forked from CYF2000127/MolNexTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
604 lines (521 loc) · 26.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import os
import sys
import time
import json
import random
import argparse
import datetime
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
from torch.optim import Adam, AdamW, SGD
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import get_scheduler
from MolNexTR.dataset import TrainDataset, AuxTrainDataset, bms_collate
from MolNexTR.components import Encoder, Decoder
from MolNexTR.loss_fuc import Criterion
from MolNexTR.utils import seed_torch, save_args, init_summary_writer, LossMeter, AverageMeter, asMinutes, timeSince, \
print_rank_0, format_df
from MolNexTR.chemical import convert_graph_to_smiles, postprocess_smiles, keep_main_molecule
from MolNexTR.tokenization import get_tokenizer
from evaluate import SmilesEvaluator
import warnings
warnings.filterwarnings('ignore')
def get_args():
"""
Parse command-line arguments to configure the model's training, evaluation, and testing procedures.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--do_valid', action='store_true')
parser.add_argument('--do_test', action='store_true')
parser.add_argument('--fp16', action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--print_freq', type=int, default=200)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--backend', type=str, default='gloo', choices=['gloo', 'nccl'])
# Model-specific options
parser.add_argument('--encoder', type=str, default='swin_base')
parser.add_argument('--decoder', type=str, default='lstm')
parser.add_argument('--no_pretrained', action='store_true')
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--embed_dim', type=int, default=256)
parser.add_argument('--enc_pos_emb', action='store_true')
group = parser.add_argument_group("lstm_options")
group.add_argument('--decoder_dim', type=int, default=512)
group.add_argument('--decoder_layer', type=int, default=1)
group.add_argument('--attention_dim', type=int, default=256)
group = parser.add_argument_group("transformer_options")
group.add_argument("--dec_num_layers", help="No. of layers in models decoder", type=int, default=6)
group.add_argument("--dec_hidden_size", help="Decoder hidden size", type=int, default=256)
group.add_argument("--dec_attn_heads", help="Decoder no. of attention heads", type=int, default=8)
group.add_argument("--dec_num_queries", type=int, default=128)
group.add_argument("--hidden_dropout", help="Hidden dropout", type=float, default=0.1)
group.add_argument("--attn_dropout", help="Attention dropout", type=float, default=0.1)
group.add_argument("--max_relative_positions", help="Max relative positions", type=int, default=0)
# Data parameters
parser.add_argument('--data_path', type=str, default=None)
parser.add_argument('--train_file', type=str, default=None)
parser.add_argument('--valid_file', type=str, default=None)
parser.add_argument('--test_file', type=str, default=None)
parser.add_argument('--aux_file', type=str, default=None)
parser.add_argument('--coords_file', type=str, default=None)
parser.add_argument('--vocab_file', type=str, default=None)
parser.add_argument('--dynamic_indigo', action='store_true')
parser.add_argument('--default_option', action='store_true')
parser.add_argument('--pseudo_coords', action='store_true')
parser.add_argument('--include_condensed', action='store_true')
parser.add_argument('--formats', type=str, default=None)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--input_size', type=int, default=384)
parser.add_argument('--multiscale', action='store_true')
parser.add_argument('--augment', action='store_true')
parser.add_argument('--mol_augment', action='store_true')
parser.add_argument('--coord_bins', type=int, default=100)
parser.add_argument('--sep_xy', action='store_true')
parser.add_argument('--mask_ratio', type=float, default=0)
parser.add_argument('--continuous_coords', action='store_true')
# Training parameters
parser.add_argument('--epochs', type=int, default=8)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--encoder_lr', type=float, default=1e-4)
parser.add_argument('--decoder_lr', type=float, default=4e-4)
parser.add_argument('--weight_decay', type=float, default=1e-6)
parser.add_argument('--max_grad_norm', type=float, default=5.)
