-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathtripadvisor.py
264 lines (236 loc) · 9.98 KB
/
tripadvisor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
This is an example web scraper for tripadvisor.com used in scrapfly blog article:
https://scrapfly.io/blog/how-to-scrape-tripadvisor/
To run this scraper set env variable $SCRAPFLY_KEY with your scrapfly API key:
$ export $SCRAPFLY_KEY="your key from https://scrapfly.io/dashboard"
"""
import json
import math
import os
import random
import string
from typing import List, Optional, TypedDict, Dict
from urllib.parse import urljoin
from loguru import logger as log
from scrapfly import ScrapeApiResponse, ScrapeConfig, ScrapflyClient
SCRAPFLY = ScrapflyClient(key=os.environ["SCRAPFLY_KEY"])
BASE_CONFIG = {
# Tripadvisor.com requires Anti Scraping Protection bypass feature:
"asp": True,
# set the proxy location to US
"country": "US",
}
class LocationData(TypedDict):
"""result dataclass for tripadvisor location data"""
localizedName: str
url: str
HOTELS_URL: str
ATTRACTIONS_URL: str
RESTAURANTS_URL: str
placeType: str
latitude: float
longitude: float
async def scrape_location_data(query: str) -> List[LocationData]:
"""
scrape search location data from a given query.
e.g. "New York" will return us TripAdvisor's location details for this query
"""
log.info(f"scraping location data: {query}")
# the graphql payload that defines our search
# note: that changing values outside of expected ranges can block the web scraper
payload = json.dumps(
[
{
"variables": {
"request": {
"query": query,
"limit": 10,
"scope": "WORLDWIDE",
"locale": "en-US",
"scopeGeoId": 1,
"searchCenter": None,
# note: here you can expand to search for differents.
"types": [
"LOCATION",
# "QUERY_SUGGESTION",
# "RESCUE_RESULT"
],
"locationTypes": [
"GEO",
"AIRPORT",
"ACCOMMODATION",
"ATTRACTION",
"ATTRACTION_PRODUCT",
"EATERY",
"NEIGHBORHOOD",
"AIRLINE",
"SHOPPING",
"UNIVERSITY",
"GENERAL_HOSPITAL",
"PORT",
"FERRY",
"CORPORATION",
"VACATION_RENTAL",
"SHIP",
"CRUISE_LINE",
"CAR_RENTAL_OFFICE",
],
"userId": None,
"context": {},
"enabledFeatures": ["articles"],
"includeRecent": True,
}
},
"query": "84b17ed122fbdbd4",
"extensions": {"preRegisteredQueryId": "84b17ed122fbdbd4"},
}
]
)
# we need to generate a random request ID for this request to succeed
random_request_id = "".join(random.choice(string.ascii_lowercase + string.digits) for i in range(64))
headers = {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate, br",
"Connection": "keep-alive",
"Host": "www.tripadvisor.com",
"Origin": "https://www.tripadvisor.com",
"X-Requested-With": "XMLHttpRequest",
"content-type": "application/json",
"x-requested-by": random_request_id
}
result = await SCRAPFLY.async_scrape(
ScrapeConfig(
url="https://www.tripadvisor.com/data/graphql/ids",
headers=headers,
body=payload,
method="POST",
**BASE_CONFIG,
)
)
data = json.loads(result.content)
results = data[0]["data"]["Typeahead_autocomplete"]["results"]
# strip metadata
results = [r["details"] for r in results if r['__typename'] == 'Typeahead_LocationItem']
log.info(f"found {len(results)} results")
return results
class Preview(TypedDict):
url: str
name: str
def parse_search_page(result: ScrapeApiResponse) -> List[Preview]:
"""parse result previews from TripAdvisor search page"""
log.info(f"parsing search page: {result.context['url']}")
parsed = []
