-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgraph.cpp
463 lines (398 loc) · 13.5 KB
/
graph.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/*
* Copyright 2016 Emaad Ahmed Manzoor
* License: Apache License, Version 2.0
* http://www3.cs.stonybrook.edu/~emanzoor/streamspot/
*/
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include "graph.h"
#include "hash.h"
#include <iostream>
#include "param.h"
#include <queue>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <string>
namespace std {
void update_graphs(edge& e, vector<graph>& graphs) {
auto& src_id = get<F_S>(e);
auto& src_type = get<F_STYPE>(e);
auto& dst_id = get<F_D>(e);
auto& dst_type = get<F_DTYPE>(e);
auto& e_type = get<F_ETYPE>(e);
auto& gid = get<F_GID>(e);
// append edge to the edge list for the source
graphs[gid][make_pair(src_id,
src_type)].push_back(make_tuple(dst_id,
dst_type,
e_type));
}
void remove_from_graph(edge& e, vector<graph>& graphs) {
auto& src_id = get<F_S>(e);
auto& src_type = get<F_STYPE>(e);
auto& dst_id = get<F_D>(e);
auto& dst_type = get<F_DTYPE>(e);
auto& e_type = get<F_ETYPE>(e);
auto& gid = get<F_GID>(e);
#ifdef DEBUG
cout << "Removing edge: ";
cout << src_id << " ";
cout << src_type << " ";
cout << dst_id << " ";
cout << dst_type << " ";
cout << e_type << " ";
cout << gid << endl;
#endif
// append edge to the edge list for the source
auto& g = graphs[gid];
auto node = make_pair(src_id, src_type);
auto dest = make_tuple(dst_id, dst_type, e_type);
auto& edge_list = g.at(node);
#ifdef DEBUG
cout << "\tEdges from source: ";
for (auto& x : edge_list)
cout << get<0>(x) << " ";
cout << endl;
#endif
if (edge_list.size() == 1) {
// the last edge from this node is being removed
g.erase(node);
} else {
// there are other edges from this node
auto pos = find(edge_list.begin(), edge_list.end(), dest);
edge_list.erase(pos);
}
}
unordered_map<string,uint32_t>
construct_temp_shingle_vector(const graph& g, uint32_t chunk_length) {
unordered_map<string,uint32_t> temp_shingle_vector;
for (auto& kv : g) {
#ifdef VERBOSE
cout << "OkBFT from " << kv.first.first << " " << kv.first.second;
cout << " (K = " << K << ")";
cout << " fanout = " << kv.second.size() << endl;
#endif
string shingle; // shingle from this source node
queue<tuple<uint32_t,char,char>> q; // (nodeid, nodetype, edgetype)
unordered_map<uint32_t,uint32_t> d;
q.push(make_tuple(kv.first.first, kv.first.second, ' '));
d[kv.first.first] = 0;
while (!q.empty()) {
auto& node = q.front();
auto& uid = get<0>(node);
auto& utype = get<1>(node);
auto& etype = get<2>(node);
q.pop();
// use destination and edge types to construct shingle
shingle += etype;
shingle += utype;
if (d[uid] == K) { // node is K hops away from src_id
continue; // don't follow its edges
}
// outgoing edges are already sorted by timestamp
for (auto& e : g.at(make_pair(uid, utype))) {
auto& vid = get<0>(e);
d[vid] = d[uid] + 1;
q.push(e);
}
}
// split shingle into chunks and increment frequency
for (auto& chunk : get_string_chunks(shingle, chunk_length)) {
temp_shingle_vector[chunk]++;
}
}
#ifdef DEBUG
cout << "Shingles in graph:" << endl;
for (auto& kv : temp_shingle_vector) {
cout << kv.first << " => " << kv.second << endl;
}
#endif
return temp_shingle_vector;
}
void construct_shingle_vectors(vector<shingle_vector>& shingle_vectors,
unordered_map<string,uint32_t>& shingle_id,
vector<graph>& graphs, uint32_t chunk_length) {
unordered_set<string> unique_shingles;
vector<unordered_map<string,uint32_t>> temp_shingle_vectors(graphs.size());
// construct a temporary shingle vector for each graph
for (uint32_t i = 0; i < graphs.size(); i++) {
//cout << "\tConstructing shingles for graph: " << i << endl;
for (auto& kv : graphs[i]) {
// OkBFT from (src_id,type) = kv.first to construct shingle
#ifdef VERBOSE
cout << "OkBFT from " << kv.first.first << " " << kv.first.second;
cout << " (K = " << K << ")";
cout << " fanout = " << kv.second.size() << endl;
#endif
string shingle; // shingle from this source node
queue<tuple<uint32_t,char,char>> q; // (nodeid, nodetype, edgetype)
