-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutils.py
136 lines (97 loc) · 4.47 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import tensorflow as tf
import numpy as np
def get_trainable_params(scope_name):
return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=scope_name)
def ops_copy_vars(src_scope, dst_scope, exclude_keys=['RMSProp']):
src_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=src_scope)
dst_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=dst_scope)
src_dict = {}
for i in xrange(len(src_vars)):
key = src_vars[i].name
key = key[(len(src_scope)):] # Remove scope name
src_dict[key] = src_vars[i]
ops_list = []
for i in xrange(len(dst_vars)):
key = dst_vars[i].name
key = key[(len(dst_scope)):] # Remove scope name
is_ignored = any(map(lambda x: x in key, exclude_keys))
if is_ignored:
continue
# TODO: Error handling
ops_list.append([dst_vars[i].assign(src_dict[key])])
# XXX: Test on BN params
return ops_list
def leaky_relu(x, alpha=0.1):
return tf.maximum(tf.minimum(0.0, alpha * x), x)
def conv2d(name, in_var, shape, stride=1, act=tf.nn.relu, bn=False,
is_training=True, reuse=False, keep_summary=True):
# ordering: N W H C
with tf.variable_scope(name, reuse=reuse) as scope:
w_shape = shape # filterH, filterW, inChns, outChns
b_shape = shape[3:4] # outChns
w = tf.get_variable('w', w_shape,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False))
b = tf.get_variable('b', b_shape,
initializer=tf.constant_initializer(0.1))
h = tf.nn.conv2d(in_var, w, strides=[1, stride, stride, 1], padding='SAME')
h = tf.nn.bias_add(h, b)
if bn:
h = tf.contrib.layers.batch_norm(h, center=True, scale=True, is_training=is_training,
scope='bn', reuse=reuse)
#out = act(h, name='out')
out = act(h)
# Tensorboard summary
if not reuse:
tf.summary.histogram('w', w)
tf.summary.histogram('b', b)
tf.summary.histogram('act', h)
return out
def deconv2d(name, in_var, shape, filter, stride=1, act=tf.nn.relu, bn=False,
is_training=True, reuse=False, keep_summary=True):
# ordering: N W H C
with tf.variable_scope(name, reuse=reuse) as scope:
w_shape = filter # filterH, filterW, outChns, inChns
b_shape = filter[2:3] # outChns
# XXX: Batchsize should be pre-defined to use deconv2d, and this is a work-around
batchsize = tf.shape(in_var)[0]
out_shape = [batchsize, shape[1], shape[2], shape[3]]
# FIXME: Initialization of deconv
tmp_init_std = 1.0 / np.sqrt(w_shape[0] * w_shape[1] * w_shape[2])
w = tf.get_variable('w', w_shape,
initializer=tf.random_normal_initializer(stddev=tmp_init_std))
b = tf.get_variable('b', b_shape,
initializer=tf.constant_initializer(0.1))
h = tf.nn.conv2d_transpose(in_var, w, out_shape, strides=[1, stride, stride, 1], padding='SAME')
h = tf.nn.bias_add(h, b)
if bn:
h = tf.contrib.layers.batch_norm(h, center=True, scale=True, is_training=is_training,
scope='bn', reuse=reuse)
# out = act(h, name='out')
out = act(h)
# Tensorboard summary
if not reuse:
tf.summary.histogram('w', w)
tf.summary.histogram('b', b)
tf.summary.histogram('act', h)
return out
def fc(name, in_var, shape, act=tf.nn.relu, bn=False,
is_training=True, reuse=False, keep_summary=True):
with tf.variable_scope(name, reuse=reuse):
w_shape = shape
b_shape = shape[1:2]
w = tf.get_variable('w', w_shape,
initializer=tf.contrib.layers.xavier_initializer(uniform=False))
b = tf.get_variable('b', b_shape,
initializer=tf.constant_initializer(0))
h = tf.matmul(in_var, w) + b
if bn:
h = tf.contrib.layers.batch_norm(h, center=True, scale=True, is_training=is_training,
scope='bn', reuse=reuse)
# out = act(h, name='out')
out = act(h)
# Tensorboard summary
if not reuse:
tf.summary.histogram('w', w)
tf.summary.histogram('b', b)
tf.summary.histogram('act', h)
return out