forked from ncbi/SKESA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassembler.hpp
1033 lines (922 loc) · 52.6 KB
/
assembler.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================
*
*/
#ifndef _DBGAssembler_
#define _DBGAssembler_
#include <random>
#include "DBGraph.hpp"
#include "counter.hpp"
#include "graphdigger.hpp"
namespace DeBruijn {
/******************************
General description
CDBGAssembler implements the SKESA assembling algorithm.
1. It uses the counts for kmers with the minimal kmer length specified (default 21 bp) to estimate the maximal kmer length
(starting from average mate length) that has sufficient coverage requested in maxkmercount. If reads are paired and
insert size isn't specified, it estimates the insert size by assembling between mates for a sample of the reads.
2. It assembles iteratively starting from minimal to maximal kmer length in a specified number of steps. Each step builds a
de Bruijn graph for the kmer size for that iteration and uses it to improve previously assembled contigs. After each
assembly iteration, the reads already used in the contigs are removed from further consideration.
3. If reads are paired, it uses the reads that are not marked as used and the set of de Bruijn graphs built in 2) to connect
the mate pairs.
4. Using the paired reads connected in 3), it performs three additional assembly iterations with the kmer size up
to the insert size.
*******************************/
template<class DBGraph>
class CDBGAssembler {
public:
// fraction - Maximal noise to signal ratio of counts acceptable for extension
// jump - minimal length of accepted dead ends; i.e. dead ends shorter than this length are ignored
// low_count - minimal count for kmers in a contig
// steps - number of assembly iterations from minimal to maximal kmer size in reads
// min_count - minimal kmer count to be included in a de Bruijn graph
// min_kmer - the minimal kmer size for the main steps
// max_kmer_paired - insert size (0 if not known)
// maxkmercount - the minimal average count for estimating the maximal kmer
// memory - the upper bound for memory use (GB)
// ncores - number of threads
// raw_reads - reads (for effective multithreading, number of elements in the list should be >= ncores)
typedef typename DBGraph::Node Node;
using GraphDigger = CDBGraphDigger<DBGraph>;
template<typename... GraphArgs>
CDBGAssembler(double fraction, int jump, int low_count, int steps, int min_count, int min_kmer, int max_kmer, bool forcesinglereads,
int max_kmer_paired, int maxkmercount, int ncores, list<array<CReadHolder,2>>& raw_reads, TStrList seeds,
bool allow_snps, bool estimate_min_count, GraphArgs... gargs) :
m_fraction(fraction), m_jump(jump), m_low_count(low_count), m_steps(steps), m_min_count(min_count), m_min_kmer(min_kmer), m_max_kmer(max_kmer),
m_max_kmer_paired(max_kmer_paired), m_maxkmercount(maxkmercount), m_ncores(ncores), m_average_count(0), m_raw_reads(raw_reads) {
m_insert_size = 0;
for(auto& reads : m_raw_reads) {
m_raw_pairs.push_back({reads[0], CReadHolder(false)});
}
m_connected_reads.resize(m_raw_reads.size(), {CReadHolder(false), CReadHolder(true)});
double total_seq = 0;
size_t total_reads = 0;
size_t paired = 0;
for(auto& reads : m_raw_reads) {
if(forcesinglereads) {
for(CReadHolder::string_iterator is = reads[0].sbegin(); is != reads[0].send(); ++is)
reads[1].PushBack(is);
reads[0].Clear();
}
total_seq += reads[0].TotalSeq()+reads[1].TotalSeq();
total_reads += reads[0].ReadNum()+reads[1].ReadNum();
paired += reads[0].ReadNum();
}
bool usepairedends = paired > 0;
//graph for minimal kmer
double average_count = GetGraph(m_min_kmer, m_raw_reads, true, estimate_min_count ? total_seq : 0, gargs...);
if(average_count == 0)
throw runtime_error("Reads are too short for selected minimal kmer length");
m_average_count = average_count;
// estimate genome
int read_len = total_seq/total_reads+0.5;
cerr << endl << "Average read length: " << read_len << endl;
size_t genome_size = m_graphs[m_min_kmer]->GenomeSize();
cerr << "Genome size estimate: " << genome_size << endl << endl;
{// first iteration
if(!seeds.empty()) {
m_contigs.push_back(TContigSequenceList());
for(string& seed : seeds) {
m_contigs.back().emplace_back(); // empty contig
auto& contig = m_contigs.back().back();
contig.InsertNewChunk();
contig.InsertNewVariant(); // one empty list
for(char c : seed) {
