From f2c9be4bd4b64b15cce237ecd515a97c5c3d66bb Mon Sep 17 00:00:00 2001 From: Sofia Covarrubias <44685425+sofiacovarrubias@users.noreply.github.com> Date: Fri, 26 Jan 2024 17:04:27 -0800 Subject: [PATCH] Equation testing --- docs/manual.rst | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/docs/manual.rst b/docs/manual.rst index 73e12c29..e8128514 100644 --- a/docs/manual.rst +++ b/docs/manual.rst @@ -24,7 +24,7 @@ which can then be solved using Kepler’s equation. It is important, then, to be explicit about coordinate systems. For an interactive visualization to define and help users understand our coordinate system, -you can check out `this GitHub tutorial `_. +you can check out `this GitHub tutorial `_. There is also a `YouTube video `_. with use and explaination of the coordinate system. @@ -35,8 +35,9 @@ and measures the position of the planet relative to the star in angular coordina In the ``orbitize!`` coordinate system, relative R.A. and decl. can be expressed as the following functions of orbital parameters -$$ \delta R.A. = \pi a(1-ecosE)[cos^2{i\over 2}sin(f+\omega_p+\Omega)-sin^2{i\over 2}sin(f+\omega_p-\Omega)] $$ -$$ \delta decl. = \pi a(1-ecosE)[cos^2{i\over 2}cos(f+\omega_p+\Omega)-sin^2{i\over 2}cos(f+\omega_p-\Omega)] $$ +.. math:: + \delta R.A. = \pi a(1-ecosE)[cos^2{i\over 2}sin(f+\omega_p+\Omega)-sin^2{i\over 2}sin(f+\omega_p-\Omega)] $$ + \delta decl. = \pi a(1-ecosE)[cos^2{i\over 2}cos(f+\omega_p+\Omega)-sin^2{i\over 2}cos(f+\omega_p-\Omega)] $$ where π‘Ž, 𝑒, πœ”p, Ξ©, and 𝑖 are orbital parameters, and πœ‹ is the system parallax. f is the true anomaly, and E is the eccentric anomaly, which are related to elapsed time