-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathdemo_antennas.m
191 lines (152 loc) · 5.83 KB
/
demo_antennas.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
%% Demo: Computing and Displaying Antenna Patterns
%
% In this demo, we will illustrate some basic MATLAB tools for
% computing and displaying antenna patterns. Specifically, you will learn
% to:
%
% * Perform basic manipulations in spherical coordinates
% * Define simple antennas using MATLAB's antenna toolbox
% * Plot antenna patterns in 2D and 3D
% * Compute free-space path loss
% * Use the antenna patterns and free-space path loss functions to
% compute the path loss along a trajectory
%% Spherical coordiantes.
% We first demonstrate how to perform basic manipulations
% in spherical coordinates.
%
% For example, the code below generates four random points in 3D
% and converts them to spherical coordinates
% Generate random data
X = randn(3,4);
% Compute spherical coordinates of a matrix of points
% Note these are in radians!
[az, el, rad] = cart2sph(X(1,:), X(2,:), X(3,:));
% We can then convert back
[x,y,z] = sph2cart(az,el,rad);
Xhat = [x; y; z];
%% Simulation constants
% For the remainder of the demo, we will use the following
% simulation constants
%
% Note: In MATLAB, all values are in metric units m, s, Hz, etc.
% Not GHz or MHz.
fc = 2.3e9; % Carrier frequency
vp = physconst('lightspeed'); % speed of light
lambda = vp/fc; % wavelength
%% Dipole antenna
% For a first antenna, we construct a simple dipole.
% Construct the antenna object
ant = dipole(...
'Length', lambda/2,...
'Width', 0.01*lambda );
% Display the antenna
ant.show();
%% Displaying the pattern
% We can display the antenna pattern with the following command.
ant.pattern(fc)
%% Patch Element
% We now consider a more complex antenna. The antenna toolbox can analyze
% a number of antennas in use. However, once the antenna is more complex,
% you will start to notice that the analysis becomes very slow.
len = 0.49*lambda;
groundPlaneLen = lambda;
ant2 = patchMicrostrip(...
'Length', len, 'Width', 1.5*len, ...
'GroundPlaneLength', groundPlaneLen, ...
'GroundPlaneWidth', groundPlaneLen, ...
'Height', 0.01*lambda, ...
'FeedOffset', [0.25*len 0]);
% Tilt the element so that the maximum energy is in the x-axis
ant2.Tilt = 90;
ant2.TiltAxis = [0 1 0];
% Display the antenna pattern after rotation.
% This may take a few minutes. So be patient
ant2.pattern(fc, 'Type', 'Directivity');
% You can also save the pattern
[dir,az,el] = ant2.pattern(fc, 'Type', 'Directivity');
%% Plotting a cross-section
% Once the antenna pattern is stored in an array, you can
% plot cross sections as follows. Suppose we want to plot
% the cross-section at an elevation angle of 0
% Elevation angle to plot
elPlot = 0;
% Find the index closest to the desired angle
[~, iel] = min(abs(el - elPlot));
% Plot using the polar plot.
% Note the conversion to radians. You also have to use the |rlim|
% command to set the limits.
polarplot(deg2rad(az), dir(iel,:),'LineWidth', 3);
rlim([-30, 15]);
title('Directivity (dBi)');
%% Computing free-space path loss
% Suppose we want to compute the omni-directional free-space path loss,
% meaning the path loss without antenna gain at some distance d:
d = 500; % distance in meters
% We can compute the FSPL manually from Friis' law
% Note the minus sign
plOmni1 = -20*log10(lambda/4/pi/d);
% Or, we can use MATLAB's built in function:
plOmni2 = fspl(d, lambda);
fprintf(1,'Omni PL - manual: %7.2f\n', plOmni1);
fprintf(1,'Omni PL - MATLAB: %7.2f\n', plOmni2);
%% Creating a custom antenna pattern
% While MATLAB has many common antennas, you will often need
% to load antenna data from a manufacturer or other source.
% Also, even when using MATLAB's antenna elements, it is often
% useful to compute the pattern once and store it. For this purpose,
% you can create a custom antenna element. Here, we will create
% a custom antenna element with directivity pattern we just
% computed from the microstrip element.
phasePattern = zeros(size(dir));
ant3 = phased.CustomAntennaElement(...
'AzimuthAngles', az, 'ElevationAngles', el, ...
'MagnitudePattern', dir, ...
'PhasePattern', phasePattern);
% Plot the antenna pattern.
% Note the format is slightly different since we are using
% the pattern routine from the phased array toolbox
ant3.pattern(fc);
%% Interpolating the directivity in the custom pattern
% Once we have the antenna pattern, we can interpolate the
% values of the gain at other directions. To illustrate we will
% plot the total path loss between a TX at the origin and an object
% traveling in a linear path along a 3D path. First,
% we create and plot the path
% Define the linear path
npts = 100;
xstart = [50 -50 0]';
xend = [-50 50 50]';
t = linspace(0,1,npts);
X = xstart*(1-t) + xend*t;
% Plot the path in 3D along with the location of the TX at the origin
plot3(X(1,:), X(2,:), X(3,:), 'Linewidth', 3);
hold on;
plot3(0, 0, 0, 'o', 'Linewidth', 3);
grid();
hold off;
%%
% We compute the angle from the transmitter to the target.
% Remember to convert to degrees.
[azpath, elpath, dist] = cart2sph(X(1,:), X(2,:), X(3,:));
azpath = rad2deg(azpath);
elpath = rad2deg(elpath);
% Compute the free space path loss along the path without
% the antenna gain. We can use MATLAB's built-in function
plOmni = fspl(dist, lambda);
% Compute the directivity using interpolation of the pattern.
% We can use the ant3.resp method for this purpose, but the
% interpolation is not smooth. So, we will do this using
% MATLAB's interpolation objects. First, we create the
% interpolation object.
F = griddedInterpolant({el,az},dir);
% Then, we compute the directivity using the object
dirPath = F(elpath,azpath);
% Compute the total path loss including the directivity
plDir = plOmni - dirPath;
% Plot the path loss over time. Can you explain the
plot(t, [plOmni; plDir]', 'Linewidth', 3);
grid();
set(gca, 'Fontsize', 16);
legend('Omni', 'With directivity', 'Location', 'SouthEast');
xlabel('Time');
ylabel('Path loss (dB)');