string ambigs = FromAmbiguousIUPAC[c];
if(ambigs.size() == 1) {
contig.ExtendTopVariant(c);
} else {
contig.InsertNewChunk();
for(char c : ambigs)
contig.InsertNewVariant(c);
contig.InsertNewChunk();
contig.InsertNewVariant(); // one empty list
}
}
}
CombineSimilarContigs(m_contigs.back());
m_seeds = m_contigs.back();
cerr << "Seeds: " << m_contigs.back().size() << endl;
int num = 0;
for(auto& contig : m_contigs.back()) {
string first_variant;
for(auto& lst : contig)
first_variant.insert(first_variant.end(), lst.front().begin(), lst.front().end());
cerr << ">Seed_" << ++num << endl << first_variant << endl;
int pos = 0;
for(unsigned chunk = 0; chunk < contig.size(); ++chunk) { //output variants
int chunk_len = contig[chunk].front().size();
if(contig.VariableChunk(chunk)) {
int left = 0;
if(chunk > 0)
left = min(100,(int)contig[chunk-1].front().size());
int right = 0;
if(chunk < contig.size()-1)
right = min(100,(int)contig[chunk+1].front().size());
int var = 0;
auto it = contig[chunk].begin();
for(++it; it != contig[chunk].end(); ++it) {
auto& variant = *it;
cerr << ">Variant_" << ++var << "_for_Seed_" << num << ":" << pos-left+1 << "_" << pos+chunk_len+right << "\n";
if(chunk > 0) {
for(int l = left ; l > 0; --l)
cerr << *(contig[chunk-1].front().end()-l);
}
for(char c : variant)
cerr << c;
if(chunk < contig.size()-1) {
for(int r = 0; r < right; ++r)
cerr << contig[chunk+1].front()[r];
}
cerr << endl;
}
}
pos += chunk_len;
}
}
}
ImproveContigs(m_min_kmer, false);
if(m_contigs.back().empty())
throw runtime_error("Was not able to assemble anything");
}
//estimate max_kmer
if(m_max_kmer == 0) {
if(m_steps > 1 && average_count > m_maxkmercount) {
m_max_kmer = read_len+1-double(m_maxkmercount)/average_count*(read_len-min_kmer+1);
m_max_kmer = min(TKmer::MaxKmer(), m_max_kmer);
EstimateMaxKmer(read_len, gargs...);
} else {
m_max_kmer = m_min_kmer;
}
}
cerr << endl << "Average count: " << average_count << " Max kmer: " << m_max_kmer << endl;
//estimate insert size
if(steps > 1 || usepairedends) {
if(m_max_kmer_paired == 0 && usepairedends) {
size_t mates = 0;
for(auto& rh : m_raw_reads)
mates += rh[0].ReadNum();
unsigned sample_size = 10000; // use 10000 reads for connecting to estimate insert size
unordered_set<size_t> selection;
if(mates/2 > 2*sample_size) { // make random choice for reads
default_random_engine generator;
uniform_int_distribution<size_t> distribution(0,mates/2-1);
for(unsigned s = 0; s < sample_size; ) {
if(selection.insert(distribution(generator)).second)
++s;
}
} else if(mates/2 > 0) { // too few paired reads so using all : may be > sample_size but <= twice that size
for(size_t i = 0; i <= mates/2-1; ++i)
selection.insert(i);
}
if(!selection.empty()) {
CStopWatch timer;
timer.Restart();
list<array<CReadHolder,2>> mate_pairs;
size_t mp = 0;
int sub_sample = sample_size/m_ncores;
size_t num = 0;
for(auto& reads : m_raw_reads) {
for(CReadHolder::string_iterator is = reads[0].sbegin(); is != reads[0].send(); ++is, ++mp) {
if(selection.count(mp)) {
if((num++)%sub_sample == 0)
mate_pairs.push_back({CReadHolder(true), CReadHolder(false)});
mate_pairs.back()[0].PushBack(is);
mate_pairs.back()[0].PushBack(++is);
} else {
++is;
}
}
}
int long_insert_size = 2000; // we don't expect inserts to be longer than 2000 bp for this program
GraphDigger graph_digger(*m_graphs[min_kmer], m_fraction, m_jump, m_low_count);
list<array<CReadHolder,2>> connected_mate_pairs = graph_digger.ConnectPairs(mate_pairs, long_insert_size, m_ncores, false);
CReadHolder connected_mates(false);
for(auto& mp : connected_mate_pairs) {
for(CReadHolder::string_iterator is = mp[0].sbegin(); is != mp[0].send(); ++is)
connected_mates.PushBack(is);
}
m_max_kmer_paired = connected_mates.N50();
cerr << endl << "N50 for inserts: " << m_max_kmer_paired << endl << endl;
}
}
m_max_kmer_paired = min(m_max_kmer_paired,TKmer::MaxKmer());
m_insert_size = 3*m_max_kmer_paired; // we don't expect spread of histogram to go beyond three times expected insert
CleanReads();
}
//main iterations
if(m_steps > 1) {
if(m_max_kmer > 1.5*m_min_kmer) {
double alpha = double(m_max_kmer-m_min_kmer)/(steps-1); // find desired distance between consecutive kmers
for(int step = 1; step < m_steps; ++step) {
int kmer_len = min_kmer+step*alpha+0.5; // round to integer
kmer_len -= 1-kmer_len%2; // get odd kmer
if(kmer_len <= m_graphs.rbegin()->first)
continue;
if(GetGraph(kmer_len, m_raw_reads, true, 0, gargs...) == 0) {
