-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdeeplabv3p.py
102 lines (78 loc) · 3.13 KB
/
deeplabv3p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
from toolz import curry
import tensorflow as tf
from tensorflow.keras.metrics import Mean
from hanser.distribute import setup_runtime, distribute_datasets
from hanser.datasets.segmentation.cityscapes import make_dataset
from hanser.transform.segmentation import random_crop, flip_dim, random_scale
from hanser.transform import photo_metric_distortion
from hanser.models.utils import load_pretrained_model
from hanser.models.layers import set_defaults
from hanser.models.segmentation.backbone.resnet_vd import resnet50
from hanser.models.segmentation.deeplab import DeepLabV3P
from hanser.losses import cross_entropy
from hanser.train.optimizers import SGD
from hanser.train.lr_schedule import CosineLR
from hanser.train.metrics.classification import CrossEntropy
from hanser.train.metrics.segmentation import MeanIoU
from hanser.train.learner_v4 import SuperLearner
HEIGHT, WIDTH = 512, 1024
IGNORE_LABEL = 255
@curry
def transform(image, label, training=True):
crop_h, crop_w = HEIGHT, WIDTH
mean_rgb = tf.convert_to_tensor([123.68, 116.779, 103.939], tf.float32)
std_rgb = tf.convert_to_tensor([58.393, 57.12, 57.375], tf.float32)
image = tf.cast(image, tf.float32)
label = tf.cast(label, tf.int32)
if training:
image, label = random_scale(image, label, (0.5, 2.0), 0.25)
image, label = random_crop([image, label], (crop_h, crop_w))
image, label = flip_dim([image, label], dim=1)
image = photo_metric_distortion(image)
image.set_shape([crop_h, crop_w, 3])
label.set_shape([crop_h, crop_w, 1])
else:
image.set_shape([1024, 2048, 3])
label.set_shape([1024, 2048, 1])
image = (image - mean_rgb) / std_rgb
label = tf.squeeze(label, -1)
image = tf.cast(image, tf.bfloat16)
return image, label
mul = 1
batch_size, eval_batch_size = 8 * mul, 8
ds_train, ds_val, steps_per_epoch, val_steps = make_dataset(
batch_size, eval_batch_size, transform, data_dir=os.getenv('REMOTE_DDIR'),
drop_remainder=True)
setup_runtime(fp16=True)
ds_train_dist, ds_val_dist = distribute_datasets(ds_train, ds_val)
set_defaults({
'bn': {
'sync': True,
},
'fixed_padding': False,
})
backbone = resnet50(output_stride=8, multi_grad=(1, 2, 4))
model = DeepLabV3P(backbone, aspp_ratios=(1, 12, 24, 36), aspp_channels=256, num_classes=19)
model.build((None, HEIGHT, WIDTH, 3))
load_pretrained_model("resnetvd50_nlb_fp", backbone)
criterion = cross_entropy(ignore_label=IGNORE_LABEL)
base_lr = 1e-2
epochs = 120
lr_schedule = CosineLR(base_lr * mul, steps_per_epoch, epochs, min_lr=0,
warmup_min_lr=0, warmup_epoch=5)
optimizer = SGD(lr_schedule, momentum=0.9, nesterov=True, weight_decay=1e-4)
train_metrics = {
'loss': Mean(),
}
eval_metrics = {
'loss': CrossEntropy(ignore_label=IGNORE_LABEL),
'miou': MeanIoU(num_classes=19),
}
learner = SuperLearner(
model, criterion, optimizer, steps_per_loop=steps_per_epoch,
train_metrics=train_metrics, eval_metrics=eval_metrics,
work_dir=f"./models")
learner.fit(
ds_train_dist, epochs, ds_val_dist, val_freq=5,
steps_per_epoch=steps_per_epoch, val_steps=val_steps)