-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathpytorch_autograd_and_nn.py
533 lines (443 loc) · 22.5 KB
/
pytorch_autograd_and_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""
Implements pytorch autograd and nn in PyTorch.
WARNING: you SHOULD NOT use ".to()" or ".cuda()" in each implementation block.
"""
import torch
import torch.nn as nn
from a4_helper import *
import torch.nn.functional as F
import torch.optim as optim
def hello():
"""
This is a sample function that we will try to import and run to ensure that
our environment is correctly set up on Google Colab.
"""
print('Hello from pytorch_autograd_and_nn.py!')
################################################################################
# Part II. Barebones PyTorch
################################################################################
# Before we start, we define the flatten function for your convenience.
def flatten(x, start_dim=1, end_dim=-1):
return x.flatten(start_dim=start_dim, end_dim=end_dim)
def three_layer_convnet(x, params):
"""
Performs the forward pass of a three-layer convolutional network with the
architecture defined above.
Inputs:
- x: A PyTorch Tensor of shape (N, C, H, W) giving a minibatch of images
- params: A list of PyTorch Tensors giving the weights and biases for the
network; should contain the following:
- conv_w1: PyTorch Tensor of shape (channel_1, C, KH1, KW1) giving weights
for the first convolutional layer
- conv_b1: PyTorch Tensor of shape (channel_1,) giving biases for the first
convolutional layer
- conv_w2: PyTorch Tensor of shape (channel_2, channel_1, KH2, KW2) giving
weights for the second convolutional layer
- conv_b2: PyTorch Tensor of shape (channel_2,) giving biases for the second
convolutional layer
- fc_w: PyTorch Tensor giving weights for the fully-connected layer. Can you
figure out what the shape should be?
- fc_b: PyTorch Tensor giving biases for the fully-connected layer. Can you
figure out what the shape should be?
Returns:
- scores: PyTorch Tensor of shape (N, C) giving classification scores for x
"""
conv_w1, conv_b1, conv_w2, conv_b2, fc_w, fc_b = params
scores = None
##############################################################################
# TODO: Implement the forward pass for the three-layer ConvNet.
# The network have the following architecture:
# 1. Conv layer (with bias) with 32 5x5 filters, with zero-padding of 2
# 2. ReLU
# 3. Conv layer (with bias) with 16 3x3 filters, with zero-padding of 1
# 4. ReLU
# 5. Fully-connected layer (with bias) to compute scores for 10 classes
# Hint: F.linear, F.conv2d, F.relu, flatten (implemented above)
##############################################################################
# Replace "pass" statement with your code
# (1) and (2): Conv layer + ReLU
x = F.conv2d(x, conv_w1, bias=conv_b1, padding=2)
x = F.relu(x)
# (3) and (4): Conv layer + ReLU
x = F.conv2d(x, conv_w2, bias=conv_b2, padding=1)
x = F.relu(x)
# Flatten 'channels', 'height' and 'width' of "x" (i.e. keep only batches dim [N]).
x = flatten(x)
# (5): FC layer.
scores = F.linear(x, fc_w, bias=fc_b)
##############################################################################
# END OF YOUR CODE
##############################################################################
return scores
def initialize_three_layer_conv_part2(dtype=torch.float, device='cpu'):
'''
Initializes weights for the three_layer_convnet for part II
Inputs:
- dtype: A torch data type object; all computations will be performed using
this datatype. float is faster but less accurate, so you should use
double for numeric gradient checking.
- device: device to use for computation. 'cpu' or 'cuda'
'''
# Input/Output dimenssions
C, H, W = 3, 32, 32
num_classes = 10
# Hidden layer channel and kernel sizes
channel_1 = 32
channel_2 = 16
kernel_size_1 = 5
kernel_size_2 = 3
# Initialize the weights
conv_w1 = None
conv_b1 = None
conv_w2 = None
conv_b2 = None
fc_w = None
fc_b = None
##############################################################################
# TODO: Define and initialize the parameters of a three-layer ConvNet
# using nn.init.kaiming_normal_. You should initialize your bias vectors
# using the zero_weight function.
# You are given all the necessary variables above for initializing weights.
##############################################################################
# Replace "pass" statement with your code
# "conv1_shape" is a 4-D tensor of shape (out_channels, in_channels, kH, kW).
conv1_shape = (channel_1, C, kernel_size_1, kernel_size_1)
conv_w1 = nn.init.kaiming_normal_(torch.empty(conv1_shape, dtype=dtype, device=device))
# "conv_b1" is a 1-D tensor of shape (out_channels,)
conv_b1 = nn.init.zeros_(torch.empty(conv1_shape[0], dtype=dtype, device=device))