cerr << "Empty graph for kmer length: " << kmer_len << " skipping this and longer kmers" << endl;
break;
}
ImproveContigs(kmer_len, false);
CleanReads();
}
} else {
cerr << "WARNING: iterations are disabled" << endl;
}
}
// three additional iterations with kmers (usually) longer than read length and upto insert size
if(usepairedends && m_insert_size > 0 && m_max_kmer_paired > 1.5*m_max_kmer) {
ConnectPairsIteratively();
array<int,3> long_kmers;
long_kmers[0] = 1.25*m_max_kmer;
long_kmers[2] = m_max_kmer_paired;
long_kmers[1] = (long_kmers[0]+long_kmers[2])/2;
for(int kmer_len : long_kmers) {
kmer_len -= 1-kmer_len%2;
if(GetGraph(kmer_len, m_connected_reads, false, 0, gargs...) == 0) {
cerr << "Empty graph for kmer length: " << kmer_len << " skipping this and longer kmers" << endl;
break;
}
ImproveContigs(kmer_len, false);
}
}
if(allow_snps) { // snp discovery
for(auto it = m_graphs.rbegin(); it != m_graphs.rend(); ++it) {
int kmer_len = it->first;
ImproveContigs (kmer_len, true);
}
}
}
map<int,DBGraph*>& Graphs() { return m_graphs; }
TContigSequenceList& Contigs() { return m_contigs.back(); }
vector<TContigSequenceList>& AllIterations() { return m_contigs; }
CReadHolder ConnectedReads() const {
CReadHolder connected_reads(false);
for(const auto& cr : m_connected_reads) {
for(CReadHolder::string_iterator is = cr[0].sbegin(); is != cr[0].send(); ++is)
connected_reads.PushBack(is);
}
return connected_reads;
}
virtual ~CDBGAssembler() {
for(auto& graph : m_graphs)
delete graph.second;
}
private:
// connects paired reads using all constructed de Bruijn graphs
void ConnectPairsIteratively() {
for(auto& gr : m_graphs) {
int kmer_len = gr.first;
cerr << endl << "Connecting mate pairs using kmer length: " << kmer_len << endl;
GraphDigger graph_digger(*gr.second, m_fraction, m_jump, m_low_count);
list<array<CReadHolder,2>> connected_reads_temp = graph_digger.ConnectPairs(m_raw_pairs, m_insert_size, m_ncores, true);
list<array<CReadHolder,2>>::iterator pairedi = m_connected_reads.begin();
list<array<CReadHolder,2>>::iterator rawi = m_raw_pairs.begin();
for(auto& pr : connected_reads_temp) {
swap((*rawi)[0], pr[1]); // keep still not connected
for(CReadHolder::string_iterator is = pr[0].sbegin(); is != pr[0].send(); ++is) // add new connected reads
(*pairedi)[0].PushBack(*is);
++rawi;
++pairedi;
}
}
size_t connected = 0;
for(auto& rh : m_connected_reads)
connected += rh[0].ReadNum();
cerr << "Totally connected: " << connected << endl;
size_t added = 0;
list<array<CReadHolder,2>>::iterator pairedi = m_connected_reads.begin();
for(auto& reads : m_raw_pairs) {
for(CReadHolder::string_iterator is = reads[0].sbegin(); is != reads[0].send(); ++is) {
if((int)is.ReadLen() > m_max_kmer) {
(*pairedi)[0].PushBack(*is);
++added;
}
}
++pairedi;
}
cerr << "Added notconnected: " << added << endl;
}
// scans kmers for all assembled contigs and creates a map
// the key is the smaller of two possible kmer directions
// the value is a tupe:
// int - position on contig
// bool - the same as the key or reverse complemented
// CContigSequence* - pointer to the contig
typedef CKmerHashMap<tuple<int, bool, const CContigSequence*>, 8> TKmerToContig;
// typedef CKmerMap<tuple<int, bool, const CContigSequence*>> TKmerToContig;
TKmerToContig GetAssembledKmers() {
int kmer_len = m_graphs.rbegin()->first;
CKmerMap<int> seed_kmers(kmer_len);
for(auto& seed : m_seeds) {
if((int)seed.LenMin() < kmer_len)
continue;
seed.RemoveShortUniqIntervals(kmer_len);
for(int i = seed.size()-1; i >= 0; i -= 2) {
if(i == (int)seed.size()-1) {
if((int)seed.ChunkLenMax(i) >= kmer_len) { // last chunk could be short
CReadHolder rh(false);
rh.PushBack(seed.back().front());
for(CReadHolder::kmer_iterator ik = rh.kbegin(kmer_len) ; ik != rh.kend(); ++ik) {
TKmer kmer = *ik;
TKmer rkmer = revcomp(kmer, kmer_len);
++seed_kmers[kmer < rkmer ? kmer : rkmer];
}
}
} else { // all uniq chunks in the middle >= kmer_len; first/last could be short
if((int)seed.ChunkLenMax(i) >= kmer_len) {
TVariation seq(seed[i].front().begin(), seed[i].front().end());
CReadHolder rh(false);
rh.PushBack(seq);
for(CReadHolder::kmer_iterator ik = rh.kbegin(kmer_len) ; ik != rh.kend(); ++ik) {
TKmer kmer = *ik;
TKmer rkmer = revcomp(kmer, kmer_len);
++seed_kmers[kmer < rkmer ? kmer : rkmer];
}
}
for(auto& variant : seed[i+1]) {
TVariation seq;
if((int)seed.ChunkLenMax(i) >= kmer_len-1)