unordered_map<uint32_t,uint32_t> d;
q.push(make_tuple(kv.first.first, kv.first.second, ' '));
d[kv.first.first] = 0;
while (!q.empty()) {
auto& node = q.front();
auto& uid = get<0>(node);
auto& utype = get<1>(node);
auto& etype = get<2>(node);
q.pop();
#ifdef VERBOSE
cout << "\tPopped (" << uid << ", " << utype << ", " << etype << ")\n";
#endif
// use destination and edge types to construct shingle
shingle += etype;
shingle += utype;
if (d[uid] == K) { // node is K hops away from src_id
#ifdef VERBOSE
cout << "Hop limit reached\n";
#endif
continue; // don't follow its edges
}
// outgoing edges are already sorted by timestamp
for (auto& e : graphs[i][make_pair(uid, utype)]) {
auto& vid = get<0>(e);
d[vid] = d[uid] + 1;
q.push(e);
}
}
// split shingle into chunks and increment frequency
for (auto& chunk : get_string_chunks(shingle, chunk_length)) {
temp_shingle_vectors[i][chunk]++;
unique_shingles.insert(chunk);
}
}
#ifdef DEBUG
cout << "Shingles in graph " << i << ":\n";
for (auto& kv : temp_shingle_vectors[i]) {
cout << "\t" << kv.first << " => " << kv.second << endl;
}
#endif
}
// use unique shingles to assign shingle id's
uint32_t current_id = 0;
for (auto& shingle : unique_shingles) {
shingle_id[shingle] = current_id;
current_id++;
}
#ifdef DEBUG
cout << "Shingle ID's\n";
for (auto& kv : shingle_id) {
cout << "\t" << kv.first << " => " << kv.second << endl;
}
#endif
// construct shingle vectors using shingle id's and temporary shingle vectors
uint32_t num_unique_shingles = unique_shingles.size();
shingle_vectors.resize(graphs.size());
for (uint32_t i = 0; i < shingle_vectors.size(); i++) {
shingle_vectors[i].resize(num_unique_shingles);
for (auto& kv : temp_shingle_vectors[i]) {
shingle_vectors[i][shingle_id[kv.first]] = kv.second;
}
}
#ifdef DEBUG
cout << "Shingle vectors:\n";
for (uint32_t i = 0; i < shingle_vectors.size(); i++) {
cout << "\tSV for graph " << i << ": ";
for (auto& e : shingle_vectors[i]) {
cout << e << " ";
}
cout << endl;
}
#endif
}
// FIXME: This is currently tailored for K=1
// Adding a new edge appends 2 characters to the shingle from the source node.
// Eg.
// abcdabcdababab K = 3
// abc dab cda bab ab
//
// New edge = pq
// abcdabcdabababpq
// abc dab cda bab abp q
//
// So all the chunks require no addition/removal except the last one.
//
// The following cases are possible (after the edge has been added):
//
// - Last chunk length = 2
// Hash and add chunk "et"
// - Last chunk length = 1
// Hash and add chunk "t"
// Hash and add chunk (second last chunk)
// Hash and remove chunk (second last chunk - "e")
// - Last chunk length > 2
// Hash and add last chunk
// Hash and remove last chunk - "et"
tuple<vector<int>, chrono::nanoseconds, chrono::nanoseconds>
update_streamhash_sketches(const edge& e, const vector<graph>& graphs,
vector<bitset<L>>& streamhash_sketches,
vector<vector<int>>& streamhash_projections,
uint32_t chunk_length,
const vector<vector<uint64_t>>& H) {
// source node = (src_id, src_type)
// dst_node = (dst_id, dst_type)
// shingle substring = (src_type, e_type, dst_type)
//assert(K == 1 && chunk_length >= 4);
// for timing
chrono::time_point<chrono::steady_clock> start;
chrono::time_point<chrono::steady_clock> end;
chrono::microseconds shingle_construction_time;
chrono::microseconds sketch_update_time;
auto& src_id = get<F_S>(e);
auto& src_type = get<F_STYPE>(e);
auto& gid = get<F_GID>(e);
auto& sketch = streamhash_sketches[gid];
auto& projection = streamhash_projections[gid];
auto& g = graphs[gid];
start = chrono::steady_clock::now(); // start shingle construction
// construct the last chunk
auto& outgoing_edges = g.at(make_pair(src_id, src_type));
uint32_t n_outgoing_edges = outgoing_edges.size();
int shingle_length = 2 * (n_outgoing_edges + 1);
int last_chunk_length = shingle_length - chunk_length *
(shingle_length/chunk_length);
if (last_chunk_length == 0)
last_chunk_length = chunk_length;
string last_chunk("x", last_chunk_length);
int len = last_chunk_length, i = n_outgoing_edges - 1;
do {
last_chunk[--len] = get<1>(outgoing_edges[i]); // dst_type
