forked from ncbi/SKESA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDBGraph.hpp
552 lines (499 loc) · 25.7 KB
/
DBGraph.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================
*
*/
#ifndef _DeBruijn_Graph_
#define _DeBruijn_Graph_
#include <iostream>
#include <bitset>
#include "counter.hpp"
#include "concurrenthash.hpp"
// This file contains classes which facilitate basic operation of storing reads, counting kmers,
// and creating and traversing a de Bruijn graph
using namespace std;
namespace DeBruijn {
// Implementation of de Bruijn graph based on TKmerCount which stores kmer (smaller in the bit encoding of self and its reverse
// complement), its count, fraction of times the stored kmer was seen as self, and information for presence/absence in graph
// for each of the eight possible extensions to which this kmer can be connected
// Allows basic traversing operations such as find kmer and its abundance (count) or find successors for a kmer
// We use a node-centric definition of de Bruijn graph in which nodes of the graph are kmers
class CDBGraph {
public:
// Construct graph from counted kmers and histogram
// is_stranded indicates if count include reliable direction information (PlusFraction() and MinusFraction() could be used)
CDBGraph(const TKmerCount& kmers, const TBins& bins, bool is_stranded) : m_graph_kmers(kmers.KmerLen()), m_bins(bins), m_is_stranded(is_stranded) {
m_graph_kmers.PushBackElementsFrom(kmers);
string max_kmer(m_graph_kmers.KmerLen(), bin2NT[3]);
m_max_kmer = TKmer(max_kmer);
m_visited.resize(GraphSize(), 0);
}
// Construct graph from temporary containers
CDBGraph(TKmerCount&& kmers, TBins&& bins, bool is_stranded) : m_graph_kmers(kmers.KmerLen()), m_is_stranded(is_stranded) {
m_graph_kmers.Swap(kmers);
m_bins.swap(bins);
string max_kmer(m_graph_kmers.KmerLen(), bin2NT[3]);
m_max_kmer = TKmer(max_kmer);
m_visited.resize(GraphSize(), 0);
}
// Load from a file
CDBGraph(istream& in) {
string tag;
if(!getline(in, tag) || tag != "Sorted Graph")
throw runtime_error("Wrong format of graph file");
m_graph_kmers.Load(in);
string max_kmer(m_graph_kmers.KmerLen(), bin2NT[3]);
m_max_kmer = TKmer(max_kmer);
int bin_num;
if(!in.read(reinterpret_cast<char*>(&bin_num), sizeof bin_num))
throw runtime_error("Error in CDBGraph read");
for(int i = 0; i < bin_num; ++i) {
pair<int, size_t> bin;
if(!in.read(reinterpret_cast<char*>(&bin), sizeof bin))
throw runtime_error("Error in CDBGraph read");
m_bins.push_back(bin);
}
if(!in.read(reinterpret_cast<char*>(&m_is_stranded), sizeof m_is_stranded))
throw runtime_error("Error in CDBGraph read");
m_visited.resize(GraphSize(), 0);
}
// Save in a file
void Save(ostream& out) const {
out << "Sorted Graph\n";
m_graph_kmers.Save(out);
int bin_num = m_bins.size();
out.write(reinterpret_cast<const char*>(&bin_num), sizeof bin_num);
out.write(reinterpret_cast<const char*>(&m_bins[0]), bin_num*(sizeof m_bins[0]));
out.write(reinterpret_cast<const char*>(&m_is_stranded), sizeof m_is_stranded);
if(!out)
throw runtime_error("Error in CDBGraph write");
}
class Node {
public:
explicit Node(size_t node = 0) : m_node(node) {}
bool isValid() const { return m_node > 0; }
bool isPlus() const { return (m_node%2 == 0); }
bool isMinus() const { return (m_node%2 != 0); }
Node ReverseComplement() const {
if(m_node != 0)
return Node(m_node%2 == 0 ? m_node+1 : m_node-1);
else
return Node(0);
}
Node DropStrand() const { return Node(2*(m_node/2)); }
bool operator == (const Node& other) const { return m_node == other.m_node; }
bool operator != (const Node& other) const { return m_node != other.m_node; }
bool operator < (const Node& other) const { return m_node < other.m_node; }