seq.insert(seq.end(), seed[i].front().end()-kmer_len+1, seed[i].front().end());
else
seq.insert(seq.end(), seed[i].front().begin(), seed[i].front().end());
seq.insert(seq.end(), variant.begin(), variant.end());
if((int)seed.ChunkLenMax(i+2) >= kmer_len-1)
seq.insert(seq.end(), seed[i+2].front().begin(), seed[i+2].front().begin()+kmer_len-1);
else
seq.insert(seq.end(), seed[i+2].front().begin(), seed[i+2].front().end());
CReadHolder rh(false);
rh.PushBack(seq);
for(CReadHolder::kmer_iterator ik = rh.kbegin(kmer_len) ; ik != rh.kend(); ++ik) {
TKmer kmer = *ik;
TKmer rkmer = revcomp(kmer, kmer_len);
++seed_kmers[kmer < rkmer ? kmer : rkmer];
}
}
}
}
}
cerr << "Seed kmers: " << seed_kmers.Size() << endl;
int min_len = max(m_max_kmer_paired, m_max_kmer);
size_t knum = 0;
list<pair<CContigSequence*, SAtomic<int8_t>>> contigs;
for(auto& contig : m_contigs.back()) {
if((int)contig.LenMin() >= min_len && contig.size() == 1) {
contigs.emplace_back(&contig, 0);
knum += contig.LenMin()+2*(kmer_len-1); // overestimation for reserve
}
}
TKmerToContig assembled_kmers(kmer_len, knum);
list<function<void()>> jobs;
for(int thr = 0; thr < m_ncores; ++thr)
jobs.push_back(bind(&CDBGAssembler::AssembledKmersJob, this, ref(contigs), ref(assembled_kmers), ref(seed_kmers)));
RunThreads(m_ncores, jobs);
return assembled_kmers;
}
void AssembledKmersJob(list<pair<CContigSequence*, SAtomic<int8_t>>>& contigs, TKmerToContig& assembled_kmers, CKmerMap<int>& seed_kmers) const {
for(auto& pr : contigs) {
if(!pr.second.Set(1))
continue;
auto& contig = *pr.first;
int kmer_len = m_graphs.rbegin()->first;
auto& graphp = m_graphs.rbegin()->second;
int pos = contig.ChunkLenMax(0)-kmer_len;
CReadHolder rh(false);
if(contig.m_circular) {
auto cc = contig[0].front();
cc.insert(cc.end(), contig[0].front().begin(), contig[0].front().begin()+kmer_len-1); // add kmer-1 bases to get all kmers
rh.PushBack(cc);
pos = contig.ChunkLenMax(0)-1;
} else {
rh.PushBack(contig[0].front());
}
bool found_repeat = false;
list<pair<TKmer, tuple<int, bool, const CContigSequence*>>> contig_kmers;
for(CReadHolder::kmer_iterator ik = rh.kbegin(kmer_len) ; ik != rh.kend(); ++ik, --pos) { // iteration from last kmer to first
TKmer kmer = *ik;
auto node = graphp->GetNode(kmer);
if(graphp->Abundance(node)*m_fraction > m_average_count)
continue;
if(node.isValid() && graphp->IsMultContig(node)) {
found_repeat = true;
break;
}
TKmer rkmer = revcomp(kmer, kmer_len);
TKmer* kmerp = &kmer;
bool direct = true;
if(rkmer < kmer) {
kmerp = &rkmer;
direct = false;
}
contig_kmers.emplace_back(*kmerp, make_tuple(pos, direct, &contig));
}
if(!found_repeat) {
for(auto& kmer : contig_kmers) {
if(seed_kmers.Find(kmer.first) == nullptr)
*assembled_kmers.FindOrInsert(kmer.first) = kmer.second;
}
}
}
}
// finds if a read belongs to any of the contigs
// return tuple:
// int - position on the contig (-1 if not found)
// int - +1 if in positive strand; -1 if in negative strand
// CContigSequence* - pointer to the contig
static tuple<int, int, const CContigSequence*> FindMatchForRead(const CReadHolder::string_iterator& is, TKmerToContig& assembled_kmers) {
int rlen = is.ReadLen();
int kmer_len = assembled_kmers.KmerLen();
int plus = 1;
tuple<int, bool, const CContigSequence*>* rsltp = nullptr;
int knum = rlen-kmer_len+1;
for(CReadHolder::kmer_iterator ik = is.KmersForRead(kmer_len); rsltp == nullptr && knum > 0; --knum, ++ik) {
TKmer kmer = *ik;
TKmer rkmer = revcomp(kmer, kmer_len);
TKmer* kmerp = &kmer;
plus = 1;
if(rkmer < kmer) {
kmerp = &rkmer;
plus = -plus;
}
rsltp = assembled_kmers.Find(*kmerp);
if(rsltp != nullptr && get<0>(*rsltp) < 0)
rsltp = nullptr;
}
int pos = -1; // position on contig of the 'outer' read end (aka insert end)
const CContigSequence* sp = nullptr;
if(rsltp != nullptr) {
sp = get<2>(*rsltp); // pointer to the contig
if(!get<1>(*rsltp))
plus = -plus;
if(plus > 0) {
pos = get<0>(*rsltp)-knum;
if(pos < 0 && sp->m_circular)
pos += sp->LenMax();
} else {
pos = get<0>(*rsltp)+kmer_len-1+knum;
if(pos >= (int)sp->LenMax() && sp->m_circular)
pos -= sp->LenMax();
}
}
return make_tuple(pos, plus, sp);
}
// removes reads if they belong to already assembled contigs
// using contig sequence creates artificial connected pairs when both mates are placed
//
// assembled_kmers - a map of all kmers in already assembled contigs
// margin - the minimal distance from an edge of a contig for a read to be removed