if (len <= 0)
break;
last_chunk[--len] = get<2>(outgoing_edges[i]); // edge_type
i--;
} while (len > 0 && i >= 0);
if (i < 0) {
if (len == 2) {
last_chunk[--len] = src_type;
}
if (len == 1) {
last_chunk[--len] = ' ';
}
}
// construct the second last chunk if it exists
string sec_last_chunk("x", chunk_length);
if (i >= 0) {
len = chunk_length;
if (last_chunk_length % 2 != 0) {
sec_last_chunk[--len] = get<2>(outgoing_edges[i]); // edge_type
i--;
}
if (i >=0 && len >= 0) {
do {
sec_last_chunk[--len] = get<1>(outgoing_edges[i]);
if (len <= 0)
break;
sec_last_chunk[--len] = get<2>(outgoing_edges[i]);
i--;
} while (len > 0 && i >= 0);
}
if (i < 0) {
if (len == 2) {
sec_last_chunk[--len] = src_type;
}
if (len == 1) {
sec_last_chunk[--len] = ' ';
}
}
}
#ifdef DEBUG
string shingle(" ", 1);
shingle.reserve(2 * (n_outgoing_edges + 1));
shingle.push_back(src_type);
for (uint32_t i = 0; i < n_outgoing_edges; i++) {
shingle.push_back(get<2>(outgoing_edges[i]));
shingle.push_back(get<1>(outgoing_edges[i]));
}
cout << "Shingle: " << shingle << endl;
vector<string> chunks = get_string_chunks(shingle, chunk_length);
cout << "Last chunk: " << last_chunk << endl;
assert(last_chunk == chunks[chunks.size() - 1]);
if (chunks.size() > 1) {
cout << "Second last chunk: " << sec_last_chunk << endl;
assert(sec_last_chunk == chunks[chunks.size() - 2]);
}
#endif
vector<string> incoming_chunks; // to be hashed and added
vector<string> outgoing_chunks; // to be hashed and subtracted
incoming_chunks.push_back(last_chunk);
if (n_outgoing_edges > 1) { // this is not the first edge
if (last_chunk_length == 1) {
outgoing_chunks.push_back(sec_last_chunk.substr(0,
sec_last_chunk.length() - 1));
} else if (last_chunk_length == 2) {
// do nothing, only incoming chunk is the last chunk
} else { // 2 < last_chunk_length <= chunk_length, last chunk had 2 chars added
outgoing_chunks.push_back(last_chunk.substr(0, last_chunk_length - 2));
}
}
end = chrono::steady_clock::now(); // end shingle construction
shingle_construction_time =
chrono::duration_cast<chrono::microseconds>(end - start);
#ifdef DEBUG
cout << "Incoming chunks: ";
for (auto& c : incoming_chunks) {
cout << c << ",";
}
cout << endl;
cout << "Outgoing chunks: ";
for (auto& c : outgoing_chunks) {
cout << c << ",";
}
cout << endl;
#endif
// record the change in the projection vector
// this is used to update the centroid
vector<int> projection_delta(L, 0);
start = chrono::steady_clock::now(); // start sketch update
// update the projection vectors
for (auto& chunk : incoming_chunks) {
for (uint32_t i = 0; i < L; i++) {
int delta = hashmulti(chunk, H[i]);
projection[i] += delta;
projection_delta[i] += delta;
}
}
for (auto& chunk : outgoing_chunks) {
for (uint32_t i = 0; i < L; i++) {
int delta = hashmulti(chunk, H[i]);
projection[i] -= delta;
projection_delta[i] -= delta;
}
}
// update sketch = sign(projection)
for (uint32_t i = 0; i < L; i++) {
sketch[i] = projection[i] >= 0 ? 1 : 0;
}
end = chrono::steady_clock::now(); // end sketch update
sketch_update_time = chrono::duration_cast<chrono::microseconds>(end - start);
return make_tuple(projection_delta, shingle_construction_time, sketch_update_time);
}
vector<string> get_string_chunks(string s, uint32_t len) {
vector<string> chunks;
for (uint32_t offset = 0; offset < s.length(); offset += len) {
chunks.push_back(s.substr(offset, len));
}
return chunks;
}
double cosine_similarity(const shingle_vector& sv1, const shingle_vector& sv2) {
double dot_product = 0.0, magnitude1 = 0.0, magnitude2 = 0.0;
uint32_t size = sv1.size();
assert(sv1.size() == sv2.size());
for (uint32_t i = 0; i < size; i++) {
magnitude1 += static_cast<double>(sv1[i]) * static_cast<double>(sv1[i]);
}
for (uint32_t i = 0; i < size; i++) {
magnitude2 += static_cast<double>(sv2[i]) * static_cast<double>(sv2[i]);
}
for (uint32_t i = 0; i < size; i++) {
dot_product += static_cast<double>(sv1[i]) * static_cast<double>(sv2[i]);
}
double cosine = dot_product / (sqrt(magnitude1) * sqrt(magnitude2));
assert(cosine >= 0.0 && cosine <= 1.0);
return cosine;
}
} // namespace