Model | Size | Augmentation | Epoch | Top 1 | Top 5 | Time | Code | Log |
---|---|---|---|---|---|---|---|---|
ResNet_vd-50 | 160 | Standard | 120 | 78.93 | 94.48 | 208.1 | 23 | 1 |
ResNet_vd-50 | 224 | Standard | 120 | 78.86 | 94.28 | 377.2 | 101 | 1 2 3 |
Model | Size | Augmentation | Epoch | Top 1 | Top 5 | Time | Code | Log |
---|---|---|---|---|---|---|---|---|
ResNet_vd-50 | 160 | Standard | 120 | 79.24 | 94.67 | 203.1 | 24 | 1 |
RegNetY-1.6GF (C) | 160 | Standard | 100 | 77.27 | 93.46 | 160.9 | 35 | 1 |
RegNetY-1.6GF (F) | 160 | Standard | 100 | 77.55 | 93.83 | 159.7 | 38 | 1 |
- ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
- ECA-Net seems to not work well in RegNet, no matter put it at the middle conv (C) or at the final of block (F).
Model | Size | Augmentation | Epoch | Top 1 | Top 5 | Time | Code | Log |
---|---|---|---|---|---|---|---|---|
ResNet_vd-50 | 160 | Standard | 120 | 78.54 | 94.33 | 192.1 | 50 | 1 2 3 |
RegNetY-1.6GF | 160 | Standard | 100 | 77.86 | 94.01 | 161.8 | 32 | 1 |