// insert_size - the upper limit for insert size
// raw_reads - reads
// connected_reads - pointer to connected reads (nullp if not used)
static void RemoveUsedReadsJob(TKmerToContig& assembled_kmers, int margin, int insert_size, array<CReadHolder,2>& raw_reads, CReadHolder* connected_reads) {
int kmer_len = assembled_kmers.KmerLen();
{
CReadHolder cleaned_reads(true);
if(raw_reads[0].ReadNum() > 0)
cleaned_reads.Reserve(raw_reads[0].TotalSeq(), raw_reads[0].ReadNum());
CReadHolder::string_iterator is1 = raw_reads[0].sbegin();
CReadHolder::string_iterator is2 = raw_reads[0].sbegin();
++is2;
for( ; is2 != raw_reads[0].send(); ++is1, ++is1, ++is2, ++is2) {
if((int)min(is1.ReadLen(), is2.ReadLen()) < kmer_len) {
if(connected_reads) { // keep short pairs for connection
cleaned_reads.PushBack(is1);
cleaned_reads.PushBack(is2);
} else { // give chance to be used as unpaired
raw_reads[1].PushBack(is1);
raw_reads[1].PushBack(is2);
}
continue;
}
tuple<int, int, const CContigSequence*> rslt1 = FindMatchForRead(is1, assembled_kmers);
int pos1 = get<0>(rslt1);
int plus1 = get<1>(rslt1);
const CContigSequence* sp1 = get<2>(rslt1);
int clen1 = 0;
int left_flank1 = 0;
int right_flank1 = 0;
if(pos1 >= 0) {
left_flank1 = sp1->m_left_repeat;
right_flank1 = sp1->m_right_repeat;
clen1 = sp1->LenMax();
if(sp1->m_circular || (plus1 > 0 && pos1 >= margin+left_flank1 && pos1+insert_size-1 < clen1-margin-right_flank1) ||
(plus1 < 0 && pos1-insert_size+1 >= margin+left_flank1 && pos1 < clen1-margin-right_flank1))
continue;
}
// check for second mate in case first mate was of bad quality and not found in contigs
tuple<int, int, const CContigSequence*> rslt2 = FindMatchForRead(is2, assembled_kmers);
int pos2 = get<0>(rslt2);
int plus2 = get<1>(rslt2);
const CContigSequence* sp2 = get<2>(rslt2);
if(pos2 >= 0) {
int left_flank2 = sp2->m_left_repeat;
int right_flank2 = sp2->m_right_repeat;
int clen2 = sp2->LenMax();
if(sp2->m_circular || (plus2 > 0 && pos2 >= margin+left_flank2 && pos2+insert_size-1 < clen2-margin-right_flank2) ||
(plus2 < 0 && pos2-insert_size+1 >= margin+left_flank2 && pos2 < clen2-margin-right_flank2))
continue;
}
if(pos1 >= 0 && pos2 >= 0 && sp1 == sp2 && plus1 != plus2) { // same contig, different strands
if((plus1 > 0 && pos1 >= margin+left_flank1 && pos2 < clen1-margin-right_flank1) ||
(plus1 < 0 && pos2 >= margin+left_flank1 && pos1 < clen1-margin-right_flank1)) { // deep inside
continue;
} else if(connected_reads) {
if((plus1 > 0 && pos1 >= 0 && pos2 < clen1) || (plus1 < 0 && pos2 >= 0 && pos1 < clen1)) { // inside but not deep
int a = min(pos1,pos2);
int b = max(pos1,pos2);
if(b < (int)sp1->ChunkLenMax(0)) { // in first uniq chunk
TVariation seq(sp1->front().front().begin()+a, sp1->front().front().begin()+b+1);
connected_reads->PushBack(seq);
continue;
} else if(clen1-a <= (int)sp1->ChunkLenMax(sp1->size()-1)) { // in last uniq chunk
TVariation seq(sp1->back().front().end()-clen1+a, sp1->back().front().end()-clen1+b+1);
connected_reads->PushBack(seq);
continue;
}
}
}
}
cleaned_reads.PushBack(is1);
cleaned_reads.PushBack(is2);
}
cleaned_reads.Swap(raw_reads[0]);
}
if(!connected_reads) {
CReadHolder cleaned_reads(false);
if(raw_reads[1].ReadNum() > 0)
cleaned_reads.Reserve(raw_reads[1].TotalSeq(), raw_reads[1].ReadNum());
for(CReadHolder::string_iterator is = raw_reads[1].sbegin() ;is != raw_reads[1].send(); ++is) {
int rlen = is.ReadLen();
if(rlen < kmer_len)
continue;
tuple<int, int, const CContigSequence*> rslt = FindMatchForRead(is, assembled_kmers);
int pos = get<0>(rslt);
int plus = get<1>(rslt);
const CContigSequence* sp = get<2>(rslt);
if(pos >= 0) {
int left_flank = sp->m_left_repeat;
int right_flank = sp->m_right_repeat;
int clen = sp->LenMax();
if(sp->m_circular || (plus > 0 && pos >= margin+left_flank && pos+rlen-1 < clen-margin-right_flank) ||
(plus < 0 && pos-rlen+1 >= margin+left_flank && pos < clen-margin-right_flank))
continue;
}
cleaned_reads.PushBack(is);
}
cleaned_reads.Swap(raw_reads[1]);
}
}
// removes used reads from the read set used for de Bruijn graphs
// assembled_kmers - a map of all kmers in already assembled contigs
// margin - the minimal distance from an edge of a contig for a read to be removed
// insert_size - the upper limit for insert size
// ncores - number of threads
// raw_reads - reads
static void RemoveUsedReads(TKmerToContig& assembled_kmers, int margin, int insert_size, int ncores, list<array<CReadHolder,2>>& raw_reads) {
