forked from cyankaet/orderml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorderenv.py
356 lines (292 loc) · 9.97 KB
/
orderenv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import sys
import numpy as np
import scipy.optimize as optimize
from bumps.names import *
import bumps.fitters as fitters
import gym.spaces as spaces
import gym
import random
from stable_baselines3 import PPO, A2C
from stable_baselines3.common.env_util import make_vec_env
print("orderenv")
class OrderMethods():
"""
Collection of methods used to calculate the intensity values
"""
def bsol(temp,p):
Tn,Jt,Nf,Bk=p
t=4.0*(Jt/(Jt+1.0))*Tn/temp
if (Tn<=0) or (Jt<=0) or temp>=Tn:
xout=0.0
else:
xout=optimize.brentq(OrderMethods.bfun,0.0,t,args=(temp,p),xtol=1e-6)
return xout
def bfun(x,T,p):
Tn,Jt,Nf,Bk=p
if x==0.0:
B=-1.0 # so that it wont find solution at zero
else:
B=(x-3*OrderMethods.brill(Jt,x)*(Jt/(Jt+1))*(Tn/T))
return B
def brill(j,x):
temp=(2*j+1.0)/2/j
if x==0:
Br=0.0
else:
Br=temp/np.tanh(temp*x)-1.0/np.tanh(x/2/j)/2/j
return Br
def Intensity(T,p):
Tn,Jt,Nf,Bk=p
br=OrderMethods.brill(Jt,OrderMethods.bsol(T,p))
bout=Bk+Nf*br**2
return bout
def orderparameter(T, Tn, Jt, Nf, Bk):
p=[Tn, Jt, Nf, Bk]
I=[]
for t in T:
I.append(OrderMethods.Intensity(t,p))
return np.array(I)
def fit(model):
model.update()
problem = FitProblem(model)
result = fitters.fit(problem, method='dream', name='order', store='/work/kmm11/orderout/dreamOut')
for p, v in zip(problem._parameters, result.dx):
p.dx = v
return result.x, result.dx, problem.chisq(), problem._parameters
class OrderEnv(gym.Env):
def __init__(self):
self.reward_scale = 200
self.episodeNum = 0
self.steps = 0
self.T = np.array([])
#self.Bk = .3
self.error = []
self.fixedTn = 160
self.fixedNf = 330
self.fixedJt = .885
self.fixedBk = .3
self.print = False
self.observation_space = spaces.Box(low=0.0, high=400.0, shape=(1,), dtype=np.float32)
self.action_options = [1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60]
self.action_space = spaces.Discrete(len(self.action_options))
self.curTemp = 3
self.x = 150 #startTn value
#logging arrays and vars
self.rewards = [] #interepisodic
self.realTns = []
self.chisqds = []
self.convergsTn = []
self.convergsNf = []
self.convergsJt = []
self.convergsBk = []
self.transTemps = []
self.Jts = []
self.Nfs = []
self.Bks = []
self.temps = []
self.totReward = 0
self.info = {}
def step(self, action):
if self.print : print("stepping: ", self.episodeNum)
self.curTemp += self.action_options[action]
self.curTemp = self.round_to(self.curTemp, 0.5)
self.steps += 1
reward = -self.reward_scale
self.T = np.append(self.T, self.curTemp)
if self.print : print("Temperature: ", self.T)
self.I = self.getData(self.T)
# Fitting
if self.steps > 4:
self.error= np.sqrt(self.I)
M = Curve(OrderMethods.orderparameter, self.T, self.I, self.error, Tn = self.startTn, Jt = self.startJt, Nf = self.startNf, Bk = self.startBk)
M.Tn.range(40, 300)
M.Jt.range(0.4, 2)
M.Nf.range(100,500)
M.Bk.range(.1, 8)
self.x, dx, chisq, params = OrderMethods.fit(M)
self.Nf = self.x[2]
self.Jt = self.x[1]
self.Bk = self.x[0]
self.x = self.x[3]
if self.print : print("ORDER PARAM RESULT (X2):", self.x)
if self.print : print("THE JT RESULT {X0}:", self.Jt)
if self.print : print("THE NF RESULT {X1}:", self.Nf)
if self.print : print("THE BK RESULT {X3}:", self.Bk)
dx = params[0].dx
if self.print : print("chisqds: ", chisq)
if self.print : print("BUT ARE WE SURE?:", dx)
# plt.plot(self.T, self.I, 'ro')
# plt.show()
# plt.close()
# if(action > 0.5):
# reward += 1000
# Reward function
if chisq < 300 and chisq >= 1:
reward += 100*(1/chisq)
elif chisq < 1:
reward += 100
if dx < 1:
reward += 300
# Log
self.chisqds.append(chisq)
self.transTemps.append(self.x)
self.Jts.append(self.Jt)
self.Nfs.append(self.Nf)
self.Bks.append(self.Bk)
if not self.goodTn :
if abs(self.x - self.fixedTn) < 0.1 :
#print("ADDINGtn")
self.convergsTn.append(self.steps)
self.goodTn = True
if not self.goodNf :
if abs (self.Nf - self.fixedNf) < 0.1:
#print("ADDINGnf")
self.convergsNf.append(self.steps)
self.goodNf = True
if not self.goodJt :
if abs(self.Jt - self.fixedJt) < 0.1:
#print("ADDINGjt")
self.convergsJt.append(self.steps)
self.goodJt = True
if not self.goodBk :
if abs(self.Bk - self.fixedBk) < 0.1:
#print("ADDINGbk")
self.convergsBk.append(self.steps)
self.goodBk = True
if self.print : print("rewaRD:: ", reward)
self.totReward += reward
self.state = np.array([self.I])
# Terminal Conditions
if (self.steps > 4 and chisq < 0.05 and dx < 1): #less than or equal to?
