-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
58 lines (43 loc) · 1.52 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import re
from keras.preprocessing.sequence import pad_sequences
from model import *
class CoherenceModel(object):
def __init__(self, weight_file):
print("Stating to load model config")
self.model = get_model()
print("Model config loaded")
print("Starting to load model weights")
self.model.load_weights(weight_file)
print("Model weight loaded")
@staticmethod
def _process_line(line):
splits = line.split(' ')
res = []
for element in splits:
res.extend([x for x in re.split('(\W+)', element) if (len(x) != 0)])
full_num = []
for word in res:
try:
full_num.append(word2index[word])
except:
pass
return pad_sequences([full_num], maxlen=MAX_SEQUENCE_LENGTH, padding='post', truncating='post', value=-1)
def predict(self, first_sentence, second_sentence, third_sentence):
x = [CoherenceModel._process_line(first_sentence),
CoherenceModel._process_line(second_sentence),
CoherenceModel._process_line(third_sentence)]
print("Starting to predict")
value = self.model.predict(x)
return value[0]
if __name__ == '__main__':
# TODO: ENTER MODEL WEIGHT FILE NAME HERE
obj = CoherenceModel(weight_file="trained_models/<>.h5")
# TODO: ENTER LINES HERE
# first line
f = ""
# second line
s = ""
# third line
t = ""
prob = obj.predict(f, s, t)
print("Prediction: %f", prob)