list<function<void()>> jobs;
for(auto& job_input : raw_reads) {
jobs.push_back(bind(RemoveUsedReadsJob, ref(assembled_kmers), margin, insert_size, ref(job_input), (CReadHolder*)0));
}
RunThreads(ncores, jobs);
}
// removes used reads from the read set used for pair connection and from already connected (by contig sequence) reads
// assembled_kmers - a map of all kmers in already assembled contigs
// margin - the minimal distance from an edge of a contig for a read to be removed
// insert_size - the upper limit for insert size
// ncores - number of threads
// raw_reads - reads
// connected_reads - already connected by contig sequence reads
static void RemoveUsedPairs(TKmerToContig& assembled_kmers, int margin, int insert_size, int ncores, list<array<CReadHolder,2>>& raw_reads, list<array<CReadHolder,2>>& connected_reads) {
list<function<void()>> jobs;
auto icr = connected_reads.begin();
for(auto& job_input : raw_reads) {
jobs.push_back(bind(RemoveUsedReadsJob, ref(assembled_kmers), margin, insert_size, ref(job_input), &(*icr++)[1]));
}
RunThreads(ncores, jobs);
}
// removes used reads from the read set used for de Bruijn graphs and from the read set used for pair connection
// removes paired reads not needed as they are already connected by contig sequence reads
// creates new set of reads to use
void CleanReads() {
CStopWatch timer;
timer.Restart();
TKmerToContig assembled_kmers = GetAssembledKmers();
if(assembled_kmers.TableSize() > 0) {
int jump = 50; //TODO reconsile with what used in filterneighbors
RemoveUsedReads(assembled_kmers, m_max_kmer+jump, m_insert_size, m_ncores, m_raw_reads);
RemoveUsedReads(assembled_kmers, jump, m_insert_size, m_ncores, m_connected_reads);
RemoveUsedPairs(assembled_kmers, jump, m_insert_size, m_ncores, m_raw_pairs, m_connected_reads);
}
size_t reads = 0;
for(auto& rh : m_raw_reads)
reads += rh[0].ReadNum()+rh[1].ReadNum();
cerr << "Cleaned reads: " << reads << endl;
reads = 0;
for(auto& rh : m_raw_pairs)
reads += rh[0].ReadNum()+rh[1].ReadNum();
cerr << "Reads for connection: " << reads << endl;
reads = 0;
for(auto& rh : m_connected_reads)
reads += rh[0].ReadNum()+rh[1].ReadNum();
cerr << "Internal reads: " << reads << endl;
cerr << "Reads cleaned in " << timer.Elapsed();
}
// improves previously assembled contigs using a longer kmer
void ImproveContigs (int kmer_len, bool allow_snps) {
DBGraph& graph = *m_graphs[kmer_len];
int jump = m_jump;
if(allow_snps)
jump += kmer_len;
GraphDigger graph_digger(graph, m_fraction, jump, m_low_count, allow_snps);
cerr << "Kmer: " << kmer_len << " Graph size: " << graph.GraphSize() << " Contigs in: " << (m_contigs.empty() ? 0 : m_contigs.back().size()) << endl;
cerr << "Valley: " << graph_digger.HistMin() << endl;
CStopWatch total;
total.Restart();
CStopWatch timer;
timer.Restart();
//convert strings to SContig and mark visited kmers
if(allow_snps)
graph.ClearAllVisited();
TContigList<DBGraph> scontigs = ConverToSContigAndMarkVisited(graph_digger);
cerr << endl << "Mark used kmers in " << timer.Elapsed();
if(allow_snps)
graph_digger.CheckRepeats(scontigs);
size_t singl = 0;
size_t multipl = 0;
for(auto it = graph.Begin(); it != graph.End(); ++it) {
if(graph.IsMultContig(it))
++multipl;
else if(graph.IsVisited(it))
++singl;
}
cerr << "Kmers in multiple/single contigs: " << multipl << " " << singl << endl;
// connect overlapping contigs if we had seeds
if(!m_seeds.empty() && !allow_snps) {
timer.Restart();
graph_digger.CheckRepeats(scontigs);
cerr << "Check repeats in " << timer.Elapsed();
timer.Restart();
graph_digger.ConnectOverlappingContigs(scontigs);
cerr << "Connect overlapping contigs in " << timer.Elapsed();
}
timer.Restart();
//create new contigs using not yet included kmers
GraphDigger graph_digger_no_jump(graph, m_fraction, 0, m_low_count);
unsigned min_len_for_new_seeds = 3*kmer_len; // short ones are likely to be noise
GraphDigger test_graphdigger(*m_graphs[m_min_kmer], m_fraction, 0, m_low_count);
GraphDigger* test_graphdiggerp = nullptr;
if(kmer_len != m_min_kmer)
test_graphdiggerp = &test_graphdigger;
TContigList<DBGraph> new_seeds = graph_digger_no_jump.GenerateNewSeeds(min_len_for_new_seeds, m_ncores, test_graphdiggerp);
cerr << "New seeds: " << new_seeds.size() << endl;
//add new seeds
scontigs.splice(scontigs.end(), new_seeds);
cerr << "New seeds in " << timer.Elapsed();
timer.Restart();
