-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfcos.py
126 lines (97 loc) · 4.24 KB
/
fcos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
from toolz import curry, get
import tensorflow as tf
from tensorflow.keras.metrics import Mean
from hanser.distribute import setup_runtime, distribute_datasets
from hanser.detection import postprocess, coords_to_absolute, DetectionLoss, \
fcos_match, iou_loss, focal_loss, grid_points, FCOSBBoxCoder
from hanser.datasets.detection.voc import decode, make_voc_dataset
from hanser.transform import normalize
from hanser.transform.detection import pad_objects, random_hflip, random_resize, resize, pad_to, random_crop
from hanser.models.layers import set_defaults
from hanser.models.backbone.resnet import resnet50
from hanser.models.detection.fcos import FCOS
from hanser.models.utils import load_pretrained_model
from hanser.train.optimizers import SGD
from hanser.train.lr_schedule import CosineLR
from hanser.train.metrics.common import MeanMetricWrapper
from hanser.train.metrics.detection import MeanAveragePrecision
from hanser.train.learner_v4 import SuperLearner
TASK_NAME = os.environ.get("TASK_NAME", "hstudio-default")
TASK_ID = os.environ.get("TASK_ID", 0)
WORKER_ID = os.getenv("WORKER_ID", 0)
HEIGHT = WIDTH = 640
featmap_sizes = [
[80, 80], [40, 40], [20, 20], [10, 10], [5, 5]]
strides = [8, 16, 32, 64, 128]
mlvl_points = grid_points(featmap_sizes, strides)
num_level_points = [p.shape[0] for p in mlvl_points]
points = tf.concat(mlvl_points, axis=0)
bbox_coder = FCOSBBoxCoder(points)
@curry
def preprocess(example, output_size=(HEIGHT, WIDTH), max_objects=100, training=True):
image, objects, image_id = decode(example)
if training:
image = random_resize(image, output_size, ratio_range=(0.5, 2.0))
image, objects = random_crop(image, objects, output_size)
image, objects = random_hflip(image, objects, 0.5)
else:
image = resize(image, output_size)
image = normalize(image, [123.68, 116.779, 103.939], [58.393, 57.12, 57.375])
image, objects = pad_to(image, objects, output_size)
gt_bboxes, gt_labels = get(['gt_bbox', 'gt_label'], objects)
gt_bboxes = coords_to_absolute(gt_bboxes, tf.shape(image)[:2])
objects = {**objects, 'gt_bbox': gt_bboxes}
bbox_targets, labels, centerness = fcos_match(
gt_bboxes, gt_labels, points, num_level_points, strides=strides, radius=1.5)
objects = pad_objects(objects, max_objects)
return image, {'bbox_target': bbox_targets, 'label': labels, 'centerness': centerness,
**objects, 'image_id': image_id}
mul = 2
batch_size, eval_batch_size = 16 * mul, 64
ds_train, ds_val, steps_per_epoch, val_steps = make_voc_dataset(
batch_size, eval_batch_size, preprocess, data_dir=os.getenv("REMOTE_DDIR"),
drop_remainder=True)
setup_runtime(fp16=True)
ds_train_dist, ds_val_dist = distribute_datasets(ds_train, ds_val)
set_defaults({
'bn': {
'sync': True,
},
})
backbone = resnet50()
model = FCOS(backbone, num_classes=20)
model.build((None, HEIGHT, WIDTH, 3))
load_pretrained_model("resnet50", backbone)
criterion = DetectionLoss(
box_loss_fn=iou_loss(mode='ciou', offset=True),
cls_loss_fn=focal_loss(alpha=0.25, gamma=2.0), centerness=True)
base_lr = 0.01
epochs = 50
lr_schedule = CosineLR(base_lr * mul, steps_per_epoch, epochs, min_lr=0,
warmup_min_lr=0, warmup_epoch=3)
optimizer = SGD(lr_schedule, momentum=0.9, nesterov=True, weight_decay=1e-4)
train_metrics = {
'loss': Mean(),
}
eval_metrics = {
'loss': MeanMetricWrapper(criterion),
}
def output_transform(output):
bbox_preds, cls_scores, centerness = get(['bbox_pred', 'cls_score', 'centerness'], output)
return postprocess(bbox_preds, cls_scores, bbox_coder, centerness,
iou_threshold=0.6, score_threshold=0.05, use_sigmoid=True)
local_eval_metrics = {
'loss': MeanMetricWrapper(criterion),
'mAP': MeanAveragePrecision(output_transform=output_transform),
}
learner = SuperLearner(
model, criterion, optimizer, steps_per_loop=steps_per_epoch,
train_metrics=train_metrics, eval_metrics=eval_metrics,
work_dir=f"./drive/MyDrive/models/{TASK_NAME}-{TASK_ID}-{WORKER_ID}")
learner.fit(
ds_train_dist, epochs, ds_val_dist, val_freq=1,
steps_per_epoch=steps_per_epoch, val_steps=val_steps,
local_eval_metrics=local_eval_metrics,
local_eval_freq=[(0, 6), (18, 1)],
)