if self.print : print("terminated: excellent conditions")
terminal = True
self.log()
elif (self.curTemp >= 340):
if self.print : print("terminated: over max temp")
terminal = True
self.log()
elif (self.steps > 100):
if self.print : print("terminated: too long")
terminal = True
self.log()
else:
terminal = False
if terminal:
if not self.goodTn :
#print("ADDINGtn")
self.convergsTn.append(self.steps)
self.goodTn = True
if not self.goodNf :
#print("ADDINGnf")
self.convergsNf.append(self.steps)
self.goodNf = True
if not self.goodJt :
#print("ADDINGjt")
self.convergsJt.append(self.steps)
self.goodJt = True
if not self.goodBk :
#print("ADDINGbk")
self.convergsBk.append(self.steps)
self.goodBk = True
return self.state, reward, terminal, self.info
def reset(self):
if self.print : print("reset")
self.steps = 0
self.chisqds = []
self.transTemps = []
self.Jts = []
self.Nfs = []
self.actions = []
self.totReward = 0
self.curTemp = 3
self.T = np.array([self.curTemp])
self.I = self.getData(self.T)
self.state = self.I[-1]
self.goodTn = False
self.goodNf = False
self.goodJt = False
self.goodBk = False
newTn = random.randrange(10, 280, 10)
#newJt = .885
newJt = random.randrange(7, 15, 1)/10.0
newNf = 330
# newNf = random.randrange(120, 480, 10)
newBk = .3
# newBk = random.randrange(30, 78, 2)/10.0
self.setVars(newTn, newJt, newNf, newBk)
self.startTn = random.randrange(newTn - 20, newTn + 20, 2)
if self.print : print("start Tn: ", self.startTn)
rangea = int(newJt*100 - 30)
rangeb = int(newJt*100 + 30)
self.startJt = random.randrange(rangea, rangeb, 2)/100.0
if self.print : print("start Jt: ", self.startJt)
self.startNf = random.randrange(newNf - 20, newNf + 20, 2)
if self.print : print("start Nf: ", self.startNf)
rangea = int(newBk*100 - 20)
rangeb = int(newBk*100 + 20)
self.startBk = random.randrange(rangea, rangeb, 2)/100.0
if self.print : print("start Bk: ", self.startBk)
# print("state:", self.state)
# print("obsrvation space:", self.observation_space)
return self.state #starting state
def log(self):
self.episodeNum += 1
logdir = "/wrk/kmm11/orderout/messingaround/"
filename = logdir + "chis/chiLog-" + str(self.episodeNum) + ".npy"
np.savetxt(filename, self.chisqds)
filename = logdir + "temps/tnLog-" + str(self.episodeNum) + ".npy"
np.savetxt(filename, self.transTemps)
filename = logdir + "jt/jtLog-" + str(self.episodeNum) + ".npy"
np.savetxt(filename, self.Jts)
filename = logdir + "nf/nfLog-" + str(self.episodeNum) + ".npy"
np.savetxt(filename, self.Nfs)
filename = logdir + "bk/bkLog-" + str(self.episodeNum) + ".npy"
np.savetxt(filename, self.Bks)
filename = logdir + "actions/actionLog-" + str(self.episodeNum) + ".npy"
np.savetxt(filename, self.actions)
filename = logdir + "convergsTn.npy"
np.savetxt(filename, self.convergsTn)
filename = logdir + "convergsNf.npy"
np.savetxt(filename, self.convergsNf)
filename = logdir + "convergsJt.npy"
np.savetxt(filename, self.convergsJt)
filename = logdir + "convergsBk.npy"
np.savetxt(filename, self.convergsBk)
self.rewards.append(self.totReward)
filename = logdir + "runrewards.npy"
np.savetxt(filename, self.rewards)
self.realTns.append(self.fixedTn)
filename = logdir + "realTns.npy"
np.savetxt(filename, self.realTns)
#
# def action_space(self):
# return spaces.Box(low = np.array([0.5]), high = np.array([340 - self.curTemp]))
# # return spaces.Box(low = np.array([self.curTemp + 0.5]), high = np.array([340]))
# @property
# def observation_space(self):
# return spaces.Box(low=0.0, high=400.0, shape=(self.steps + 1,), dtype=np.float32)
def round_to(self, n, precision):
correction = 0.5 if n >= 0 else -0.5
return int( n/precision+correction ) * precision
def getData(self, T):
return OrderMethods.orderparameter(T, self.fixedTn, self.fixedJt, self.fixedNf, self.fixedBk)
def setVars(self, Tn, Jt, Nf, Bk):
self.fixedTn = Tn
if self.print : print("fixed Tn: ", self.fixedTn)
self.fixedJt = Jt
if self.print : print("fixed Jt: ", self.fixedJt)
self.fixedNf = Nf
if self.print : print("fixed Nf: ", self.fixedNf)
self.fixedBk = Bk
if self.print : print("fixed Bk: ", self.fixedBk)
def getVars(self):
return self.x, self.Jt, self.Nf, self.Bk
def getFixedVars(self):
return self.fixedTn, self.fixedJt, self.fixedNf, self.fixedBk
if __name__ == "__main__":
# Instantiate the env
env = OrderEnv()
# wrap it
env = make_vec_env(lambda: env, n_envs=1) #retrieve?
model = PPO('MlpPolicy', env, verbose=1).learn(10000)
model.save("/wrk/kmm11/orderout/models/testing")