parser.add_argument('--scheduler', type=str, choices=['cosine', 'constant'], default='cosine')
parser.add_argument('--warmup_ratio', type=float, default=0)
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument('--load_path', type=str, default=None)
parser.add_argument('--load_encoder_only', action='store_true')
parser.add_argument('--train_steps_per_epoch', type=int, default=-1)
parser.add_argument('--save_path', type=str, default='output/')
parser.add_argument('--save_mode', type=str, default='best', choices=['best', 'all', 'last'])
parser.add_argument('--load_ckpt', type=str, default='best')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--all_data', action='store_true', help='Use both train and valid data for training.')
parser.add_argument('--init_scheduler', action='store_true')
parser.add_argument('--label_smoothing', type=float, default=0.0)
parser.add_argument('--shuffle_nodes', action='store_true')
parser.add_argument('--save_image', action='store_true')
# Inference parameters
parser.add_argument('--beam_size', type=int, default=1)
parser.add_argument('--n_best', type=int, default=1)
parser.add_argument('--predict_coords', action='store_true')
parser.add_argument('--save_attns', action='store_true')
parser.add_argument('--molblock', action='store_true')
parser.add_argument('--compute_confidence', action='store_true')
parser.add_argument('--keep_main_molecule', action='store_true')
args = parser.parse_args()
return args
def load_states(args, load_path):
if load_path.endswith('.pth'):
path = load_path
elif args.load_ckpt == 'best':
path = os.path.join(load_path, f'{args.decoder}_conv_best.pth')
else:
path = os.path.join(load_path, f'{args.decoder}_conv.pth')
print_rank_0('Load ' + path)
states = torch.load(path, map_location=torch.device('cpu'))
return states
def safe_load(module, module_states):
def remove_prefix(state_dict):
return {k.replace('module.', ''): v for k, v in state_dict.items()}
missing_keys, unexpected_keys = module.load_state_dict(remove_prefix(module_states), strict=False)
if missing_keys:
print_rank_0('Missing keys: ' + str(missing_keys))
if unexpected_keys:
print_rank_0('Unexpected keys: ' + str(unexpected_keys))
return
def get_model(args, tokenizer, device, load_path=None):
encoder = Encoder(args, pretrained=(not args.no_pretrained and load_path is None))
args.encoder_dim = encoder.n_features
decoder = Decoder(args, tokenizer)
if load_path:
states = load_states(args, load_path)
safe_load(encoder, states['encoder'])
safe_load(decoder, states['decoder'])
encoder.to(device)
decoder.to(device)
if args.local_rank != -1:
encoder = DDP(encoder, device_ids=[args.local_rank], output_device=args.local_rank)
decoder = DDP(decoder, device_ids=[args.local_rank], output_device=args.local_rank)
print_rank_0("DDP setup")
return encoder, decoder
def get_optimizer_and_scheduler(args, encoder, decoder, load_path=None):
encoder_optimizer = AdamW(encoder.parameters(), lr=args.encoder_lr, weight_decay=args.weight_decay, amsgrad=False)
encoder_scheduler = get_scheduler(args.scheduler, encoder_optimizer, args.num_warmup_steps, args.num_training_steps)
decoder_optimizer = AdamW(decoder.parameters(), lr=args.decoder_lr, weight_decay=args.weight_decay, amsgrad=False)
decoder_scheduler = get_scheduler(args.scheduler, decoder_optimizer, args.num_warmup_steps, args.num_training_steps)
if load_path and args.resume:
states = load_states(args, load_path)
encoder_optimizer.load_state_dict(states['encoder_optimizer'])
decoder_optimizer.load_state_dict(states['decoder_optimizer'])
if args.init_scheduler:
for group in encoder_optimizer.param_groups:
group['lr'] = args.encoder_lr
for group in decoder_optimizer.param_groups:
group['lr'] = args.decoder_lr
else:
encoder_scheduler.load_state_dict(states['encoder_scheduler'])
decoder_scheduler.load_state_dict(states['decoder_scheduler'])
print_rank_0(f"Optimizer loaded from {load_path}")
return encoder_optimizer, encoder_scheduler, decoder_optimizer, decoder_scheduler