graph_digger.ConnectAndExtendContigs(scontigs, m_ncores);
// convert back to CContigSequence
m_contigs.push_back(TContigSequenceList());
for(auto& contig : scontigs) {
m_contigs.back().push_back(contig.m_seq);
}
m_contigs.back().sort();
vector<size_t> contigs_len;
size_t genome_len = 0;
for(auto& contig : m_contigs.back()) {
contigs_len.push_back(contig.LenMax());
genome_len += contigs_len.back();
}
sort(contigs_len.begin(), contigs_len.end());
size_t n50 = 0;
int l50 = 0;
size_t len = 0;
for(int j = (int)contigs_len.size()-1; j >= 0 && len < 0.5*genome_len; --j) {
++l50;
n50 = contigs_len[j];
len += contigs_len[j];
}
cerr << "Connections and extensions in " << timer.Elapsed();
cerr << "Contigs out: " << contigs_len.size() << " Genome: " << genome_len << " N50: " << n50 << " L50: " << l50 << endl;
cerr << "Assembled in " << total.Elapsed() << endl;
}
// converts contigs from the previous iteration into SContig and marks visited the nodes in the graph
TContigList<DBGraph> ConverToSContigAndMarkVisited(GraphDigger& graph_digger) {
if(m_contigs.empty())
return TContigList<DBGraph>();
int kmer_len = graph_digger.Graph().KmerLen();
for(auto& contig : m_contigs.back()) {
//remove short snps
if(!contig.m_circular) {
if(contig.size() > 1 && (int)contig.ChunkLenMax(0) < kmer_len) {
contig.m_left_repeat = 0;
contig.erase(contig.begin(), contig.begin()+2);
}
if(contig.size() > 1 && (int)contig.ChunkLenMax(contig.size()-1) < kmer_len) {
contig.m_right_repeat = 0;
contig.pop_back();
contig.pop_back();
}
}
}
TContigList<DBGraph> scontigs;
vector<pair<const CContigSequence*, SAtomic<uint8_t>>> contig_is_taken;
for(const auto& contig : m_contigs.back())
contig_is_taken.push_back(make_pair(&contig,SAtomic<uint8_t>(0)));
vector<TContigList<DBGraph>> scontigs_for_threads(m_ncores);
list<function<void()>> jobs;
for(auto& sc : scontigs_for_threads)
jobs.push_back(bind(&CDBGAssembler::ConverToSContigAndMarkVisitedJob, this, ref(contig_is_taken), ref(sc), ref(graph_digger)));
RunThreads(m_ncores, jobs);
for(auto& sc : scontigs_for_threads)
scontigs.splice(scontigs.end(), sc);
return scontigs;
}
// one-thread worker for ConverToSContigAndMarkVisited()
void ConverToSContigAndMarkVisitedJob(vector<pair<const CContigSequence*, SAtomic<uint8_t>>>& contig_is_taken, TContigList<DBGraph>& scontigs, GraphDigger& graph_digger) {
DBGraph& graph = graph_digger.Graph();
int kmer_len = graph.KmerLen();
for(auto& cnt : contig_is_taken) {
if(!cnt.second.Set(1))
continue;
const CContigSequence& contig = *cnt.first;
int contig_len = contig.LenMin();
if(contig_len >= kmer_len)
scontigs.push_back(SContig<DBGraph>(contig, graph)); // constructor sets visited in graph
}
}
// estimates available memory
int64_t AvailableMemory(int memory) const {
int64_t GB = 1000000000;
int64_t mem_available = GB*memory;
int64_t mem_used = 0;
for(const auto& reads : m_raw_reads)
mem_used += reads[0].MemoryFootprint()+reads[1].MemoryFootprint();
for(const auto& reads : m_raw_pairs)
mem_used += reads[0].MemoryFootprint()+reads[1].MemoryFootprint();
for(const auto& reads : m_connected_reads)
mem_used += reads[0].MemoryFootprint()+reads[1].MemoryFootprint();
for(auto& graph : m_graphs)
mem_used += graph.second->MemoryFootprint();
for(auto& lst : m_contigs) {
for(auto& contig : lst)
mem_used += contig.MemoryFootprint()+2*sizeof(CContigSequence*); // contig and 2 list pointers
}
return mem_available-mem_used;
}
template<typename... GraphArgs>
void EstimateMaxKmer(int read_len, GraphArgs... gargs) {
static_assert(sizeof(DBGraph) != sizeof(DBGraph), "Unknown specialization of CDBGAssembler");
}
// counts kmers and build a de Bruijn graph; returns average count of kmers in the graph
// kmer_len - the size of the kmer
// reads - reads from input or connected internally
// is_stranded - whether or not stranded information is meaningful
template<typename... GraphArgs>
double GetGraph(int kmer_len, const list<array<CReadHolder,2>>& reads, bool is_stranded, double total_seq, GraphArgs... gargs) {
static_assert(sizeof(DBGraph) != sizeof(DBGraph), "Unknown specialization of CDBGAssembler");
return 0;
}
double m_fraction; // Maximal noise to signal ratio of counts acceptable for extension
int m_jump; // minimal length of accepted dead ends
int m_low_count; // minimal kmer count to be included in a contig
int m_steps; // number of main steps
int m_min_count; // minimal kmer count to be included in a de Bruijn graph
