-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata_loader_split.py
132 lines (105 loc) · 4.97 KB
/
data_loader_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import numpy as np
import imageio
import logging
from nerf_sample_ray_split import RaySamplerSingleImage
import glob
logger = logging.getLogger(__package__)
########################################################################################################################
# camera coordinate system: x-->right, y-->down, z-->scene (opencv/colmap convention)
# poses is camera-to-world
########################################################################################################################
def find_files(dir, exts):
if os.path.isdir(dir):
# types should be ['*.png', '*.jpg']
files_grabbed = []
for ext in exts:
files_grabbed.extend(glob.glob(os.path.join(dir, ext)))
if len(files_grabbed) > 0:
files_grabbed = sorted(files_grabbed)
return files_grabbed
else:
return []
def load_data_split(basedir, scene, split, skip=1, try_load_min_depth=True, only_img_files=False):
def parse_txt(filename):
assert os.path.isfile(filename)
nums = open(filename).read().split()
return np.array([float(x) for x in nums]).reshape([4, 4]).astype(np.float32)
if basedir[-1] == '/': # remove trailing '/'
basedir = basedir[:-1]
split_dir = '{}/{}/{}'.format(basedir, scene, split)
if only_img_files:
img_files = find_files('{}/rgb'.format(split_dir), exts=['*.png', '*.jpg'])
return img_files
# camera parameters files
intrinsics_files = find_files('{}/intrinsics'.format(split_dir), exts=['*.txt'])
pose_files = find_files('{}/pose'.format(split_dir), exts=['*.txt'])
logger.info('raw intrinsics_files: {}'.format(len(intrinsics_files)))
logger.info('raw pose_files: {}'.format(len(pose_files)))
intrinsics_files = intrinsics_files[::skip]
pose_files = pose_files[::skip]
cam_cnt = len(pose_files)
# img files
img_files = find_files('{}/rgb'.format(split_dir), exts=['*.png', '*.jpg'])
if len(img_files) > 0:
logger.info('raw img_files: {}'.format(len(img_files)))
img_files = img_files[::skip]
assert(len(img_files) == cam_cnt)
else:
img_files = [None, ] * cam_cnt
# mask files
mask_files = find_files('{}/mask'.format(split_dir), exts=['*.png', '*.jpg'])
if len(mask_files) > 0:
logger.info('raw mask_files: {}'.format(len(mask_files)))
mask_files = mask_files[::skip]
assert(len(mask_files) == cam_cnt)
else:
mask_files = [None, ] * cam_cnt
# min depth files
mindepth_files = find_files('{}/min_depth'.format(split_dir), exts=['*.png', '*.jpg'])
if try_load_min_depth and len(mindepth_files) > 0:
logger.info('raw mindepth_files: {}'.format(len(mindepth_files)))
mindepth_files = mindepth_files[::skip]
assert(len(mindepth_files) == cam_cnt)
else:
mindepth_files = [None, ] * cam_cnt
# assume all images have the same size as training image
train_imgfile = find_files('{}/{}/train/rgb'.format(basedir, scene), exts=['*.png', '*.jpg'])[0]
train_im = imageio.imread(train_imgfile)
H, W = train_im.shape[:2]
# def compute_bbox_by_cam_frustrm(args, cfg, HW, Ks, poses, i_train, near, far, **kwargs):
# print('compute_bbox_by_cam_frustrm: start')
# xyz_min = torch.Tensor([np.inf, np.inf, np.inf])
# xyz_max = -xyz_min
# for (H, W), K, c2w in zip(HW[i_train], Ks[i_train], poses[i_train]):
# rays_o, rays_d, viewdirs = dvgo.get_rays_of_a_view(
# H=H, W=W, K=K, c2w=c2w,
# ndc=cfg.data.ndc, inverse_y=cfg.data.inverse_y,
# flip_x=cfg.data.flip_x, flip_y=cfg.data.flip_y)
# if cfg.data.ndc:
# pts_nf = torch.stack([rays_o+rays_d*near, rays_o+rays_d*far])
# else:
# pts_nf = torch.stack([rays_o+viewdirs*near, rays_o+viewdirs*far])
# xyz_min = torch.minimum(xyz_min, pts_nf.amin((0,1,2)))
# xyz_max = torch.maximum(xyz_max, pts_nf.amax((0,1,2)))
# print('compute_bbox_by_cam_frustrm: xyz_min', xyz_min)
# print('compute_bbox_by_cam_frustrm: xyz_max', xyz_max)
# print('compute_bbox_by_cam_frustrm: finish')
# return xyz_min, xyz_max
# create ray samplers
ray_samplers = []
for i in range(cam_cnt):
intrinsics = parse_txt(intrinsics_files[i])
pose = parse_txt(pose_files[i])
# read max depth
try:
max_depth = float(open('{}/max_depth.txt'.format(split_dir)).readline().strip())
except:
max_depth = None
ray_samplers.append(RaySamplerSingleImage(H=H, W=W, intrinsics=intrinsics, c2w=pose,
img_path=img_files[i],
mask_path=mask_files[i],
min_depth_path=mindepth_files[i],
max_depth=max_depth))
logger.info('Split {}, # views: {}'.format(split, cam_cnt))
return ray_samplers