bool operator > (const Node& other) const { return m_node > other.m_node; }
struct Hash { size_t operator()(const Node& node) const { return std::hash<u_int64_t>()(node.m_node); } };
private:
friend class CDBGraph;
size_t Index() const { return m_node/2-1; }
size_t m_node;
};
class Iterator : public Node {
public:
Iterator& operator++() {
m_node += 2;
return *this;
}
private:
friend class CDBGraph;
explicit Iterator(size_t node) : Node(node) {}
};
Iterator Begin() const { return Iterator(GraphSize() > 0 ? 2 : 0); }
Iterator End() const { return Iterator(GraphSize() > 0 ? 2*(GraphSize()+1) : 0); }
vector<Iterator> Chunks(int desired_num) {
vector<Iterator> chunks;
size_t step = GraphSize()/desired_num+1;
for(size_t index = 0; index < GraphSize(); ++index) {
if(index%step == 0)
chunks.push_back(Iterator(2*(index+1)));
}
if(!chunks.empty())
chunks.push_back(End());
return chunks;
}
// These two functions map kmers to integer indexes which could be used to retrieve kmer properties
// 0 is returned for kmers not present in the graph
// positive even numbers are for stored kmers
// positive odd numbers are for reverse complement of stored kmers
Node GetNode(const TKmer& kmer) const { // finds kmer in graph
TKmer rkmer = revcomp(kmer, KmerLen());
if(kmer < rkmer) {
size_t index = m_graph_kmers.Find(kmer);
return Node(index == GraphSize() ? 0 : 2*(index+1));
} else {
size_t index = m_graph_kmers.Find(rkmer);
return Node(index == GraphSize() ? 0 : 2*(index+1)+1);
}
}
Node GetNode(const string& kmer_seq) const { // finds kmer in graph
if(kmer_seq.find_first_not_of("ACGT") != string::npos || (int)kmer_seq.size() != KmerLen()) // invalid kmer
return Node(0);
TKmer kmer(kmer_seq);
return GetNode(kmer);
}
// for all access with Node there is NO check that node is in range !!!!!!!!
int Abundance(const Node& node) const { // total count for a kmer
if(!node.isValid())
return 0;
else
return m_graph_kmers.GetKmerCount(node.Index()).second; // automatically clips out branching information!
}
// 32 bit count; 8 bit branching; 8 bit not used yet; 16 bit +/-
double MinusFraction(const Node& node) const { // fraction of the times kmer was seen in - direction
double plusf = PlusFraction(node);
return min(plusf,1-plusf);
}
double PlusFraction(const Node& node) const { // fraction of the times kmer was seen in + direction
double plusf = double(m_graph_kmers.GetKmerCount(node.Index()).second >> 48)/numeric_limits<uint16_t>::max();
if(node.isMinus())
plusf = 1-plusf;
return plusf;
}
TKmer GetNodeKmer(const Node& node) const { // returns kmer as TKmer
if(node.isPlus())
return m_graph_kmers.GetKmerCount(node.Index()).first;
else
return revcomp(m_graph_kmers.GetKmerCount(node.Index()).first, KmerLen());
}
string GetNodeSeq(const Node& node) const { // returnd kmer as string
return GetNodeKmer(node).toString(KmerLen());
}
const uint64_t* getPointer(const Node& node) { return m_graph_kmers.getPointer(node.Index()); }
// multithread safe way to set visited value; returns true if value was as expected before and has been successfully changed
// 1 is used for permanent holding; 2 is used for temporary holding; 3 for multi contig
bool SetVisited(const Node& node, uint8_t value=1, uint8_t expected=0) {
return m_visited[node.Index()].Set(value, expected);
}
void SetTempHolding(const Node& node) { SetVisited(node, 2, 1); }
void SetMultContig(const Node& node) { SetVisited(node, 3, 1); }
bool ClearVisited(const Node& node) { // multithread safe way to clear visited value; returns true if value was set before
return m_visited[node.Index()].Set(0, 1) || m_visited[node.Index()].Set(0, 2) || m_visited[node.Index()].Set(0, 3);
}
uint8_t IsVisited(const Node& node) const { // returns visited value
