-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathprob_antennas.tex
299 lines (262 loc) · 9.86 KB
/
prob_antennas.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumitem}
\usepackage{siunitx}
\usetikzlibrary{shapes,arrows}
\usepackage{mdframed}
\usepackage{mcode}
%\usetikzlibrary{dsp,chains}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\GV{Guo and Verd{\'u}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Ebf}{\mathbf{E}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\def\Rect{\mathop{Rect}}
\def\sinc{\mathop{sinc}}
\def\Real{\mathrm{Re}}
\def\Imag{\mathrm{Im}}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
% Solution environment
\definecolor{lightgray}{gray}{0.95}
\newmdenv[linecolor=white,backgroundcolor=lightgray,frametitle=Solution:]{solution}
\begin{document}
\title{Problems: Antennas and Free-Space Propagation\\
EL-GY 6023. Wireless Communications}
\author{Prof.\ Sundeep Rangan}
\date{}
\maketitle
In all the problems below, unless specified otherwise, $\phi$ is the
azimuth angle and $\theta$ is elevation angle.
\begin{enumerate}
\item \emph{EM wave}: Suppose an EM plane wave has an E-field
\[
\Ebf(x,y,z,t) = E_0 \ebf_y \cos(2\pi f t - kx).
\]
\begin{enumerate}[label=(\alph*)]
\item What is direction of motion?
\item If the average power flux density is $10^{-8}\, \si{mW/m^2}$, what is $E_0$?
Assume the characteristic impedance is $\eta_0 = \SI{377}{\ohm}$.
\item If the frequency is $f=$ \SI{1.5}{GHz}, what is $k$?
What are the units of $k$?
\end{enumerate}
\item \emph{dBm to linear conversions:}
\begin{enumerate}[label=(\alph*)]
\item Convert the following to mW: 17 dBm, -73 dBm, -97 dBW.
\item Convert the following to dBm: 250 mW, $8(10)^{-8}$ W, $5(10)^{-6}$ mW
\end{enumerate}
\item \emph{Spherical-cartesian conversions:} When a transmitter is at the origin,
its E-field in the far field can often be represented as,
\[
\Ebf = E_\theta \ebf_\theta + E_\phi \ebf_\phi,
\]
where $\ebf_\theta$ and $\ebf_\phi$ are the basis vectors in elevation and azimuth direction.
Complete the following MATLAB function that takes a $1\times 3$ position vector
\mcode{pos} and $n \times 1$ values of $E_\theta$ and $E_\phi$ and returns the
an $n \times 3$ matrix \mcode{E} representing the E-field values in cartesian coordinates.
You may use any built in MATLAB functions. Be careful whether the methods use degrees
or radians.
\begin{lstlisting}
function E = convert(Etheta, Ephi, pos)
\end{lstlisting}
\item \emph{Rotation matrices}: In wireless systems, we often need to consider antennas that
can be in arbitrary rotations. One way of specifying the orientation of an object
is through its so-called \emph{Euler} angles $(\alpha,\beta,\gamma)$ or
\emph{yaw, pitch} and \emph{roll}. Let $R(\alpha,\beta,\gamma)$ be the rotation matrix
for a given set of Euler angles. You can find the formulae for $R(\alpha,\beta,\gamma)$
in any reference such as wikipedia.
\begin{enumerate}[label=(\alph*)]
% \item Write a simple MATLAB function
% as follows that computes the rotation matrix given the Euler angles in degrees.
%\begin{lstlisting}
% function rot = rotMatrix(yaw,pitch,roll)
%\end{lstlisting}
\item Given elevation and azimuth angles $(\theta,\phi)$ find $(\alpha,\beta,\gamma)$
with $\gamma=0$ that rotates the $x$-axis to point in $(\theta,\phi)$.
\item Is $R(\alpha,0,0)^{-1} = R(-\alpha,0,0)$? Explain.
\item Is $R(\alpha,\beta,0)^{-1} = R(-\alpha,-\beta,0)$? Explain.
\end{enumerate}
\item \emph{Angular areas:} Find the angular area in steradians of
following sets of angles where $\phi$ is the azimuth angle and $\theta$ is the elevation angles
in degrees:
\begin{enumerate}[label=(\alph*)]
\item $A_1 = \left\{ (\phi,\theta) ~ | ~ \phi \in [-\ang{30},\ang{30}],~ \theta \in [-\ang{90},\ang{90}]\right\}$
\item $A_2 = \left\{ (\phi,\theta) ~|~ \phi \in [-\ang{30},\ang{30}],~ \theta \in [-\ang{45},\ang{45}]\right\}$
\end{enumerate}
\item \emph{Directivity:} Suppose an antenna radiates power uniformly in
the angular beam $\phi \in [-\ang{30},\ang{30}]$, and $\theta \in [-\ang{45},\ang{45}]$,
and radiates no power at other angles. What is the maximum directivity of the antenna in dBi?
You can use the results from the previous problem.
\item \emph{Radiation intensity:} A \SI{170}{cm} $\times$ \SI{40}{cm} object
(roughly the size of a human) is \SI{800}{m} from a base station.
If the base station antenna transmits \SI{250}{mW} isotropically, how much power
reaches the human? Use reasonable approximations that the human is far from the
transmitter.
\item \emph{Radiation integration:} Suppose the radiation intensity is
\[
U(\phi,\theta) = A\cos^2(\theta), \quad A = 10\,\si{mW/sr},
\]
where $(\phi,\theta)$ are the azimuth and elevation angles.
find the total radiated power in dBm and maximum directivity in dBi.
You can look up any integrals you need.
\item \emph{Numerically integrating patterns:}
Suppose we are given the radiation intensity $U(\theta,\phi)$ at discrete points,
$(\theta_i,\phi_j)$ where
$\theta_i$, $i=1,\ldots,M$ is uniformly spaced on $[-\pi/2,\pi/2]$
and $\phi_j$, $j=1,\ldots,N$ is uniformly spaced on $[-\pi,\pi]$.
Assume $(\theta, \phi)$ are elevation and azimuth angles. Write a short MATLAB function
to compute the radiated power $P_{\rm rad}$ and directivity $D(\theta_i,\phi_j)$
from a matrix of values $U(\theta_i,\phi_j)$.
\item \emph{Friis' Law}: A transmitter radiates \SI{15}{dBm} at a carrier $f_c =$ \SI{2.1}{GHz}
with a directional gain of $G_t = 9$\,\si{dBi}.
Suppose the receiver is $d =$ \SI{200}{m} from the transmitter and the path is free space.
What is the received power in dBm if:
\begin{enumerate}[label=(\alph*)]
\item The effective received aperture is \SI{1}{cm^2}.
\item The receiver gain is $G_r =$ \SI{5}{dBi}.
\end{enumerate}
\end{enumerate}
\end{document}