def train_fn(train_loader, encoder, decoder, criterion, encoder_optimizer, decoder_optimizer, epoch,
encoder_scheduler, decoder_scheduler, scaler, device, global_step, SUMMARY, args):
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = LossMeter()
# switch to train mode
encoder.train()
decoder.train()
start = end = time.time()
encoder_grad_norm = decoder_grad_norm = 0
for step, (indices, images, refs) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
images = images.to(device)
batch_size = images.size(0)
with torch.cuda.amp.autocast(enabled=args.fp16):
features, hiddens = encoder(images, refs)
results = decoder(features, hiddens, refs)
losses = criterion(results, refs)
loss = sum(losses.values())
# record loss
loss_meter.update(loss, losses, batch_size)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
scaler.scale(loss).backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
scaler.unscale_(encoder_optimizer)
scaler.unscale_(decoder_optimizer)
encoder_grad_norm = torch.nn.utils.clip_grad_norm_(encoder.parameters(), args.max_grad_norm)
decoder_grad_norm = torch.nn.utils.clip_grad_norm_(decoder.parameters(), args.max_grad_norm)
scaler.step(encoder_optimizer)
scaler.step(decoder_optimizer)
scaler.update()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
encoder_scheduler.step()
decoder_scheduler.step()
global_step += 1
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % args.print_freq == 0 or step == (len(train_loader) - 1):
loss_str = ' '.join([f'{k}:{v.avg:.4f}' for k, v in loss_meter.subs.items()])
print_rank_0('Epoch: [{0}][{1}/{2}] '
'Runing {remain:s} '
'Loss: {loss.avg:.4f} ({loss_str}) '
'Grad: {encoder_grad_norm:.4f}/{decoder_grad_norm:.4f} '
'lr: {encoder_lr:.5f} {decoder_lr:.5f}'
.format(
epoch + 1, step, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=loss_meter, loss_str=loss_str,
sum_data_time=asMinutes(data_time.sum),
remain=timeSince(start, float(step + 1) / len(train_loader)),
encoder_grad_norm=encoder_grad_norm,
decoder_grad_norm=decoder_grad_norm,
encoder_lr=encoder_scheduler.get_lr()[0],
decoder_lr=decoder_scheduler.get_lr()[0]))
loss_meter.reset()
if args.train_steps_per_epoch != -1 and (
step + 1) // args.gradient_accumulation_steps == args.train_steps_per_epoch:
break
return loss_meter.epoch.avg, global_step
def valid_fn(valid_loader, encoder, decoder, tokenizer, device, args):
batch_time = AverageMeter()
data_time = AverageMeter()
# switch to evaluation mode
if hasattr(decoder, 'module'):
encoder = encoder.module
decoder = decoder.module
encoder.eval()
decoder.eval()
predictions = {}
start = end = time.time()
# Inference is distributed. The batch is divided and run independently on multiple GPUs, and the predictions
# are gathered afterwards.
for step, (indices, images, refs) in enumerate(valid_loader):
# measure data loading time
data_time.update(time.time() - end)
images = images.to(device)
with torch.cuda.amp.autocast(enabled=args.fp16):
with torch.no_grad():
features, hiddens = encoder(images, refs)
batch_preds = decoder.decode(features, hiddens, refs)
for idx, preds in zip(indices, batch_preds):
predictions[idx] = preds
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % args.print_freq == 0 or step == (len(valid_loader) - 1):
print_rank_0('Eveluation: [{0}/{1}] '
'Spent {remain:s} '
.format(
step, len(valid_loader), batch_time=batch_time,
data_time=data_time,
sum_data_time=asMinutes(data_time.sum),
remain=timeSince(start, float(step + 1) / len(valid_loader))))
# gather predictions from different GPUs
gathered_preds = [None for i in range(dist.get_world_size())]
dist.all_gather_object(gathered_preds, predictions)
n = len(valid_loader.dataset)
predictions = [{}] * n
for preds in gathered_preds:
for idx, pred in preds.items():
predictions[idx] = pred
return predictions
def train_loop(args, train_df, valid_df, aux_df, tokenizer, save_path):
"""
Main training loop to iterate over epochs, perform training and validation, and save the model.
