-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
191 lines (134 loc) · 6.59 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# importing necessary dependancies
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from bs4 import BeautifulSoup
from snowflake.snowpark import Session
#instantiate NLP model
@st.cache_resource
def load_tokenizer():
tokenizer = AutoTokenizer.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment')
return tokenizer
my_tok=load_tokenizer()
@st.cache_resource
def load_model():
model = AutoModelForSequenceClassification.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment')
return model
mm_mod=load_model()
# Establish Snowflake session
@st.cache_resource
def create_session():
return Session.builder.configs(st.secrets.snowflake).create()
session = create_session()
st.success("Connected to Snowflake!")
# Load data table
@st.cache_data
def load_data(table_name):
## Read in data table
table = session.table(table_name)
## Do some computation on it
table = table.limit(100)
## Collect the results. This will run the query and download the data
table = table.collect()
return table
# Comming up with functions
@st.cache_data
def causes(text):
# determines the major cause of stress an individual is facing
family=0
finance=0
school=0
relationship=0
work=0
text=text.lower()
text=text.split()
for i in (text):
if i == 'school':
school+=1
elif i == 'family':
family+=1
elif i == 'finance':
finance+=1
elif i == 'relationship':
relationship+=1
elif i == 'work':
work+=1
sum=family+finance+school+relationship+work
df0=pd.DataFrame([[family,finance,school,relationship,work]], columns=['Family','Finance','School','Relationship','Work'])
if sum!=0:
st.markdown("<h3 style='text-align:center;'>Environment that contributes the most to your issue is as shown; </h3>",unsafe_allow_html=True)
st.bar_chart(df0, width=200, height=200, use_container_width=True)
@st.cache_data
def predict_polarity(text):
#determines the polarity of each answer given by an individual
tokens = my_tok.encode(text, return_tensors='pt')
result = mm_mod(tokens)
return int(torch.argmax(result.logits))+1
@st.cache_data
def avg_sentiment(lis1,lis2):
f_val=[]
#determines the average putting into consideration weight
for i,j in zip(lis1, lis2):
val1=predict_polarity(i)*j
f_val.append(val1)
avg_f_val=sum(f_val)/len(f_val)
return avg_f_val
#Defining Tables in the Snowflake Database
psych_info = "PSYCHOLOGY_DATABASE.PUBLIC.LOCATION_REVIEW"
psych_advise="PSYCHOLOGY_DATABASE.PUBLIC.SOLUTION"
#Putting Tables in DataFrames
df1 = load_data(psych_info)
Loc_Info=pd.DataFrame(df1)
df2 = load_data(psych_advise)
Advise_info=pd.DataFrame(df2)
# Set the app title
st.image("https://raw.githubusercontent.com/samkamau81/Streamlit-with-Snowflake/main/mentalmuse.JPG?token=GHSAT0AAAAAAB3OTCLFHYQGUQEO47ZJV3PAZCQYPZA")
#st.markdown("<h1 style='text-align:center;'>Big Headline</h1>", unsafe_allow_html=True)
st.markdown("<h1 style='text-align:center;'> AI FOR MENTAL HEALTH </h1>",unsafe_allow_html=True)
st.markdown("-------")
st.markdown("<h2 style='text-align:center;'> Questionnaire </h2>",unsafe_allow_html=True)
st.markdown("<h3 style='text-align:center;'> Answer these few questions to help me understand your situation more</h3>",unsafe_allow_html=True)
st.markdown("<h4 style='text-align:center;'> Be very descriptive and fill every field if possible</h4>",unsafe_allow_html=True)
st.markdown("-------")
form = st.form(key="my_form", clear_on_submit=True)
que0=form.selectbox("County of Resisdence",options=['Nairobi','Nakuru','Nyeri'])
# each question carries its own weight
que1=form.text_input("Can you tell me how you've been feeling lately?") #weight is 20%
que2=form.text_input("What's been on your mind lately?") #weight is 10%
que4=form.text_input("How have you been coping with stress lately?") #weight is 10%
que5=form.text_input("Can you describe your mood over the past few weeks?") #weight is 10%
que7=form.text_input("Have you lost interest or pleasure in activities that you used to enjoy?") #weight is 10%
que8=form.text_input("Have you experienced changes in your appetite or weight lately?") #weight is 10%
que9=form.text_input("Have you experienced changes in your sleep patterns lately?") # weight is 15 %
que10=form.text_input("Have you been feeling tired or fatigued more than usual?") #weight is 15 %
st.markdown("-------")
#list of questions and weights
weights=[20,10,10,10,10,10,15,15]
ques=[que1, que2, que4, que5, que7, que8, que9,que10]
b1=form.form_submit_button('Results')
st.markdown("<h2 style='text-align:center;'>Your Results from my analysis are; </h2>",unsafe_allow_html=True)
if b1:
avg_value=100-(avg_sentiment(ques,weights))
if avg_value!=50:
st.metric(label="### Stress Level", value=avg_value, delta=(avg_value-50) ,delta_color="inverse")
#stress level and actions to be taken
for i in range(len(Advise_info)):
if avg_value >= (Advise_info.iloc[i, 0]):
st.write("### Advice: ", Advise_info.iloc[i, 1])
break
#Location to seek more medical attention
for j in range(len(Loc_Info)):
if que0 == Loc_Info.iloc[j,1]:
st.write("### Visit : "+" "+str(Loc_Info.iloc[j, 0])+" "+"whose reviews are "+" "+str(Loc_Info.iloc[j, 2])+"/5"+" "+"within"+" "+str(Loc_Info.iloc[j, 1])+" "+"at"+" "+str(Loc_Info.iloc[j, 3]))
causes(que2)
else:
st.write("<h3 style='text-align:center;'>PLEASE FILL IN THE FIELDS!</h3>",unsafe_allow_html=True)
st.markdown("-------")
st.markdown("<h1 style='text-align:center;'> Did You Know ?</h1>",unsafe_allow_html=True)
st.image("https://www.intecbusinesscolleges.co.uk/Uploaded/1/Image/1in4people.jpg")
st.markdown("<em style='text-align:center;'> according to the World Health Organization </em>",unsafe_allow_html=True)
st.markdown("-------")
st.markdown("<h1 style='text-align:center;'>Practice self-care, and always stay connected. </h1>",unsafe_allow_html=True)
st.markdown("<h4 style='text-align:center;'> Want to contribute to the Project</h4>",unsafe_allow_html=True)
st.markdown("<h4 style='text-align:center;'> github: https://github.com/samkamau81/Streamlit-with-Snowflake/tree/main </h4>",unsafe_allow_html=True)