return m_visited[node.Index()];
}
bool IsMultContig(const Node& node) const { return IsVisited(node) == 3; }
void ClearHoldings() { // clears temporary holdings
for(auto& v : m_visited)
if(v == 2) v = 0;
}
void ClearAllVisited() { // clears all visited
for(auto& v : m_visited)
v = 0;
}
void SetColor(const Node& node, uint8_t mask) {
m_visited[node.Index()].m_atomic |= mask;
}
uint8_t GetColor(const Node& node) const { return IsVisited(node); }
struct Successor {
Successor(const Node& node, char c) : m_node(node), m_nt(c) {}
Node m_node;
char m_nt;
bool operator == (const Successor& other) const { return m_node == other.m_node; }
bool operator != (const Successor& other) const { return m_node != other.m_node; }
bool operator < (const Successor& other) const { return m_node < other.m_node; }
};
// Returns successors of a node
// These are nodes representing kmers produced by extending the right end of the kmer for
// this node by one base and removing the leftmost base of the kmer
// Each successor stores the successor's node and the extra base
// Finding predecessors is done by finding successors of reverse complement of the kmer for the node
vector<Successor> GetNodeSuccessors(const Node& node) const {
vector<Successor> successors;
if(!node.isValid())
return successors;
uint8_t branch_info = (m_graph_kmers.GetCount(node.Index()) >> 32);
bitset<4> branches(node.isMinus() ? (branch_info >> 4) : branch_info);
if(branches.count()) {
TKmer shifted_kmer = (GetNodeKmer(node) << 2) & m_max_kmer;
for(int nt = 0; nt < 4; ++nt) {
if(branches[nt]) {
Node successor = GetNode(shifted_kmer + TKmer(KmerLen(), nt));
successors.push_back(Successor(successor, bin2NT[nt]));
}
}
}
return successors;
}
// Revese complement node
static Node ReverseComplement(Node node) { return node.ReverseComplement(); }
int KmerLen() const { return m_graph_kmers.KmerLen(); } // returns kmer length
size_t GraphSize() const { return m_graph_kmers.Size(); } // returns total number of elements
size_t ElementSize() const { return m_graph_kmers.ElementSize(); } // element size in bytes
size_t MemoryFootprint() const { // reserved memory in bytes
return m_graph_kmers.MemoryFootprint()+m_visited.capacity()+sizeof(TBins::value_type)*m_bins.capacity();
}
bool GraphIsStranded() const { return m_is_stranded; } // indicates if graph contains stranded information
// returns minimum position for stored histogram
int HistogramMinimum() const {
pair<int,int> r = HistogramRange(m_bins);
if(r.first < 0)
return 0;
else
return m_bins[r.first].first;
}
// useus simple heuristic to evaluate the genome size
size_t GenomeSize() const { return CalculateGenomeSize(m_bins); }
// returns histogram
const TBins& GetBins() const { return m_bins; }
// average count of kmers in the histogram with the main peak
double AverageCount() const { return GetAverageCount(m_bins); }
private:
TKmerCount m_graph_kmers; // only the minimal kmers are stored
TKmer m_max_kmer; // contains 1 in all kmer_len bit positions
TBins m_bins;
vector<SAtomic<uint8_t>> m_visited;
bool m_is_stranded;
};
class CDBHashGraph {
public:
// Construct graph from temporary containers
CDBHashGraph(CKmerHashCount&& kmers, bool is_stranded) : m_graph_kmers(kmers.KmerLen()), m_is_stranded(is_stranded) {
m_graph_kmers.Swap(kmers);
m_bins = m_graph_kmers.GetBins();
string max_kmer(m_graph_kmers.KmerLen(), bin2NT[3]);
m_max_kmer = TKmer(max_kmer);
m_graph_size = 0;
for(auto& bin : m_bins)
m_graph_size += bin.second;
}
// Load from a file
CDBHashGraph(istream& in) {
string tag;
if(!getline(in, tag) || tag != "Hash Graph")
throw runtime_error("Wrong format of graph file");
m_graph_kmers.Load(in);
string max_kmer(m_graph_kmers.KmerLen(), bin2NT[3]);
m_max_kmer = TKmer(max_kmer);