"""
SUMMARY = None
if args.local_rank == 0 and not args.debug:
os.makedirs(save_path, exist_ok=True)
save_args(args)
SUMMARY = init_summary_writer(save_path)
print_rank_0("training started")
device = args.device
if aux_df is None:
train_dataset = TrainDataset(args, train_df, tokenizer, split='train', dynamic_indigo=args.dynamic_indigo)
print_rank_0(train_dataset.transform)
else:
train_dataset = AuxTrainDataset(args, train_df, aux_df, tokenizer)
if args.local_rank != -1:
train_sampler = DistributedSampler(train_dataset, shuffle=True)
else:
train_sampler = RandomSampler(train_dataset)
# TODO: may need to set timeout, as sometimes train_loader unexpectedly stucks
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size,
sampler=train_sampler,
num_workers=args.num_workers,
prefetch_factor=4,
persistent_workers=True,
pin_memory=True,
drop_last=True,
collate_fn=bms_collate)
if args.train_steps_per_epoch == -1:
args.train_steps_per_epoch = len(train_loader) // args.gradient_accumulation_steps
args.num_training_steps = args.epochs * args.train_steps_per_epoch
args.num_warmup_steps = int(args.num_training_steps * args.warmup_ratio)
# ====================================================
# model & optimizer
# ====================================================
if args.resume and args.load_path is None:
args.load_path = args.save_path
encoder, decoder = get_model(args, tokenizer, device, load_path=args.load_path)
encoder_optimizer, encoder_scheduler, decoder_optimizer, decoder_scheduler = \
get_optimizer_and_scheduler(args, encoder, decoder, load_path=args.load_path)
scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
# ====================================================
# loop
# ====================================================
criterion = Criterion(args, tokenizer).to(device)
best_score = -np.inf
best_loss = np.inf
global_step = encoder_scheduler.last_epoch
start_epoch = global_step // args.train_steps_per_epoch
for epoch in range(start_epoch, args.epochs):
if args.local_rank != -1:
train_sampler.set_epoch(epoch)
dist.barrier()
start_time = time.time()
# train
avg_loss, global_step = train_fn(
train_loader, encoder, decoder, criterion, encoder_optimizer, decoder_optimizer, epoch,
encoder_scheduler, decoder_scheduler, scaler, device, global_step, SUMMARY, args)
# eval
scores = inference(args, valid_df, tokenizer, encoder, decoder, save_path, split='valid')
if args.local_rank != 0:
continue
elapsed = time.time() - start_time
print_rank_0(f'Epoch {epoch + 1} - Time: {elapsed:.0f}s')
print_rank_0(f'Epoch {epoch + 1} - Score: ' + json.dumps(scores))
save_obj = {
'encoder': encoder.state_dict(),
'encoder_optimizer': encoder_optimizer.state_dict(),
'encoder_scheduler': encoder_scheduler.state_dict(),
'decoder': decoder.state_dict(),
'decoder_optimizer': decoder_optimizer.state_dict(),
'decoder_scheduler': decoder_scheduler.state_dict(),
'global_step': global_step,
'args': {key: args.__dict__[key] for key in ['formats', 'input_size', 'coord_bins', 'sep_xy']}
}
for name in ['post_smiles', 'graph_smiles', 'canon_smiles']:
if name in scores:
score = scores[name]
break
if SUMMARY:
SUMMARY.add_scalar('train/loss', avg_loss, global_step)
encoder_lr = encoder_scheduler.get_lr()[0]
decoder_lr = decoder_scheduler.get_lr()[0]
SUMMARY.add_scalar('train/encoder_lr', encoder_lr, global_step)
SUMMARY.add_scalar('train/decoder_lr', decoder_lr, global_step)
for key in scores:
SUMMARY.add_scalar(f'valid/{key}', scores[key], global_step)
if score >= best_score:
best_score = score
print_rank_0(f'Epoch {epoch + 1} - Save Best Score: {best_score:.4f} Model')
torch.save(save_obj, os.path.join(save_path, f'{args.encoder}_{args.decoder}_best.pth'))
with open(os.path.join(save_path, 'best_valid.json'), 'w') as f:
json.dump(scores, f)
if args.save_mode == 'all':
torch.save(save_obj, os.path.join(save_path, f'{args.encoder}_{args.decoder}_ep{epoch}.pth'))
if args.save_mode == 'last':
torch.save(save_obj, os.path.join(save_path, f'{args.encoder}_{args.decoder}_last.pth'))
if args.local_rank != -1:
dist.barrier()
def inference(args, data_df, tokenizer, encoder=None, decoder=None, save_path=None, split='test'):
print_rank_0("inference started")
print_rank_0(data_df.attrs['file'])
if args.local_rank == 0 and os.path.isdir(save_path):
os.makedirs(save_path, exist_ok=True)
device = args.device
dataset = TrainDataset(args, data_df, tokenizer, split=split)
if args.local_rank != -1:
sampler = DistributedSampler(dataset, shuffle=False)
else:
sampler = SequentialSampler(dataset)
dataloader = DataLoader(dataset,
batch_size=args.batch_size * 2,
sampler=sampler,
num_workers=args.num_workers,
prefetch_factor=4,
persistent_workers=True,
pin_memory=True,
drop_last=False,
collate_fn=bms_collate)
if encoder is None or decoder is None:
# valid/test mode
if args.load_path is None:
args.load_path = save_path
encoder, decoder = get_model(args, tokenizer, device, args.load_path)
predictions = valid_fn(dataloader, encoder, decoder, tokenizer, device, args)
# The evaluation and saving prediction is only performed in the master process.
if args.local_rank != 0:
return
print('Start evaluation')
# Deal with discrepancies between datasets
if 'pubchem_cid' in data_df.columns:
data_df['image_id'] = data_df['pubchem_cid']
if 'image_id' not in data_df.columns:
data_df['image_id'] = [path.split('/')[-1].split('.')[0] for path in data_df['file_path']]
pred_df = data_df[['image_id']].copy()
scores = {}
for format_ in args.formats:
if format_ in ['atomtok', 'atomtok_coords', 'chartok_coords']:
format_preds = [preds[format_] for preds in predictions]
# SMILES
pred_df['SMILES'] = [preds['smiles'] for preds in format_preds]
if format_ in ['atomtok_coords', 'chartok_coords']:
pred_df['node_coords'] = [preds['coords'] for preds in format_preds]
pred_df['node_symbols'] = [preds['symbols'] for preds in format_preds]
if args.compute_confidence:
pred_df['SMILES_scores'] = [preds['scores'] for preds in format_preds]
pred_df['indices'] = [preds['indices'] for preds in format_preds]
# Construct graph from predicted atoms and bonds (including verify chirality)
if 'edges' in args.formats:
pred_df['edges'] = [preds['edges'] for preds in predictions]
if args.compute_confidence:
pred_df['edges_scores'] = [preds['edges_scores'] for preds in predictions]
smiles_list, molblock_list, r_success = convert_graph_to_smiles(
pred_df['node_coords'], pred_df['node_symbols'], pred_df['edges'])
pred_df['graph_SMILES'] = smiles_list
if args.molblock:
pred_df['molblock'] = molblock_list
# Postprocess the predicted SMILES (verify chirality, expand functional groups)
if 'SMILES' in pred_df.columns:
if 'edges' in pred_df.columns:
smiles_list, _, r_success = postprocess_smiles(
pred_df['SMILES'], pred_df['node_coords'], pred_df['node_symbols'], pred_df['edges'])
else:
smiles_list, _, r_success = postprocess_smiles(pred_df['SMILES'])
pred_df['post_SMILES'] = smiles_list
# Keep the main molecule
if args.keep_main_molecule:
if 'graph_SMILES' in pred_df:
pred_df['graph_SMILES'] = keep_main_molecule(pred_df['graph_SMILES'])
if 'post_SMILES' in pred_df:
pred_df['post_SMILES'] = keep_main_molecule(pred_df['post_SMILES'])
# Compute scores
if 'SMILES' in data_df.columns:
evaluator = SmilesEvaluator(data_df['SMILES'], tanimoto=True)
if 'SMILES' in pred_df.columns:
scores.update(evaluator.evaluate(pred_df['SMILES']))
if 'post_SMILES' in pred_df.columns:
post_scores = evaluator.evaluate(pred_df['post_SMILES'])
scores['postprocessed_smiles'] = post_scores['canon_smiles']
scores['postprocessed_graph_smiles'] = post_scores['graph']
scores['postprocessed_chiral'] = post_scores['chiral']
scores['postprocessed_tanimoto'] = post_scores['tanimoto']
if 'graph_SMILES' in pred_df.columns:
graph_scores = evaluator.evaluate(pred_df['graph_SMILES'])
# scores['graph_smiles'] = graph_scores['canon_smiles']
# scores['graph_graph'] = graph_scores['graph']
# scores['graph_chiral'] = graph_scores['chiral']
# scores['graph_tanimoto'] = graph_scores['tanimoto']
print('Saving predictions:')
file = data_df.attrs['file'].split('/')[-1]
pred_df = format_df(pred_df)
if args.predict_coords:
pred_df = pred_df[['image_id', 'SMILES', 'node_coords']]
pred_df.to_csv(os.path.join(save_path, f'prediction_{file}'), index=False)
# Save scores
if split == 'test':
with open(os.path.join(save_path, f'eval_scores_{os.path.splitext(file)[0]}_{args.load_ckpt}.json'), 'w') as f:
json.dump(scores, f)
return scores
def get_chemdraw_data(args):
train_df, valid_df, test_df, aux_df = None, None, None, None
if args.do_train:
train_files = args.train_file.split(',')
train_df = pd.concat([pd.read_csv(os.path.join(args.data_path, file)) for file in train_files])
print_rank_0(f'train: {train_df.shape}')
if args.aux_file:
aux_df = pd.read_csv(os.path.join(args.data_path, args.aux_file))
print_rank_0(f'aux: {aux_df.shape}')
if args.do_train or args.do_valid:
valid_df = pd.read_csv(os.path.join(args.data_path, args.valid_file))
valid_df.attrs['file'] = args.valid_file
print_rank_0(f'valid: {valid_df.shape}')
if args.do_test:
test_files = args.test_file.split(',')
test_df = [pd.read_csv(os.path.join(args.data_path, file)) for file in test_files]
for file, df in zip(test_files, test_df):
df.attrs['file'] = file
print_rank_0(file + f' test: {df.shape}')
tokenizer = get_tokenizer(args)
return train_df, valid_df, test_df, aux_df, tokenizer
def main():
"""
Main function for model training, evaluation, and testing. Configures distributed training and orchestrates the workflow.
"""
args = get_args()
seed_torch(seed=args.seed)
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.local_rank = int(os.environ['LOCAL_RANK'])
if args.local_rank != -1:
dist.init_process_group(backend=args.backend, init_method='env://', timeout=datetime.timedelta(0, 14400))
torch.cuda.set_device(args.local_rank)
torch.backends.cudnn.benchmark = True
args.formats = args.formats.split(',')
args.nodes = any([f in args.formats for f in ['atomtok_coords', 'chartok_coords']])
args.edges = any([f in args.formats for f in ['atomtok_coords', 'chartok_coords']])
train_df, valid_df, test_df, aux_df, tokenizer = get_chemdraw_data(args)
if args.do_train:
train_loop(args, train_df, valid_df, aux_df, tokenizer, args.save_path)
if args.do_valid:
scores = inference(args, valid_df, tokenizer, save_path=args.save_path, split='test')
print_rank_0(json.dumps(scores, indent=4))
if args.do_test:
assert type(test_df) is list
for df in test_df:
scores = inference(args, df, tokenizer, save_path=args.save_path, split='test')
print_rank_0(json.dumps(scores, indent=4))
if __name__ == "__main__":
main()