# Compute Conv1 layer's output height/width. This is need for next operations.
# Conv1 output height/width = 1 + (H - k1 + 2*(padding_conv1)) / stride_conv1
# = 1 + (H - k1 + 2*2) / 1
# That is, Conv1 output is a 3-D tensor of shape (channel_1, HW_1, HW_1)
# Note that, the batch size is not mentioned and "output's height" = "output's width".
HW_1 = 1 + (H - kernel_size_1 + 2*2)
# Compute "conv_w2" and "conv_b2" with the same way as for conv1 parameters.
conv2_shape = (channel_2, channel_1, kernel_size_2, kernel_size_2)
conv_w2 = nn.init.kaiming_normal_(torch.empty(conv2_shape, dtype=dtype, device=device))
conv_b2 = nn.init.zeros_(torch.empty(conv2_shape[0], dtype=dtype, device=device))
# Conv2 output height/width = 1 + (HW_1 - k2 + 2*(padding_conv2)) / stride_conv2
# = 1 + (HW_1 - k2 + 2*1) / 1
# That is, Conv2 output is a 3-D tensor of shape (channel_2, HW_2, HW_2)
HW_2 = 1 + (HW_1 - kernel_size_2 + 2)
fc_shape = (num_classes, channel_2 * HW_2 * HW_2)
fc_w = nn.init.kaiming_normal_(torch.empty(fc_shape, dtype=dtype, device=device))
fc_b = nn.init.zeros_(torch.empty(fc_shape[0], dtype=dtype, device=device))
# Mark all weight and bias tensors as trainable (i.e. Requires gradients).
for tensor in [conv_w1, conv_b1, conv_w2, conv_b2, fc_w, fc_b]:
tensor.requires_grad = True
##############################################################################
# END OF YOUR CODE
##############################################################################
return [conv_w1, conv_b1, conv_w2, conv_b2, fc_w, fc_b]
################################################################################
# Part III. PyTorch Module API
################################################################################
class ThreeLayerConvNet(nn.Module):
def __init__(self, in_channel, channel_1, channel_2, num_classes):
super().__init__()
############################################################################
# TODO: Set up the layers you need for a three-layer ConvNet with the
# architecture defined below. You should initialize the weight of the
# model using Kaiming normal initialization, and zero out the bias vectors.
#
# The network architecture should be the same as in Part II:
# 1. Convolutional layer with channel_1 5x5 filters with zero-padding of 2
# 2. ReLU
# 3. Convolutional layer with channel_2 3x3 filters with zero-padding of 1
# 4. ReLU
# 5. Fully-connected layer to num_classes classes
#
# We assume that the size of the input of this network is `H = W = 32`, and
# there is no pooing; this information is required when computing the number
# of input channels in the last fully-connected layer.
#
# HINT: nn.Conv2d, nn.init.kaiming_normal_, nn.init.zeros_
############################################################################
# Replace "pass" statement with your code
# Define the 1st Conv layer.
# Input: Tensor of shape (in_channel, 32, 32)
# Output: Tensor of shape (channel_1, 32, 32)
self.conv1 = nn.Conv2d(in_channel, channel_1, kernel_size=5, padding=2)
# Initialize Conv1 layer's weights and biases.
nn.init.kaiming_normal_(self.conv1.weight)
nn.init.zeros_(self.conv1.bias)
# Define the 2nd Conv layer.
# Input: Tensor of shape (channel_1, 32, 32)
# Output: Tensor of shape (channel_2, 32, 32)
self.conv2 = nn.Conv2d(channel_1, channel_2, kernel_size=3, padding=1)
# Initialize Conv2 layer's weights and biases.
nn.init.kaiming_normal_(self.conv2.weight)
nn.init.zeros_(self.conv2.bias)
# Define the Fully-connected layer.
self.fc = nn.Linear(channel_2*32*32, num_classes)
# Initialize FC layer's weights and biases.
nn.init.kaiming_normal_(self.fc.weight)
nn.init.zeros_(self.fc.bias)
############################################################################
# END OF YOUR CODE
############################################################################
def forward(self, x):
scores = None
############################################################################
# TODO: Implement the forward function for a 3-layer ConvNet. you
# should use the layers you defined in __init__ and specify the
# connectivity of those layers in forward()
# Hint: flatten (implemented at the start of part II)
############################################################################
# Replace "pass" statement with your code
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = flatten(x)
scores = self.fc(x)
############################################################################
# END OF YOUR CODE
############################################################################
return scores
def initialize_three_layer_conv_part3():
'''
Instantiates a ThreeLayerConvNet model and a corresponding optimizer for part III
'''