int bin_num;
if(!in.read(reinterpret_cast<char*>(&bin_num), sizeof bin_num))
throw runtime_error("Error in CDBHashGraph read");
for(int i = 0; i < bin_num; ++i) {
pair<int, size_t> bin;
if(!in.read(reinterpret_cast<char*>(&bin), sizeof bin))
throw runtime_error("Error in CDBHashGraph read");
m_bins.push_back(bin);
}
m_graph_size = 0;
for(auto& bin : m_bins)
m_graph_size += bin.second;
if(!in.read(reinterpret_cast<char*>(&m_is_stranded), sizeof m_is_stranded))
throw runtime_error("Error in CDBHashGraph read");
ClearAllVisited();
}
// Save in a file
void Save(ostream& out) const {
out << "Hash Graph\n";
m_graph_kmers.Save(out);
int bin_num = m_bins.size();
out.write(reinterpret_cast<const char*>(&bin_num), sizeof bin_num);
out.write(reinterpret_cast<const char*>(&m_bins[0]), bin_num*(sizeof m_bins[0]));
out.write(reinterpret_cast<const char*>(&m_is_stranded), sizeof m_is_stranded);
if(!out)
throw runtime_error("Error in CDBHashGraph write");
}
class Node : public CKmerHashCount::Index {
public:
enum Status : int8_t { eMinus = -1, eNotValid = 0, ePlus = 1 };
Node() : Index(), m_status(eNotValid) {}
Node(CKmerHashCount::Index index, Status status) : Index(index), m_status(status) {}
Node(CKmerHashCount::Iterator iter) : Index(iter), m_status(ePlus) {}
bool isValid() const { return m_status != eNotValid; }
bool isPlus() const { return m_status > 0; }
bool isMinus() const { return m_status < 0; }
Node DropStrand() const {
Node node = *this;
if(isMinus())
node.m_status = ePlus;
return node;
}
Node ReverseComplement() const {
Node node = *this;
switch(m_status) {
case eMinus : node.m_status = ePlus; return node;
case eNotValid : return node;
case ePlus: node.m_status = eMinus; return node;
}
return node;
}
bool operator==(const Node& other) const { return Index::operator==(other) && m_status == other.m_status; }
bool operator!=(const Node& other) const { return !operator==(other); }
bool operator<(const Node& other) const {
if(Index::operator==(other))
return m_status < other.m_status;
else
return Index::operator<(other);
}
bool operator>(const Node& other) const {
if(Index::operator==(other))
return m_status > other.m_status;
else
return Index::operator>(other);
}
struct Hash { size_t operator()(const Node& node) const { return Index::Hash()(node)^std::hash<int8_t>()(node.m_status); } };
private:
Status m_status;
};
typedef CKmerHashCount::Iterator Iterator;
Iterator Begin() { return m_graph_kmers.Begin(); }
Iterator End() { return m_graph_kmers.End(); }
vector<Iterator> Chunks(int desired_num) { return m_graph_kmers.Chunks(desired_num); }
Node GetNode(const TKmer& kmer) const { // finds kmer in graph
TKmer rkmer = revcomp(kmer, KmerLen());
CKmerHashCount::Index end = m_graph_kmers.EndIndex();
if(kmer < rkmer) {
CKmerHashCount::Index index = const_cast<CKmerHashCount&>(m_graph_kmers).FindIndex(kmer);
return Node(index, index == end ? Node::eNotValid : Node::ePlus);
} else {
CKmerHashCount::Index index = const_cast<CKmerHashCount&>(m_graph_kmers).FindIndex(rkmer);
return Node(index, index == end ? Node::eNotValid : Node::eMinus);
}
}
Node GetNode(const string& kmer_seq) { // finds kmer in graph
if(kmer_seq.find_first_not_of("ACGT") != string::npos || (int)kmer_seq.size() != KmerLen()) // invalid kmer
return Node();
TKmer kmer(kmer_seq);
return GetNode(kmer);
}
// Revese complement node
static Node ReverseComplement(const Node& node) { return node.ReverseComplement(); }
// for all access with Node there is NO check that node is in range !!!!!!!!
int Abundance(const Node& node) const { // total count for a kmer
if(!node.isValid())
return 0;
else
return node.GetMapped(m_graph_kmers)->m_data; // automatically clips out branching information!