# Search results are contain in boxes which can be in two locations.
# this is location #1:
for box in result.selector.css("span.listItem"):
title = box.css("div[data-automation=hotel-card-title] a ::text").getall()[1]
url = box.css("div[data-automation=hotel-card-title] a::attr(href)").get()
parsed.append(
{
"url": urljoin(result.context["url"], url), # turn url absolute
"name": title,
}
)
if parsed:
return parsed
# location #2
for box in result.selector.css("div.listing_title>a"):
parsed.append(
{
"url": urljoin(result.context["url"], box.xpath("@href").get()), # turn url absolute
"name": box.xpath("text()").get("").split(". ")[-1],
}
)
return parsed
async def scrape_search(query: str, max_pages: Optional[int] = None) -> List[Preview]:
"""scrape search results of a search query"""
# first scrape location data and the first page of results
log.info(f"{query}: scraping first search results page")
try:
location_data = (await scrape_location_data(query))[0] # take first result
except IndexError:
log.error(f"could not find location data for query {query}")
return
hotel_search_url = "https://www.tripadvisor.com" + location_data["HOTELS_URL"]
log.info(f"found hotel search url: {hotel_search_url}")
first_page = await SCRAPFLY.async_scrape(ScrapeConfig(hotel_search_url, **BASE_CONFIG))
# parse first page
results = parse_search_page(first_page)
if not results:
log.error("query {} found no results", query)
return []
# extract pagination metadata to scrape all pages concurrently
page_size = len(results)
total_results = first_page.selector.xpath("//span/text()").re("(\d*\,*\d+) properties")[0]
total_results = int(total_results.replace(",", ""))
next_page_url = first_page.selector.css('a[aria-label="Next page"]::attr(href)').get()
next_page_url = urljoin(hotel_search_url, next_page_url) # turn url absolute
total_pages = int(math.ceil(total_results / page_size))
if max_pages and total_pages > max_pages:
log.debug(f"{query}: only scraping {max_pages} max pages from {total_pages} total")
total_pages = max_pages
# scrape remaining pages
log.info(f"{query}: found {total_results=}, {page_size=}. Scraping {total_pages} pagination pages")
other_page_urls = [
# note: "oa" stands for "offset anchors"
next_page_url.replace(f"oa{page_size}", f"oa{page_size * i}")
for i in range(1, total_pages)
]
# we use assert to ensure that we don't accidentally produce duplicates which means something went wrong
assert len(set(other_page_urls)) == len(other_page_urls)
to_scrape = [ScrapeConfig(url, **BASE_CONFIG) for url in other_page_urls]
async for result in SCRAPFLY.concurrent_scrape(to_scrape):
results.extend(parse_search_page(result))
return results
def parse_hotel_page(result: ScrapeApiResponse) -> Dict:
"""parse hotel data from hotel pages"""
selector = result.selector
basic_data = json.loads(selector.xpath("//script[contains(text(),'aggregateRating')]/text()").get())
description = selector.css("div.fIrGe._T::text").get()
amenities = []
for feature in selector.xpath("//div[contains(@data-test-target, 'amenity')]/text()"):
amenities.append(feature.get())
reviews = []
for review in selector.xpath("//div[@data-reviewid]"):
title = review.xpath(".//div[@data-test-target='review-title']/a/span/span/text()").get()
text = "".join(review.xpath(".//span[contains(@data-automation, 'reviewText')]/span/text()").extract())
rate = review.xpath(".//div[@data-test-target='review-rating']/*/*[contains(text(),'of 5 bubbles')]/text()").get()
rate = (float(rate.replace(" of 5 bubbles", ""))) if rate else None
trip_data = review.xpath(".//span[span[contains(text(),'Date of stay')]]/text()").get()
reviews.append({
"title": title,
"text": text,
"rate": rate,
"tripDate": trip_data
})
return {
"basic_data": basic_data,
"description": description,
"featues": amenities,
"reviews": reviews
}
async def scrape_hotel(url: str, max_review_pages: Optional[int] = None) -> Dict:
"""Scrape hotel data and reviews"""
first_page = await SCRAPFLY.async_scrape(ScrapeConfig(url, **BASE_CONFIG))
hotel_data = parse_hotel_page(first_page)
# get the number of total review pages
_review_page_size = 10
total_reviews = int(hotel_data["basic_data"]["aggregateRating"]["reviewCount"])
total_review_pages = math.ceil(total_reviews / _review_page_size)
# get the number of review pages to scrape
if max_review_pages and max_review_pages < total_review_pages:
total_review_pages = max_review_pages
# scrape all review pages concurrently
review_urls = [
# note: "or" stands for "offset reviews"
url.replace("-Reviews-", f"-Reviews-or{_review_page_size * i}-")
for i in range(1, total_review_pages)
]
async for result in SCRAPFLY.concurrent_scrape([
ScrapeConfig(url, **BASE_CONFIG)
for url in review_urls
]):
data = parse_hotel_page(result)
hotel_data["reviews"].extend(data["reviews"])
log.success(f"scraped one hotel data with {len(hotel_data['reviews'])} reviews")
return hotel_data