# Parameters for ThreeLayerConvNet
C = 3
num_classes = 10
channel_1 = 32
channel_2 = 16
# Parameters for optimizer
learning_rate = 3e-3
weight_decay = 1e-4
model = None
optimizer = None
##############################################################################
# TODO: Instantiate ThreeLayerConvNet model and a corresponding optimizer.
# Use the above mentioned variables for setting the parameters.
# You should train the model using stochastic gradient descent without
# momentum, with L2 weight decay of 1e-4.
##############################################################################
# Replace "pass" statement with your code
model = ThreeLayerConvNet(C, channel_1, channel_2, num_classes)
optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
##############################################################################
# END OF YOUR CODE
##############################################################################
return model, optimizer
################################################################################
# Part IV. PyTorch Sequential API
################################################################################
# Before we start, We need to wrap `flatten` function in a module in order to stack it in `nn.Sequential`.
# As of 1.3.0, PyTorch supports `nn.Flatten`, so this is not required in the latest version.
# However, let's use the following `Flatten` class for backward compatibility for now.
class Flatten(nn.Module):
def forward(self, x):
return flatten(x)
def initialize_three_layer_conv_part4():
'''
Instantiates a ThreeLayerConvNet model and a corresponding optimizer for part IV
'''
# Input/Output dimenssions
C, H, W = 3, 32, 32
num_classes = 10
# Hidden layer channel and kernel sizes
channel_1 = 32
channel_2 = 16
kernel_size_1 = 5
pad_size_1 = 2
kernel_size_2 = 3
pad_size_2 = 1
# Parameters for optimizer
learning_rate = 1e-2
weight_decay = 1e-4
momentum = 0.5
model = None
optimizer = None
##################################################################################
# TODO: Rewrite the 3-layer ConvNet with bias from Part III with Sequential API and
# a corresponding optimizer.
# You don't have to re-initialize your weight matrices and bias vectors.
# Here you should use `nn.Sequential` to define a three-layer ConvNet with:
# 1. Convolutional layer (with bias) with 32 5x5 filters, with zero-padding of 2
# 2. ReLU
# 3. Convolutional layer (with bias) with 16 3x3 filters, with zero-padding of 1
# 4. ReLU
# 5. Fully-connected layer (with bias) to compute scores for 10 classes
#
# You should optimize your model using stochastic gradient descent with Nesterov
# momentum 0.5, with L2 weight decay of 1e-4 as given in the variables above.
# Hint: nn.Sequential, Flatten (implemented at the start of Part IV)
####################################################################################
# Replace "pass" statement with your code
model = nn.Sequential(
nn.Conv2d(C, channel_1, kernel_size_1, padding=pad_size_1),
nn.ReLU(),
nn.Conv2d(channel_1, channel_2, kernel_size_2, padding=pad_size_2),
nn.ReLU(),
Flatten(),
nn.Linear(channel_2 * H * W, num_classes)
)
optimizer = optim.SGD(model.parameters(), lr=learning_rate,
weight_decay=weight_decay, momentum=momentum, nesterov=True)
################################################################################
# END OF YOUR CODE
################################################################################
return model, optimizer
################################################################################
# Part V. ResNet for CIFAR-10
################################################################################
class PlainBlock(nn.Module):
def __init__(self, Cin, Cout, downsample=False):
super().__init__()