int m_min_kmer; // the minimal kmer size for the main steps
int m_max_kmer; // maximal kmer size for the main steps
int m_max_kmer_paired; // insert size
int m_insert_size; // upper bound for the insert size
int m_maxkmercount; // the minimal average count for estimating the maximal kmer
int m_ncores; // number of threads
double m_average_count; // average count for minimal kmers
list<array<CReadHolder,2>>& m_raw_reads; // original reads - will be reduced gradually
list<array<CReadHolder,2>> m_raw_pairs; // paired original reads for connection - will be reduced gradually
list<array<CReadHolder,2>> m_connected_reads; // connected pairs (long reads)
map<int, DBGraph*> m_graphs; // De Bruijn graphs for mutiple kmers
vector<TContigSequenceList> m_contigs; // assembled contigs for each iteration
TContigSequenceList m_seeds;
};
template<> template<> // one for graph, the other for args
void CDBGAssembler<CDBGraph>::EstimateMaxKmer(int read_len, int memory) {
while(m_max_kmer > m_min_kmer) {
m_max_kmer -= 1-m_max_kmer%2; // odd kmers desired
CKmerCounter kmer_counter(m_raw_reads, m_max_kmer, m_min_count, true, AvailableMemory(memory), m_ncores);
if(kmer_counter.Kmers().Size() < 100) { // find a kmer length with at least 100 distinct kmers at that length
m_max_kmer -= read_len/25; // reduce maximal kmer length by a small amount based on read length
continue;
}
double average_count_for_max_kmer = kmer_counter.AverageCount();
if(average_count_for_max_kmer >= m_maxkmercount)
break;
else
m_max_kmer -= read_len/25;
}
m_max_kmer = max(m_max_kmer, m_min_kmer);
}
template<> template<> // one for graph, the other for args
void CDBGAssembler<CDBHashGraph>::EstimateMaxKmer(int read_len, int estimated_kmer_num, bool skip_bloom_filter) {
int64_t M = 1000000;
while(m_max_kmer > m_min_kmer) {
m_max_kmer -= 1-m_max_kmer%2; // odd kmers desired
CKmerHashCounter kmer_counter(m_raw_reads, m_max_kmer, m_min_count, M*estimated_kmer_num, true, m_ncores, skip_bloom_filter);
if(kmer_counter.KmerNum() < 100) { // find a kmer length with at least 100 distinct kmers at that length
m_max_kmer -= read_len/25; // reduce maximal kmer length by a small amount based on read length
continue;
}
double average_count_for_max_kmer = GetAverageCount(kmer_counter.Kmers().GetBins());
if(average_count_for_max_kmer >= m_maxkmercount)
break;
else
m_max_kmer -= read_len/25;
}
m_max_kmer = max(m_max_kmer, m_min_kmer);
}
template<> template<> // one for graph, the other for args
double CDBGAssembler<CDBGraph>::GetGraph(int kmer_len, const list<array<CReadHolder,2>>& reads, bool is_stranded, double total_seq, int memory) {
CKmerCounter kmer_counter(reads, kmer_len, m_min_count, is_stranded, AvailableMemory(memory), m_ncores);
if(kmer_counter.Kmers().Size() == 0)
return 0;
TKmerCount& sorted_kmers = kmer_counter.Kmers();
if(total_seq > 0) {
map<int,size_t> hist;
for(size_t index = 0; index < sorted_kmers.Size(); ++index) {
++hist[sorted_kmers.GetCount(index)]; // count clipped to integer automatically
}
TBins bins(hist.begin(), hist.end());
int genome_size = CalculateGenomeSize(bins);
if(genome_size > 0) {
int new_min_count = total_seq/genome_size/50+0.5;
if(new_min_count > m_min_count) {
int new_maxkmercount = max(10, int(total_seq/genome_size/10+0.5));
cerr << "WARNING: --min_count changed from " << m_min_count << " to " << new_min_count << " because of high coverage for genome size " << genome_size << endl;
cerr << "WARNING: --max_kmer_count " << m_maxkmercount << " to " << new_maxkmercount << " because of high coverage for genome size " << genome_size << endl;
m_min_count = new_min_count;
m_low_count = m_min_count;
m_maxkmercount = new_maxkmercount;
sorted_kmers.RemoveLowCountKmers(m_min_count);
}
}
}
if(kmer_counter.Kmers().Size() == 0)
return 0;
double average_count = kmer_counter.AverageCount();
kmer_counter.GetBranches();
map<int,size_t> hist;
for(size_t index = 0; index < sorted_kmers.Size(); ++index) {
++hist[sorted_kmers.GetCount(index)]; // count clipped to integer automatically
}
TBins bins(hist.begin(), hist.end());
m_graphs[kmer_len] = new CDBGraph(move(sorted_kmers), move(bins), is_stranded);
return average_count;
}
template<> template<> // one for graph, the other for args
double CDBGAssembler<CDBHashGraph>::GetGraph(int kmer_len, const list<array<CReadHolder,2>>& reads, bool is_stranded, double total_seq, int estimated_kmer_num, bool skip_bloom_filter) {