-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
262 lines (204 loc) · 8.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import numpy as np
import time
from torchvision.utils import save_image
import torch.nn as nn
import numpy as np
from torch.utils import data
from parameter import *
from utils.losses import *
from PIL import Image
import torch.utils.data as data
import net
from nlut_models import *
import os
import numpy as np
from parameter import cuda, Tensor, device
# os.environ["CUDA_VISIBLE_DEVICES"] = '0'
print(f'now device is {device}')
def train_transform():
transform_list = [
transforms.Resize(size=(512, 512)),
# transforms.Resize(size=(256, 256)),
transforms.RandomCrop(256),
transforms.ToTensor()
]
return transforms.Compose(transform_list)
class AverageMeter(object):
"""
Keeps track of most recent, average, sum, and count of a metric.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class FlatFolderDataset(data.Dataset):
def __init__(self, root, transform):
super(FlatFolderDataset, self).__init__()
self.root = root
self.paths = os.listdir(self.root)
self.transform = transform
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(os.path.join(self.root, path)).convert('RGB')
img = self.transform(img)
return img
def __len__(self):
return len(self.paths)
def name(self):
return 'FlatFolderDataset'
def InfiniteSampler(n):
# i = 0
i = n - 1
order = np.random.permutation(n)
while True:
yield order[i]
i += 1
if i >= n:
np.random.seed()
order = np.random.permutation(n)
i = 0
class InfiniteSamplerWrapper(data.sampler.Sampler):
def __init__(self, data_source):
self.num_samples = len(data_source)
def __iter__(self):
return iter(InfiniteSampler(self.num_samples))
def __len__(self):
return 2 ** 31
def adjust_learning_rate(optimizer, iteration_count, opt):
"""Imitating the original implementation"""
# lr = opt.lr / (1.0 + opt.lr_decay * iteration_count)
lr = opt.lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# def train(setting):
def train(opt):
# opt = setting.opt
# -------------------------------------------------------------
content_tf = train_transform()
style_tf = train_transform()
content_dataset = FlatFolderDataset(opt.content_dir, content_tf)
style_dataset = FlatFolderDataset(opt.style_dir, style_tf)
content_iter = iter(data.DataLoader(
content_dataset, batch_size=opt.batch_size,
sampler=InfiniteSamplerWrapper(content_dataset),
num_workers=opt.n_threads))
style_iter = iter(data.DataLoader(
style_dataset, batch_size=opt.batch_size,
sampler=InfiniteSamplerWrapper(style_dataset),
num_workers=opt.n_threads))
model = NLUTNet(opt.model, dim=opt.dim).to(device)
print('Total params: %.2fM' % (sum(p.numel()
for p in model.parameters()) / 1000000.0))
# VGG
vgg = net.vgg
vgg.load_state_dict(torch.load(opt.vgg))
encoder = net.Net(vgg)
encoder.to(device)
encoder.eval()
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("--------loading checkpoint----------")
print("=> loading checkpoint '{}'".format(opt.pretrained))
checkpoint = torch.load(opt.pretrained)
model.load_state_dict(checkpoint['state_dict'])
else:
print("--------no checkpoint found---------")
# if opt.resume:
# if os.path.isfile(opt.resume):
# print("--------loading checkpoint----------")
# print("=> loading checkpoint '{}'".format(opt.resume))
# checkpoint = torch.load(opt.resume)
# opt.start_iter = checkpoint['iter']
# model.load_state_dict(checkpoint['state_dict'])
# # optimizer.load_state_dict(checkpoint['optimizer'])
# else:
# print("--------no checkpoint found---------")
mseloss = nn.MSELoss()
model.train()
TVMN_temp = TVMN(opt.dim).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
if opt.resume:
if os.path.isfile(opt.resume):
optimizer.load_state_dict(checkpoint['optimizer'])
log_c = []
log_s = []
log_mse = []
Time = time.time()
losses = AverageMeter()
c_losses = AverageMeter()
s_losses = AverageMeter()
mse_losses = AverageMeter()
tv_losses = AverageMeter()
mn_losses = AverageMeter()
# -----------------------training------------------------
for i in range(opt.start_iter, opt.max_iter):
adjust_learning_rate(optimizer, iteration_count=i, opt=opt)
content_images = next(content_iter).to(device)
style_images = next(style_iter).to(device)
stylized, st_out, others = model(
content_images, content_images, style_images, TVMN=TVMN_temp)
tvmn = others.get("tvmn")
mn_cons = opt.lambda_smooth * \
(tvmn[0]+10*tvmn[2]) + opt.lambda_mn*tvmn[1]
loss_c, loss_s = encoder(content_images, style_images, stylized)
loss_c = loss_c.mean()
loss_s = loss_s.mean()
loss_mse = mseloss(content_images, stylized)
loss_style = opt.content_weight*loss_c + \
opt.style_weight*loss_s + mn_cons # +tv_cons
# optimizer update
optimizer.zero_grad()
loss_style.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.2)
optimizer.step()
# update loss log
log_c.append(loss_c.item())
log_s.append(loss_s.item())
log_mse.append(loss_mse.item())
losses.update(loss_style.item())
c_losses.update(loss_c.item())
s_losses.update(loss_s.item())
mse_losses.update(loss_mse.item())
mn_losses.update(mn_cons.item())
# save image
if i % opt.print_interval == 0:
output_name = os.path.join(opt.save_dir, "%06d.jpg" % i)
output_images = torch.cat((content_images.cpu(), style_images.cpu(), stylized.cpu(), st_out.cpu()), # refined_out
# output_images = torch.cat((content_images.cpu(), style_images.cpu(), stylized_rgb.cpu()), #refined_out
# color_stylized.cpu(), another_content.cpu(), another_real_stylized.cpu()),
0)
save_image(output_images, output_name, nrow=opt.batch_size)
current_lr = optimizer.state_dict()['param_groups'][0]['lr']
print("iter %d time/iter: %.2f lr: %.6f loss_mn: %.4f loss_c: %.4f loss_s: %.4f loss_mse: %.4f losses: %.4f " % (i,
(time.time(
)-Time)/opt.print_interval,
current_lr,
# tv_losses.avg,
mn_losses.avg,
c_losses.avg, s_losses.avg,
mse_losses.avg, losses.avg
))
log_c = []
log_s = []
Time = time.time()
if (i + 1) % opt.save_model_interval == 0 or (i + 1) == opt.max_iter:
# state_dict = model.module.state_dict()
state_dict = model.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
state = {'iter': i, 'state_dict': state_dict,
'optimizer': optimizer.state_dict()}
torch.save(state, opt.resume)
torch.save(state, "./"+opt.save_dir+"/"+str(i)+"_style_lut.pth")
if __name__ == "__main__":
opt = parser.parse_args()
train(opt)