ3eD6OVxQowoENoL7iOh5TkQT4/np/edmQ8M0vEcT0axp4ZedVtS66ysDzqe0+V7hRU+ZCIc9gohMBOYra4TnjeNlenPEqR0ewFK6qhcqsUA7HcmQBkQC3M4MuQLq1F1+m4jOsEYsIMAHBwOaGolvxgoiMSKgIV4LwFZVMSoJESimA18uH52CwuTqQIUMxtwI0Vg0A1i7Us+A657MIIdzXvFsgtZYYyhXeqoApoxKwgFAoAVYdgpyJARmKkShJFFBY0klIKldmkaplCL0XSKiK3ItYhQsgj+t1TlJr0FS1nlgfljP1/UuRUWDi3ode1Qq5otxjzpBAFAShghBCriIAykDqAd6fn/S2l5XH9xj3nfm/Hv/PMX8W1g2GVWACJWYTj0o/KVNgtCYhFLTK1gbbJrsNgNPEo40khARIdERowO5J9S46wqx88JVcZHktQ5QKhKugszMJULpxJIQvxQAfHrRWiAQL4MUFFr2QC3HBokbhRSzaBkJxVrLroOdvni5/VNYCQbEWvhFDyulICITG3EkVK3Od0Id0Gfw0H+v1y9sxj9Zg2wZXrixbk8pe2oeLgjphNiek5kWLYPUyJRWRL3ChVayrGr5Er41LYBTu2j88f4fMVNwFLc5CzqoCb8oKGCZFvOszp1Lhsw5Y7gEizcPAuRM1UaTALdNrHicUFtA8VhPqoxcCcBAWIcX0ldVlQOHDz5swQYZDISTicitmwhaVyAHLKyuprnJhiN5G+nE9jsG3xJ4l6cszVTYAy8YeWNMB4e06202Rq64LsswCuZ1+dcDr62WNtjYsUroIIqS0PsJWhc3r+nDbDZIKnz99bCznQiojznnNtm9ZeD4uRfbrKgYmGNzXitQy9/NYiiq0UbWe9vn14VBxa2O0GflO9a1CRuptq/DWMR0XEC4zc0Eat6f5OBnFCmNeH8bW2qCCp62FWSOA7KNTQrhHYizzXOtj28A8yoOZgjll+op0RRHmc12MA5qgRHrm1hwr18WzzP1c8enpRglUFBnUFKAmHlTI0EL8uGYCbty0cs5JLLFWG0qEE0UUr2v2prjJ/e1o0Gv6ZSe2EQhbuXiZubeNpKH7aQ++dTQmyInOgFrUC8p8NS4tTkoLZCJLhmLS++vrdd7H1gJLYBfZEN8ZXAAMXnae5407QQsiHUiUCZAQAISZkIVKVZKYEVgVUrjKtAknzfP86by65sexc3tGQQkAYseguqLCqwCEMFISkCjEqio90oUIsAgJEZMRoDbEmVUyqrwrF+Wuv9mfPv309fOf//T7L+efcx6MzIOWm0MQct+FGM0SUCpvFHsgghRRjEmIIie/qrrTFkm1DqoHwZULSTjFVxSu1iOgCrCQSkqeOZnJAJeLV4RMhnCzXFzwkhKB0TCre5Ake6ZSCMAFBSRuxgzIsKYzSzj8t//391deBCkoGoTQg5i43ubXw3ZtheWJmNrLy6aR0tY2mgZej+P+px/r++9/9aG9bFsdfp7TwB9PH24fP738/OMrHScOno+fwKr3saKoSCEj4qBJzhIsfZNWgvTxw8d96wVBtBoxFGQiCmAqAJt5QUhrAAFFbdt1a9e5iDmhoEhbY0aD2VjBgBJ7SlMKWIBF1D0qC0i61yQgbB1tOZlXEqIXYxJEoaKbtxRECJ/FnMuUe2JWLi0SxuZrVhwpWJ6FkOl9lIqiAwMBFKaZOzByb+EmHuUZldJaYkoWJoI0piLhrDivy48p+gzPN5uhrIPLwp0pkoL07bFuY1xrVgPwML9IBJePraFKZqISIBAXzDm7yGANzMsXJmBw584cucyrkc4Lq8cR/tRbHAclQBELr8sYc6iuyypp74Mwkan1HVDNIFdyy8w65snMbqsTP+97RPXb8+QBSRGYy7hhIotKL7yvCY2ot3U/tWsvQEhHjIwSBuasAiGhCASsUsIhREHImL6IKCuIRXikuUaqAwQTVpSZeSVkRhj02+28Hpy17QOCCDoTTYtAPxmlUElFiCCTSaqpIVatKhSea/XWe/oRXo7CtbEuAILqJAqYVX3spI0VOR0LKcMg06Mhi0hO2Pcn8EKkJgKZkae7KWslNtIkve5H5X1/+si9R1KVIyQRKTBQmZDH+vz6RrxoNFDmxqPJVrdQmRYxgTkAAotEmAXSkwAR08yLuFgCSSAZmQMzC0lS0k1G+/CNvjy//OI3v/77z29/Od6+/vT559fjJ6mTwLQDo1tcAY2LpWTftkl1+D3nOfY9BQtlPLpxgb+WGpRUhrBMKAzTgqpY55UJAYJNGWrDUbDGKCWimRlyQGAmQQMMw1oJYQCGV5VAvhPmswpREYiQU+DCCWIOwMX4dcWmBUkUngBNS2MQslFMqicBBCiuZBXGyogE4rHtx2MJtHmPz/Dz9su/SiFtA+o6z8dyuz8WZGjPnTehX1B7ua8fBztBXIAX2WCwCGRAKRCFGB1VqKqgST9XxiRCb0QGaPneFuDWbpGQYKP3rPTi4oaVCMszujZAtAIE8gXTnTdcZSH1UZ6g8qqcXgUyC7owkHgCSe+IEQ6ZyrLCpoWOnmBNFREuw3KIrCgQErkwpx/gx/b0sZK1YF6riDJLMMBjsN629iV8FZRbg4hrPd2e3q4j3tW2CVSIbeQ6B2goDeJIQpW7PYgZi0BQJS1jzQts9d7NVzGTQvks8yxWKYfZdbxUO+a5kAqSz1hudGs4xvr5Me+vt++fn7bnx+dXVmbVukKyh9txf+2p3dMIodTXBA9mfv36VpTSacjo0q/TZ4NEx+IMAk8ojVxF6+k2smzOB1gx98G97AoGGoIsPt3DCUpbmwyj9f2bbT1OcGeSVaXF4UjIloHEyHNlIGJ6KAEk2DmpUwUBF1t2uRlNi+lJqYIcDCkkUeXhRF1IGKBOK0ERWvMCLGKUoI46w1A4w5DQEkZrNWdVKiuTTq4LsjIsJArRLkoY2rMiIBKRhZS0vBJZdMzrTEgBAXR4tyKTKmGgJQQWVlVd1WVQiQcAYoF35fCsZaiCWJ7umZ0gC7q0Ay08B1Kl18pl7OvYmm7cd9FBo1AhHw6nBUR4FggJgiSishfCyixIAIpKTNCOjlBYLArYYk5kAcjvP/1WPv3mb35rb+fXt5///Hp8fT0/f338aM7AjQpVUTSvXJXQxogziolvz/tVF03n5lWZ1NAlwcO8oDABoIIwsXHPQsqOZ23DvZ9FTIwlTowUkpkJNRkDsTx7ECBbVYUx5sJKBEpXZUMO8FIDm9Van9gnLhZXSzEikNwC0B+VUz0kgIY3BtbeECHSqxKkUx/kp+a87l/+DPDNd99uiJ0qtZ3LSERZzAPRpFUjufF+vN2FYIM+VSnpAfeTQ8s32J7Hxw/PL4UCSHN5pSIi4SQHJAxAIWm0c3bMEIaX/fnt/ho8kEVqCRYRSSa3tiAq44qqmzaE9la68cXOXszMEbWKgC43EOJ3pRckozK4MEtUtBHupFKFwtSw0wWtxIWWLwG7JF33bZAAgkIV5+vrXbdNtT3zU5qv5ebexp4AuRwIv54HM0cFeeb0VIwJKPx2nk6lwiioeREDq1YSYIQHCQpArXOR+2Rq3BBjufbtWJ4JEmRvVwLt2y1Z/Dg09XydSEadKuE2tqE9KVFAlAngqtSNRvbvx4fW2KgQ8TgvjHjZb2b+tO+8UVA+rvNaCSB9a+kXZVQRFrNu2vR+PWL59rTP+wOW3Qb5Zcfxtn/7YWXMdTWQEniER1UvpcdyFkDOKndPAoIyszmNiUEYIIt4uVUsbhLlFiGOTTRVlp1rvYkKM6X7QE0URlgRDoWjoeiRU0aPA2KxkLIkSxLL9ZgUgEUeWencAFEum00ZgVeWz5lQUcWrRtNXW4mBvmpdt6en01cRULAfJ1TovqdjQwVKycoCIJprqjRBIYWsCPc0YwoEcpsoLTCxnKSInwC0MqRTALaShnys6ZzMRaoFFZ5RCFSZcB5zxfno0qQ33BGLdWBWAi5zz6qkDGQQoWJIgIrIqgIAsytJqQCzFhkQMGFVELawRIBPL99/6h8t/PDr6/H5xx///POXnzzOt/P0GdilVZthmSvAQm/0QZQTD8ClnLyYXzNSR1ymUEpRTGsmholgin1tFWm5QEEz0THYMYoKcnkZJBFxpKWHjCAUJp9LVA8srEVEmKrYEmVUQIIpGgC2aCUdFNKCi6VWnffz50/YgSCJECqoIlOZgdwBShuL5XGkwzrzxz99/fTxdmvctPHepq23hxHo1pvZWR4M0vgJMxqP78Z2t88nRNDaaXvSl1988500vWIxU2AkFXJAcTFVFWSWFEo6TKb88OElw6yAGTBNKAmiIXSkuayUIlwiUAGuVOgu1MBIGMKUeTJt2iPqWhPVizED0tdgqsSqwiJINgvVttwUiRhPX8z0nCKy1oft6We48DRqhFxN20tr0JQB5/LrnF026OKQFKmqReQJBKjSduJpbwtTpV9pEUYqdk01f9qfBfK8/H58+fbDrUivazErgbQ2EvE8z+u6NpEZUYMpiQwz8+ww09BpR1l1JMdKbdMXxN3Xr3wjCdm4so7j3vZnRgDaA+BMe+rbOi7h1pRE+wV4a7UYr7Ug/IrVBh3zzc7HN0/P1CUxE5MItY/znHCaeTbVagKc6MOP1UZ3xbnimWh5NUQtDAQ7ruXJTYaICp1XJJDq3onPNZmJlM2siS4P1tb4vdTmkUGAkTMsEVEUK/1xuRRTp6KQ4IqsVpkZViQefiKW22Is6t0qFEg8SjnZOZkanxFkRUSNKyGIQVlm5Wj6uE6z2J6enSgDGwsCoTREM4CCFAUvz39NjkBVBeA6l3QBKKxQESu65iRWhHeuQZy+RvuUERlGKVBIiW5hmSDcs1JoXkuQvQB8IjECgZRn2PVmsFQwS5S30VTJr2sGQQIkZFYiVnpIwyxKK2WZTppYFQtcCBuQEBtSqYK7Xy7VlPrWdtGXbz/8zuz+dr394Yc/zC9fC3DbGr59eeDXiQtrMthovABBqg72IqANPBtiYUFRMJYgGmAkbDjLxHWLziB2OdGthb+WGbCCIHguFwFsaB7VWlUKaYGGYWuA4IzSiN2DlNhrUhkhByBOiIYogpqVwXA/H/cvb218X3kRi0cUYoFEcIr3Wwsjqp3CMWHN9cc/H8r8NMbYN2S+HmfWeV5ilwESUh3H9Yc//0t/uj3pdz/8+PNab/v24fuX3/z6r365j5d5BrWKTCIqSwEKFCOoDAYgxRRMTBWSp+3LY4EIRrRCAQIcwIokWhhVvnIM6QQPmzAGcQGEETEUZ4CycRUilBQ6UnAKN02Mx5pBJQ3DEJmnGyoFFFIVhfliICkhTHgaN/e4jpldd6LCwhVfHtNmtMaZkViHHR/GDsWc1YRXcrjPOmXv1xWP4z4EhLCkGm/OcUKAVaMm23Od13R//vDRKqgVhFGGgvG+l1AvVPa1HIVUuJQWQ9rJhO2mGChDhTDcQMlorYdR28yMkWhOiLXy0V+ePfh8rDqmI+Wm4BVED44EgYvCatPWGx++VNsCpDwFuYoec7bedpECfHtYf745BCrdcz7RllZlZ987JMTjxIan0jXv2lHbAKALkkubSqAfviBo6D7zXNfKwCQUVyiRAYiRkRmhqkU1L6CEQi8m1sHIRIsC1TAVH9di5qexgeYZcRzH3kdALQgVylhF4MFlC4dekZg4SAjTwy0zQTNXQFFynKttG49bpCn2cozCcEVloYi6Kke+L8WAauV1vAHh1m5SPD0iSYQ1kJmSJFkrfbmx9krrhCZSVVpFjIbRWU5IIZFKGswklOnBUDrPO3dNYjIosUCAQve1linR3scZVojuVZgJblDgEEWbYAQKK1GQ08J0LPVKiJJU7gC0PAuIoCSMIC29tfF9f/ru5ddZNe3CmX/46Z//2x/+y7wej7fjGbfebygEYstTwHcnAdIhj7AVubBUWgconH4mOUeRAZ5oIZEEKxNQhADKLHLwaGwL418FK1cdjERYyVAaYQqVUAnBwMHEAC1wJSUvY0fqjQBRIOWnw89/+ue/A/jt999pTQMSGY4pMKAkyok5WTEd6aSMcHg919fXYBbhJiiV9ZefPo/t+W/+7d/+8Z9++K///F+PeOzXh3n+cF7+/be/+Dd/9z/89le/zCwPwA6QIbB7YpCnuwqvdCRsPJAbQ+OIb15e0qI8q1K142VUUF2C3sfqKIlETLydR0yEvTeBEG4ZwPbuaEKEDnSScE8tPFAqSh7uyViRgMENISPBY3nrOqmGQLCsQMnLv+zSva55V5INx+e3L9zaAG6curcCF4TjcTzdtqEtpmfVdRwqo2MNkBmZlFvrUvF2PG7MmK5ZhRKQFhbL2OPb7z6+HufKYsbGuDImAK6Mx3x+vnVnZgGiea2M4rJxAwZ+3H3Z6sA+ZF73pnzWKKabMEW83Zcp0ZpyG4zW+f8vlMlOwkooQIeyTeMZAFTIVDBas4pEhsIkjPDWqMBRqAN9/+HTdLumISMpkzARNVRhPiP4ZfOAAvCgFr3t47ITQRDI7Syy3tXuM9G9vAjlXaigVFTn+Wi9WUCWCNAxF7dBhVyVUR6ejFUAzDPDLVb6GLQooiwiNhEWfmBWHkXvKXiCjMfB37K2+HraeepQHZ5mEZmFCMVpbip022XaW1HDQioEzImmEZooWYzIJIXemoCn0C2K2hj2/ljE4rbIHLkhEhdYLiYSoI0g3UQksRCLiVDUsjYoX04Cnk6ZQthQ7MqNW+duDJWQFWGuZAAwsU5ORCYVKBUWIfRAYVRArwIsValAKwYWEq4qo0qgzLIIAmRRK2cglc1sCbIRZFE5ZILiE27029+2v/qrX375+vnr17fXH7+O0e7r8fPPbz5z5EKcoeERlEQW7/voiUWIBQnsGJqOS+LSUARwR6xknkGKVImphJkNAsxJOlB55ailiclbFUokoXagk9BLABFwRhXJO3+hMBYgzXIRPd1/er1/8+3esOXEEIIB7BUeFl4rPGw0QALoXKQQGhXcCYruXx+vx/zFr/7m6+vxz7//8/Li/QWguR2fPn779//wD7/8/leVkFYZSe8lhqqKXPW+a3ysQOR9yBCma62Pzx9I+3EemMCEnkFczCkCRGmQC7getqO4+VonMhSGV9ii4JIOdrlQL5zXmoFMhWRehYQ4oKLKoLxizWqkCERFuRCAI8IzilEWOFBtXh+wBbFXZdYWWGFXzv3luWlzN1IAzvM4Kquq1rLWt9akDkeh0eRF9/vx9vLhhZc/zvtt7OVhuVCo7Zym94wQtGMCUCGJ0Ou0m45vPj4f5/2YtDDaaGGx5vX8sXfY64qWUMDiFCd82nds6MabDKoqBm0SYTXGJcSR7BlmixEHd0IpmHYltzFu6AsqEyKuwMFD1RKIMTO3pnYtlL5sBVkBb9u+1smQpDrvbyQqXcipQYsMxGiNhW5UuMILSRD9vDPV43ogDBFdYa1TAfSm4Bnmj2tZXNrpHTfukbtIVsxp0ne3xSoJACIzghlJdJQ6WFFykCJuvVmWFhRILRBS1nLIMSpyQmKjQaQeKdywVWYJ8OEXYjFheiCRz5CMMbQQgwEJgSidVCiTHdLDCiKoCLhgJYLnkpIOvDqm0LrfdxkdxTk6C69JiI61IjCiClg7AYElSbvinGvdxh5FgixS5texipkZ6PE4EZM3jASjSiiCGFBezklAwoRbV0SZ1ySic11JiAxVjJmchYKC9I76qyiEPCsQ0S0rCJG4qrKktWlZhVWFqbf+oX+7/+J7gr/ly94e1+vPP7z+EX76+vNPBmZoINRBBRiqruCDU0ma9LnulMTBipBgANn6DoBmGeaDW2IchUidCzprEApb5hVJ4gUjnASSqvSgWFkI4BR1eZIAqgCGeRFpojgyMbB+tlkXfN/HEwq0Bl0aYN+GUeDytcT9RAhGGa2lk9csjMd1fz2Pf/dv/oFJ/s//8t9ejyjuVPSYS1v/9//273773bdQFFaAjO8SIkwIorqGLMKxQkUIWYpkJqDi7cPT4/6ISMjq0j2yCFGJEASpEDHBLHrrMU+BZO0VICSMdLi5lGtOP8hRqAtTxEpq4Ksq+P3etV4pyqspe1BVD0zw9CqC8jTprW2mJTgpWbfgEtWbthONgPKqCMRSLczJgV4V27bf9ucKfD2PjuM6HtxqBs+J7Niwba2Fgwkm98yVWt7k8AURLOlpP7+eL08fOstonOC3Mb74hZz7jQ6fiKa3/cvnh0DbPwwIu5+2jx1KHuf53skuX0CBjB965/b003n//PXrp+cPU1pDjPs9X8bJMlfZ60UfBdERMjNI1Cu2Lo/XtyZKQPf7Q6BBFgtZmhBejzcR4SIVCoRYKzpzROYdCRoKHDFQLe8MgtwCKjssT+qtt95THXzalKbvr00WBQUI+nh9PO2NETxsI7nmddufMoiTYF5E7A62zj42Oxe47y9jlnlAEhNTZeD08wpuLIOYkDzYy6BU9nKDCC6CRMIqqMpc53X5OVrnapBZrTTFsyynxTHaSxBYUdoU6lSEjAYzyRuR++VQDbQHI7yrtWD5XAVImzBHVSEIEQIyiDapjGVT2pZZthyZnsat4h09uRixpBKwEKKCtoEIi0FIzFc5SuTr25e2bcUSZntr9+Mu262aGAJh30hnzAx4XzUiYCZgJYs6BHHtgDWTiVamuRElAjs4CTkUOyEolAMWICQW89On54/f7fkf/nre79effv7zH/74+y8/fX57e2SpE+RGCJWRWNXp+SoTpY2EXC6IC4AJymLLakJJcCYFs8jJUFBgBeVsOBATMwl4QZtd2U8AoIQdYfbmSVxMFQCFpQswCBW6YD99fvn6+Pj0MRkG0Dld5Kn1XTgcl7kzZ0ICaRSqEiNe/ljr+u1vfvPUt//lf/9ff7o/AAnBctqtP/3D3/zDb7/77YZPE5JVEcBsWmJAs0AWTQbynkWDiJkSyYK+/f7FbF5zKXEXBA8GUu2jiwBhYQbaeTw93wxqnbU9N+BehJ5QGEJcYcqskC16Mi8GhqGRmHgKOicGoBUAbKOtOFYB17BwziQGBkgGqauunROCEIAoMaSxgemHfX65T8rA4IQqRCBfsd2kzJL1uF+F7hoYFudMHqNyHlc+b5DpDNR6R6GA+/HFRdv2lBVpriL9tiO2l2045E9fP3//8mn0Fpx2nVvf6Lafs4oiOW26pCfHVefj89enbU/JRcbzYsSx7ctXE28C2BigXvbbZVOzKNzNq