self.net = None
############################################################################
# TODO: Implement PlainBlock.
# Hint: Wrap your layers by nn.Sequential() to output a single module.
# You don't have use OrderedDict.
# Inputs:
# - Cin: number of input channels
# - Cout: number of output channels
# - downsample: add downsampling (a conv with stride=2) if True
# Store the result in self.net.
############################################################################
# Replace "pass" statement with your code
self.net = nn.Sequential(
nn.BatchNorm2d(Cin),
nn.ReLU(),
nn.Conv2d(Cin, Cout, 3, stride=(2 if downsample else 1), padding=1),
nn.BatchNorm2d(Cout),
nn.ReLU(),
nn.Conv2d(Cout, Cout, 3, stride=1, padding=1)
)
############################################################################
# END OF YOUR CODE #
############################################################################
def forward(self, x):
return self.net(x)
class ResidualBlock(nn.Module):
def __init__(self, Cin, Cout, downsample=False):
super().__init__()
self.block = None # F
self.shortcut = None # G
############################################################################
# TODO: Implement residual block using plain block. Hint: nn.Identity() #
# Inputs: #
# - Cin: number of input channels #
# - Cout: number of output channels #
# - downsample: add downsampling (a conv with stride=2) if True #
# Store the main block in self.block and the shortcut in self.shortcut. #
############################################################################
# Replace "pass" statement with your code
self.block = PlainBlock(Cin, Cout, downsample)
if not downsample:
if Cin == Cout:
self.shortcut = nn.Identity()
else:
self.shortcut = nn.Conv2d(Cin, Cout, 1, stride=1, padding=0)
else:
self.shortcut = nn.Conv2d(Cin, Cout, 1, stride=2, padding=0)
############################################################################
# END OF YOUR CODE #
############################################################################
def forward(self, x):
return self.block(x) + self.shortcut(x)
class ResNet(nn.Module):
def __init__(self, stage_args, Cin=3, block=ResidualBlock, num_classes=10):
super().__init__()
self.cnn = None
############################################################################
# TODO: Implement the convolutional part of ResNet using ResNetStem, #
# ResNetStage, and wrap the modules by nn.Sequential. #
# Store the model in self.cnn. #
############################################################################
# Replace "pass" statement with your code
self.cnn = nn.Sequential(
ResNetStem(),
*[ResNetStage(*stage, block) for stage in stage_args]
)
############################################################################
# END OF YOUR CODE #
############################################################################
self.fc = nn.Linear(stage_args[-1][1], num_classes)
def forward(self, x):
scores = None
############################################################################
# TODO: Implement the forward function of ResNet. #
# Store the output in `scores`. #
############################################################################
# Replace "pass" statement with your code
# Pass "x" [tensor of shape (B, 3, H, W)] into the CNN.
# The output is a tensor of shape (B, Cout, H', W')
x = self.cnn(x)
# Get the height/width of the previous output (i.e. H' and W').
xh, xw = x.shape[2], x.shape[3]
# Perform average pooling across the width and height (without padding/stride).
# That is, we 'average' the width and height into a single value.
# The output is a tensor of shape (B, Cout, 1, 1)
x = F.avg_pool2d(x, kernel_size=(xh, xw))
# Transform "x" from shape (B, Cout, 1, 1) to (B, Cout)
x = flatten(x)
# Pass the flattened "x" to the FC layer. Output's shape is (B, <num_classes>)
scores = self.fc(x)
############################################################################
# END OF YOUR CODE #
############################################################################
return scores
class ResidualBottleneckBlock(nn.Module):
def __init__(self, Cin, Cout, downsample=False):
super().__init__()
self.block = None
self.shortcut = None
############################################################################
# TODO: Implement residual bottleneck block. #
# Inputs: #
# - Cin: number of input channels #
# - Cout: number of output channels #
# - downsample: add downsampling (a conv with stride=2) if True #
# Store the main block in self.block and the shortcut in self.shortcut. #
############################################################################
# Replace "pass" statement with your code
# Define the "intermediate Cout".
coutint = Cout // 4
self.block = nn.Sequential(
nn.BatchNorm2d(Cin),
nn.ReLU(),
nn.Conv2d(Cin, coutint, 1, stride=(2 if downsample else 1), padding=0),
nn.BatchNorm2d(coutint),
nn.ReLU(),
nn.Conv2d(coutint, coutint, 3, stride=1, padding=1),
nn.BatchNorm2d(coutint),
nn.ReLU(),
nn.Conv2d(coutint, Cout, 1, stride=1, padding=0)
)
if not downsample:
if Cin == Cout:
self.shortcut = nn.Identity()
else:
self.shortcut = nn.Conv2d(Cin, Cout, 1, stride=1, padding=0)
else:
self.shortcut = nn.Conv2d(Cin, Cout, 1, stride=2, padding=0)
############################################################################
# END OF YOUR CODE #
############################################################################
def forward(self, x):
return self.block(x) + self.shortcut(x)
##############################################################################
# No need to implement anything here
##############################################################################
class ResNetStem(nn.Module):
def __init__(self, Cin=3, Cout=8):
super().__init__()
layers = [
nn.Conv2d(Cin, Cout, kernel_size=3, padding=1, stride=1),
nn.ReLU(),
]
self.net = nn.Sequential(*layers)
def forward(self, x):
return self.net(x)
class ResNetStage(nn.Module):
def __init__(self, Cin, Cout, num_blocks, downsample=True,
block=ResidualBlock):
super().__init__()
blocks = [block(Cin, Cout, downsample)]
for _ in range(num_blocks - 1):
blocks.append(block(Cout, Cout))
self.net = nn.Sequential(*blocks)
def forward(self, x):
return self.net(x)