}
// 32 bit count; 8 bit branching; 8 bit visited control; 16 bit +/-
double MinusFraction(const Node& node) const { // fraction of the times kmer was seen in - direction
double plusf = PlusFraction(node);
return min(plusf,1-plusf);
}
double PlusFraction(const Node& node) const { // fraction of the times kmer was seen in + direction
double plusf = double(node.GetMapped(m_graph_kmers)->m_data >> 48)/numeric_limits<uint16_t>::max();
if(node.isMinus())
plusf = 1-plusf;
return plusf;
}
TKmer GetNodeKmer(const Node& node) const { // returns kmer as TKmer
if(node.isPlus())
return node.GetElement(m_graph_kmers).first;
else
return revcomp(node.GetElement(m_graph_kmers).first, KmerLen());
}
string GetNodeSeq(const Node& node) const { // returnd kmer as string
return GetNodeKmer(node).toString(KmerLen());
}
const uint64_t* getPointer(const Node& node) const { return node.GetKeyPointer(m_graph_kmers); }
enum Visited : uint64_t {eNull = 0, eVisited = 0x10000000000, eTemp = 0x20000000000, eMulti = 0x40000000000, eAll = 0xFF0000000000 };
// multithread safe way to set visited value; returns true if value was as expected before and has been successfully changed
// 1 is used for permanent holding; 2 is used for temporary holding; 4 for multi contig
bool SetVisited(const Node& node, Visited value = eVisited, Visited expected = eNull) {
// we assume that other bits are const
auto& count = node.GetMapped(m_graph_kmers)->m_data;
uint64_t other_bits = (~eAll)&count.Load();
return count.Set(other_bits|value, other_bits|expected);
}
void SetTempHolding(const Node& node) { SetVisited(node, eTemp, eVisited); }
void SetMultContig(const Node& node) { SetVisited(node, eMulti, eVisited); }
void ClearVisited(const Node& node) { node.GetMapped(m_graph_kmers)->m_data.m_atomic &= ~eAll; }
uint64_t IsVisited(const Node& node) const { return eAll&node.GetMapped(m_graph_kmers)->m_data; }
bool IsMultContig(const Node& node) const { return eMulti&node.GetMapped(m_graph_kmers)->m_data; }
void ClearHoldings() { // clears temporary holdings
for(auto it = m_graph_kmers.Begin(); it != m_graph_kmers.End(); ++it) {
auto& count = it.GetMapped()->m_data;
if(eTemp&count)
count.m_atomic &= ~eAll;
}
}
void ClearAllVisited() { // clears all visited
for(auto it = m_graph_kmers.Begin(); it != m_graph_kmers.End(); ++it)
it.GetMapped()->m_data .m_atomic &= ~eAll;
}
void SetColor(const Node& node, uint8_t mask) {
auto& count = node.GetMapped(m_graph_kmers)->m_data;
count.m_atomic |= (uint64_t(mask) << 40);
}
uint8_t GetColor(const Node& node) const {
auto& count = node.GetMapped(m_graph_kmers)->m_data;
return (count.m_atomic&eAll) >> 40;
}
struct Successor {
Successor(const Node& node, char c) : m_node(node), m_nt(c) {}
Node m_node;
char m_nt;
bool operator == (const Successor& other) const { return m_node == other.m_node; }
bool operator != (const Successor& other) const { return m_node != other.m_node; }
bool operator < (const Successor& other) const { return m_node < other.m_node; }
};
// Returns successors of a node
// These are nodes representing kmers produced by extending the right end of the kmer for
// this node by one base and removing the leftmost base of the kmer
// Each successor stores the successor's node and the extra base
// Finding predecessors is done by finding successors of reverse complement of the kmer for the node
vector<Successor> GetNodeSuccessors(const Node& node) const {
vector<Successor> successors;
if(!node.isValid())
return successors;
uint8_t branch_info = node.GetMapped(m_graph_kmers)->m_data >> 32;
bitset<4> branches(node.isMinus() ? (branch_info >> 4) : branch_info);
if(branches.count()) {
TKmer shifted_kmer = (GetNodeKmer(node) << 2) & m_max_kmer;
for(int nt = 0; nt < 4; ++nt) {
if(branches[nt]) {
Node successor = GetNode(shifted_kmer + TKmer(KmerLen(), nt));
successors.push_back(Successor(successor, bin2NT[nt]));
}
}
}
return successors;
}
bool GraphIsStranded() const { return m_is_stranded; } // indicates if graph contains stranded information
int KmerLen() const { return m_graph_kmers.KmerLen(); } // returns kmer length
// returns minimum position for stored histogram
int HistogramMinimum() const {
pair<int,int> r = HistogramRange(m_bins);
if(r.first < 0)
return 0;
else
return m_bins[r.first].first;
}
// useus simple heuristic to evaluate the genome size
size_t GenomeSize() const { return CalculateGenomeSize(m_bins); }
// returns histogram
const TBins& GetBins() const { return m_bins; } // returns histogram
// average count of kmers in the histogram with the main peak
double AverageCount() const { return GetAverageCount(m_bins); }
size_t GraphSize() const { return m_graph_size; }
private:
CKmerHashCount m_graph_kmers;
TKmer m_max_kmer; // contains 1 in all kmer_len bit positions
TBins m_bins;
size_t m_graph_size;
bool m_is_stranded;
};
} // namespace
#endif /* _DeBruijn_Graph_ */