forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli-automl-image-object-detection-task-fridge-items.yml
62 lines (54 loc) · 1.42 KB
/
cli-automl-image-object-detection-task-fridge-items.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
$schema: https://azuremlsdk2.blob.core.windows.net/preview/0.0.1/autoMLJob.schema.json
type: automl
# <experiment_name>
experiment_name: dpv2-cli-automl-image-object-detection-experiment
# </experiment_name>
description: An Image Object Detection job using fridge items dataset
# <compute_settings>
compute: azureml:gpu-cluster
# </compute_settings>
# <task_settings>
task: image_object_detection
log_verbosity: debug
primary_metric: mean_average_precision
# </task_settings>
# <mltable_settings>
target_column_name: label
training_data:
path: data/training-mltable-folder
type: mltable
validation_data:
path: data/validation-mltable-folder
type: mltable
# </mltable_settings>
# <limit_settings>
limits:
timeout_minutes: 60
# </limit_settings>
# <fixed_settings>
image_model:
early_stopping: True
evaluation_frequency: 1
# </fixed_settings>
# <sweep_settings>
sweep:
limits:
max_trials: 10
max_concurrent_trials: 2
sampling_algorithm: random
early_termination:
type: bandit
evaluation_interval: 2
slack_factor: 0.2
delay_evaluation: 6
# </sweep_settings>
# <search_space_settings>
search_space:
- model_name: "yolov5"
learning_rate: "uniform(0.0001, 0.01)"
model_size: "choice('small', 'medium')"
- model_name: "fasterrcnn_resnet50_fpn"
learning_rate: "uniform(0.0001, 0.001)"
optimizer: "choice('sgd', 'adam', 'adamw')"
min_size: "choice(600, 800)"
# </search_space_settings>