3Qb+nj98qQNCAMBtAziev0MxbZyxtWaAjJSFZug+nlCAks/1qGDZW+SUKIwHTKA28ryWG7L1mPsQwWEO2ardbTW0tLCkIhSwagws5IYvxnjuJY5VDKKEASSHn7sAMJInc/zaNIqS7iutcKyE87jklt3NKwKcwxDuwC5VBYGWlEyQSPGKmdESy0sghLGSg/L3oT3vZFSAiSiCEDMeUiTzj0r3BNFGIIiocqWL/SqJE5MASxEDgTPCEpJ7vsHC9cqYTkzVJvHKi9MAUwiAoJjHq0PAiAANKsiJU6AgiQWyAFlygSMFpWVQIhZgpzhopozQoq43c8pmWy+bFVrWZhQmzCxLq4EBItZScDmmUhA0YqTEIGYKhugJxQti+QoLsANCAGIUTMDSIiwohIASD58et6/e/73f//v1uP605efv/745Z9++OH3P/yJ5wm2mDvSbptFmQTSv84DA8BbA87NiRlgRz3KoigABPmsFOyNMUE9fEtqTBJVxFkAkNBLedRiqixwx0RI2sY+RmvbPVC8UeTPX177t4PNVHVF1jkB/bIZbiL0/ribWcjLc85rvdy+abL/b//Hf/n9n386GYeqhH18/vY//O7f/u23f71vT0dFIFIGQjKCBwgW8CoRr1tVoWJ0deY57buP3zLQ435QEQMrwoRQFVUqLIT3LVACVoIf11kMpJCVGaWkyxEplCqTiJ4PzMgzkBXeAfSEhAwRuUygINAZcQA4IHTAd3wWFJqHJJWxi0gjMbve3l63MXzvYXMfbRHcbd1ka0TnXMoMTgS56owMAuAG0Fj1tvIhks9j+3x8XdN+/fFX57vBDJIA/byAcCQTCZNG5NfjosZFK8AXEZNej7cs7/0Gaf526r6z4k7t60+fL0QyZ3QhutKHNM5R7r58FazH2RC76Lwfybw/76h0fPl660+N9CgfN2Uc5wyA9Lkq/Gm/QfJ9ert9ooL19jpu2omhkFVpH2+X3c/7R7pB6+/0ouuavY9IQcY2sDW+OtmyiPMDExYm6eFLkWHBCkfB0SQLIBVjEecmHCyhQo6x4kzXtpsFShEVMgFRa0rQ8jFvT9uKyy01jcNDMZm5ClqJLyIS6nYuROoqnpbr6tyJtqMeXajMlOWi1bQJYHh6mALFjAUxlGXoZZQZ4KUtMooACl0JFmJ5BRKhgh+mkapRiVVZJSCeXpqBxsSF9ThOAhrb8IURgSoKiUiFnhDEEeUi5NMG95ABhbEsAQSBIgrZ0p+2zdZcgEWNW62VWOzua+UF1phxTdKwrIQuoqXM79Yf6O5lbskFhVmBjAlKRAM0MbVQywJrZoSt4mQJiIQiokz4V4hTGDqklQPw6PLL3/3iV7/79j/Ef7jO84fPf/zy5x//8fc//vHnez2uleuMjso5KsE7UXO2tU7OtngwPCNdpVBQAAjUWYCgspo+AYUjNcSl2LHonZfOpA11EVVH8I/P2/bxJTGX0Ir4Zn+utb68fobEX3/89kNhSl5xZFoiFvSqIM5MQ2A3P9eJvpXz//J//19/+Pm1FHEAQu37x9/++m/+6pvfbLdPsyIAiIAq0CstmZDTkfmd9MIoIRJA7vZp30cb9/tbJuzp0uDNqvWNhJgViQISoSIeo+O0ysrW1FACqiG+D5eFyJcTEAsG5rvDHikscChhCoQzV4kAQGVkMhF6LBXmBMeamUpDDJPsZHl5u9ayt9YGNz3n2gCLdVk8YYPIECQFZspMrIyKJlguc2XbPiRFgRPD8izi24dhZYLNqMwzqtPkr1++Hh/Gh6ddK895IWEXnpc/ac+53HCl696CqYrxqd2Ph5gunngbL/rhy89vQzpTjtYfXw+EGvsWa5JHJC6u1voVa5NtXverHJiet3Zc15U+gt4eX6jtnAmVffTM9GNt0CrpmCexlDSvuh6mjTnBbH18ftGiZWAY6R6IZqsJERIkB9Deh8k85v2L35P4NnT4lldR7woOlNHYl2Mitn6WQ2ICS0lZkghxaVYB+jLxKIDXa47BBAge1Ux7Iw6oRoiUoKQJGSyZD0iggm30jAS0zAkQ5qtEocDQEApXqggmQRYxk7LZuhwEmIQsAZEJUBgjrARXJCWPolZ4YT1qDaL087qv7fmF9xaGGliIwGSZTUgK1mFhwENhvlUyqHg6Qq7rTr1VosgGGStCVBY4ZhCSZ5K08BLUgHQMQEViTOJSm4ZAiCCNA2SuK4SZG1gK62nGFVQsBJbReRfVrUlWwVqJCYRZBOmNiCTck0efWQUJbO6VTlGUySwYORsTE4P2IFBIQUIw9QnOkfE0bvSrv/2b3/39f/yf7fPd/vTjj3/88+9/+KefX7/al/NfRDJTDAmaDEQTtMhbYmUPmIDQYVM3oeaSWBhlLvygJoU3SUiy/DASE2LxJeTbN4M/8GVWi5yWAsK+F4CmfPn6Rhbtl9+NrSmjTWvIhQalnpy5CMBmVLaH23/+f/7LY63etQi595fW/+Y3f/2L5+9++fH7h/ujbLBSISIUO5fGBCCtPCnm1m7A3ZIK6WlrL1s/3h6RIUyCHRMY6taGCCDwsmjCq+wK7I3W47H33lUNCRIxKsKaQFby1uwMztjIzgp2agGBIogHO6PApQxMvS+4U5wN0EADkBFFaJkDpGB7wnS3exvkjpyCV3aWJNykgS1QtYiCECmzEBIoaSpD8Xw4kELAmvPpw+06HpH5/Pxhrnm899eRe+v7/nFyfHz+GKOIw5ctyo/7EwNu+55Qq44rcWxdwK/jjbte6OPW4lHMoK0hzW8+MsQeBWlBkY/HnQHcLc273LTLSufGdj0IALaOrObFo40H0/Jdb3fw4HiW5lVpSUTI1Jh+Pr7e+haeUhARecXY5Hm7YYb72cbt7e0rJLT92a/FERmWQZ6MWQWe6RUgKGuaHyeybEJcYOVnus9r19vjPFuTdZpnfPz0ITiqMiEhk4Dux+O2bX1saBErqmA0uR+zbU+A5jnPM0ASMAWqi67qhAjxXqjMSMoAlQHAWdlRk9Gh1nKp7FQRUEXcdXERg0//+nbsey8WEEXPTj0hZngXqQplzsyoKELuo70Xki9D5CONkDoxvuu1/PI0kupSDcSsLFKVGYMJM5NBuARZbV4V0Z42zYhlV3kkZSLYIkEiPK+jCguQCpkpchVUIkPlyzZmWNX7wK2yLB0ZmARXZMa17CJVTtyQiJsVeghUALwTXSWBWYAxzIxRLJJIPKDAJHh5GRZmYnhnTeIUHNQmJcJkFA2KaYU+mv7dX//u3//2b+d/ivvj+unzn3788sM//uO/fP3p9bpHrlXKoiMwG2uCJqWFX4hPjJXkIG4xam7DEzR584wOrTHcvYgbPdHS6ziOp/bt83ZDbZ+++0TF2DZYZzVYNc9roR46WlQRJLF7BGRr0CNfSwKj/bd/+u8PuMPYr2Ptz3Lr+Ne//uXT2P762++sDLlGAaVRsXsmQaARV4A6IPWNUIlwlAP2TcfXt1cMgRImXIVhoLeNWiIAIHbmylrFJE/ndW/aG/WstLiANZAQlTnNoxJQeKWXeYQjtezkAJdPEYwk6c+FQUEEQlTpK7R8ETGAGQMjoBB9ydwFGCOexy0Owyyh7QCQMMw6rzMJFQGwEBAQSJsjLV+JpjTseqjE+fpahUQ1j9nHwIE2PZfRdSZ7MmbUU2gBnU329nxdsXUR6dPm3RbtQ4ofP/6krekQocZIl86qOq9pdgwGbc+B2CmDZBe9Xr+02xONDVCrikXb03asL1AAVixUmbnc/dQx1jpEBJDOMEr0y/f9hsJzXttQbTTtvF/n9y9PWbjmK6Am0rlOzBytVRQWOOD01btk1VzXs47znJG5tcYBhCybWp4MF5a8vX7ZX/Y+WmYgFngyMRNlmsFEQkvfdSPHpi0IcK6OvCq4yfTKJIBkqkjrT3xlhYIEwaoGEJkTal4HViG1W+9KetriTlQZlu5GylDiGcsdUdc0FMZc2AgDYxo0SGKKYuA1l1BZGoGwIWO6x/1tttHH/oTpBBhZztQY2dN8Rbg2zZtCqUCeM4KQocAL6D2RTybMsIJ3nQHW9KAioQayfDVpzOqxzGxdJtx6V8DFKgjgZlCxjR6wwn353PoQgRWXR3FArurKq64AjFieNAtGo2TN5C4NCSCEszCyCxZUkZIwcTqmcgpIgS6gKwzRsaIi08NFIkoJ3q3QQpJEQNwYYTHM9Ob7E+y33/zN7/72P/6P/wmm//T5y3//4U9//v1f4PV4++mHY56L21IajXNSMLaMaSm3ZyQLCiYJ5AWspZiLAH/z3ffPv+ip89PHX/7i0y9GVgoR6/F6xDrXev16fcGEv3z9+gsVTRcVA6eM9EaVBaucy9c//eM/Xq9nH+WWY4MPO/7608u34/mvvv2dtu2MoMwNxCsDVhUTccRkAQ+BdituaYgVY5QKrSMzN8LamAlhQo5t326D+Ax3po5Iax4IgoRh1rQR1cqJhRVQlMUBbVRGejERvTN8VwKkwUTupNErmehtnX2/nfWKQJQ7YYPpQmV2NSICzgQZjjmoABiYGlLm29tj9F5Wd1wNqBdlAg4hqGOeRQFBM2FrlCLnZY2IBQKwMi29cbfL265IcR5ftD/1MU6br69ftk/fuQdtnBllQI3msa7DiKQJRaDeXnRwKczjOq7zm09PZZq2emclfbtsf94yKhJkdITymBTJm9halYJ7jzaSoqpIyvzSCixKVlapaajIQ4/juq7ZqG+NFKTz4MKEAKV1hmoTaJngiKenQjz3ThSXnb0LCoRPXySspIKmCUVbo4q8VpUOFLiWCW7bzoWJdcXa2xj5Dt1jd4sEEr9sCrSduxDFadAoGFkKya/IYgR4ZFImQyFXk5SCSAKahixB2G83jozlfh3jdhuNvM67m+JoXFkzYTArA0QFhGeUdMrLT5tNu0Kdx0lNr8scgQmxyJBba7XmQIi86gFmAQKs/VhXFxHkxDJM7Y0QYwaQXuUqpFIZdT0qVYYQ+IX4bkoUFhaVmPOLHfved26WnpREAijgi4lu+54ZpDQj4j1Di4pcCCkIRIKRkfbeXGLiSrvbQUBIjFmZ5MqZHh5oVYxdRZogRu9sYYDcmTPwXWfTUaL8bMUJL4goDZMt3GaaLSeq8MRmK3vvCbTywgxXYuWOlTEKLYEyYFP5xV+9fPub79v/1B6P18fjy49//vM///HHf/nhM1412YMW9os0GLfyrUEIZBQhc0A46v/4P/z9v/k3v9pGm4hZHSxaetAixNvz7gsbIr7C45yT1uv5+QVvSL0ICwZCAXgi/+HnH37/Lz/MZYF4Wd9v7en29On56eP2zcvtOxa5+6lIjABQCEBEUOAxEbCSmXck4MLM4N5mPF3z9VmfgxTgolpV1W/7UxMuJ0fFBiBzOpUw0WmHiCL2OQ9kakKI5ZkFtY4JxCCAUbJyCRSoRPCCUsV399qawO31NCRo5dc8ASkTBBEA1nVBQevt/wMQmaTTO4ViUwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "