-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathactor.py
257 lines (214 loc) · 10.7 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import gfootball.env as football_env
import time, pprint, importlib, random, os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
import torch.multiprocessing as mp
from os import listdir
from os.path import isfile, join
import numpy as np
from datetime import datetime, timedelta
def state_to_tensor(state_dict, h_in):
player_state = torch.from_numpy(state_dict["player"]).float().unsqueeze(0).unsqueeze(0)
ball_state = torch.from_numpy(state_dict["ball"]).float().unsqueeze(0).unsqueeze(0)
left_team_state = torch.from_numpy(state_dict["left_team"]).float().unsqueeze(0).unsqueeze(0)
left_closest_state = torch.from_numpy(state_dict["left_closest"]).float().unsqueeze(0).unsqueeze(0)
right_team_state = torch.from_numpy(state_dict["right_team"]).float().unsqueeze(0).unsqueeze(0)
right_closest_state = torch.from_numpy(state_dict["right_closest"]).float().unsqueeze(0).unsqueeze(0)
avail = torch.from_numpy(state_dict["avail"]).float().unsqueeze(0).unsqueeze(0)
state_dict_tensor = {
"player" : player_state,
"ball" : ball_state,
"left_team" : left_team_state,
"left_closest" : left_closest_state,
"right_team" : right_team_state,
"right_closest" : right_closest_state,
"avail" : avail,
"hidden" : h_in
}
return state_dict_tensor
def get_action(a_prob, m_prob):
a = Categorical(a_prob).sample().item()
m, need_m = 0, 0
prob_selected_a = a_prob[0][0][a].item()
prob_selected_m = 0
if a==0:
real_action = a
prob = prob_selected_a
elif a==1:
m = Categorical(m_prob).sample().item()
need_m = 1
real_action = m + 1
prob_selected_m = m_prob[0][0][m].item()
prob = prob_selected_a* prob_selected_m
else:
real_action = a + 7
prob = prob_selected_a
assert prob != 0, 'prob 0 ERROR!!!! a : {}, m:{} {}, {}'.format(a,m,prob_selected_a,prob_selected_m)
return real_action, a, m, need_m, prob, prob_selected_a, prob_selected_m
def actor(actor_num, center_model, data_queue, signal_queue, summary_queue, arg_dict):
os.environ['OPENBLAS_NUM_THREADS'] = '1'
print("Actor process {} started".format(actor_num))
fe_module = importlib.import_module("encoders." + arg_dict["encoder"])
rewarder = importlib.import_module("rewarders." + arg_dict["rewarder"])
imported_model = importlib.import_module("models." + arg_dict["model"])
fe = fe_module.FeatureEncoder()
model = imported_model.Model(arg_dict)
model.load_state_dict(center_model.state_dict())
env = football_env.create_environment(env_name=arg_dict["env"], representation="raw", stacked=False, logdir='/tmp/football', \
write_goal_dumps=False, write_full_episode_dumps=False, render=False)
n_epi = 0
rollout = []
while True: # episode loop
env.reset()
done = False
steps, score, tot_reward, win = 0, 0, 0, 0
n_epi += 1
h_out = (torch.zeros([1, 1, arg_dict["lstm_size"]], dtype=torch.float),
torch.zeros([1, 1, arg_dict["lstm_size"]], dtype=torch.float))
loop_t, forward_t, wait_t = 0.0, 0.0, 0.0
obs = env.observation()
while not done: # step loop
init_t = time.time()
is_stopped = False
while signal_queue.qsize() > 0:
time.sleep(0.02)
is_stopped = True
if is_stopped:
model.load_state_dict(center_model.state_dict())
wait_t += time.time() - init_t
h_in = h_out
state_dict = fe.encode(obs[0])
state_dict_tensor = state_to_tensor(state_dict, h_in)
t1 = time.time()
with torch.no_grad():
a_prob, m_prob, _, h_out = model(state_dict_tensor)
forward_t += time.time()-t1
real_action, a, m, need_m, prob, prob_selected_a, prob_selected_m = get_action(a_prob, m_prob)
prev_obs = obs
obs, rew, done, info = env.step(real_action)
fin_r = rewarder.calc_reward(rew, prev_obs[0], obs[0])
state_prime_dict = fe.encode(obs[0])
(h1_in, h2_in) = h_in
(h1_out, h2_out) = h_out
state_dict["hidden"] = (h1_in.numpy(), h2_in.numpy())
state_prime_dict["hidden"] = (h1_out.numpy(), h2_out.numpy())
transition = (state_dict, a, m, fin_r, state_prime_dict, prob, done, need_m)
rollout.append(transition)
if len(rollout) == arg_dict["rollout_len"]:
data_queue.put(rollout)
rollout = []
model.load_state_dict(center_model.state_dict())
steps += 1
score += rew
tot_reward += fin_r
if arg_dict['print_mode']:
print_status(steps,a,m,prob_selected_a,prob_selected_m,prev_obs,obs,fin_r,tot_reward)
loop_t += time.time()-init_t
if done:
if score > 0:
win = 1
print("score",score,"total reward",tot_reward)
summary_data = (win, score, tot_reward, steps, 0, loop_t/steps, forward_t/steps, wait_t/steps)
summary_queue.put(summary_data)
def select_opponent(arg_dict):
onlyfiles_lst = [f for f in listdir(arg_dict["log_dir"]) if isfile(join(arg_dict["log_dir"], f))]
model_num_lst = []
for file_name in onlyfiles_lst:
if file_name[:6] == "model_":
model_num = file_name[6:]
model_num = model_num[:-4]
model_num_lst.append(int(model_num))
model_num_lst.sort()
coin = random.random()
if coin<arg_dict["latest_ratio"]:
if len(model_num_lst) > arg_dict["latest_n_model"]:
opp_model_num = random.randint(len(model_num_lst)-arg_dict["latest_n_model"],len(model_num_lst)-1)
else:
opp_model_num = len(model_num_lst)-1
else:
opp_model_num = random.randint(0,len(model_num_lst)-1)
model_name = "/model_"+str(model_num_lst[opp_model_num])+".tar"
opp_model_path = arg_dict["log_dir"] + model_name
return opp_model_num, opp_model_path
def actor_self(actor_num, center_model, data_queue, signal_queue, summary_queue, arg_dict):
print("Actor process {} started".format(actor_num))
cpu_device = torch.device('cpu')
fe_module = importlib.import_module("encoders." + arg_dict["encoder"])
rewarder = importlib.import_module("rewarders." + arg_dict["rewarder"])
imported_model = importlib.import_module("models." + arg_dict["model"])
fe = fe_module.FeatureEncoder()
model = imported_model.Model(arg_dict)
model.load_state_dict(center_model.state_dict())
opp_model = imported_model.Model(arg_dict)
env = football_env.create_environment(env_name=arg_dict["env"], number_of_right_players_agent_controls=1, representation="raw", \
stacked=False, logdir='/tmp/football', write_goal_dumps=False, write_full_episode_dumps=False, \
render=False)
n_epi = 0
rollout = []
while True: # episode loop
opp_model_num, opp_model_path = select_opponent(arg_dict)
checkpoint = torch.load(opp_model_path, map_location=cpu_device)
opp_model.load_state_dict(checkpoint['model_state_dict'])
print("Current Opponent model Num:{}, Path:{} successfully loaded".format(opp_model_num, opp_model_path))
del checkpoint
env.reset()
done = False
steps, score, tot_reward, win = 0, 0, 0, 0
n_epi += 1
h_out = (torch.zeros([1, 1, arg_dict["lstm_size"]], dtype=torch.float),
torch.zeros([1, 1, arg_dict["lstm_size"]], dtype=torch.float))
opp_h_out = (torch.zeros([1, 1, arg_dict["lstm_size"]], dtype=torch.float),
torch.zeros([1, 1, arg_dict["lstm_size"]], dtype=torch.float))
loop_t, forward_t, wait_t = 0.0, 0.0, 0.0
[obs, opp_obs] = env.observation()
while not done: # step loop
init_t = time.time()
is_stopped = False
while signal_queue.qsize() > 0:
time.sleep(0.02)
is_stopped = True
if is_stopped:
model.load_state_dict(center_model.state_dict())
wait_t += time.time() - init_t
h_in = h_out
opp_h_in = opp_h_out
state_dict = fe.encode(obs)
state_dict_tensor = state_to_tensor(state_dict, h_in)
opp_state_dict = fe.encode(opp_obs)
opp_state_dict_tensor = state_to_tensor(opp_state_dict, opp_h_in)
t1 = time.time()
with torch.no_grad():
a_prob, m_prob, _, h_out = model(state_dict_tensor)
opp_a_prob, opp_m_prob, _, opp_h_out = opp_model(opp_state_dict_tensor)
forward_t += time.time()-t1
real_action, a, m, need_m, prob, prob_selected_a, prob_selected_m = get_action(a_prob, m_prob)
opp_real_action, _, _, _, _, _, _ = get_action(opp_a_prob, opp_m_prob)
prev_obs = obs
[obs, opp_obs], [rew, _], done, info = env.step([real_action, opp_real_action])
fin_r = rewarder.calc_reward(rew, prev_obs, obs)
state_prime_dict = fe.encode(obs)
(h1_in, h2_in) = h_in
(h1_out, h2_out) = h_out
state_dict["hidden"] = (h1_in.numpy(), h2_in.numpy())
state_prime_dict["hidden"] = (h1_out.numpy(), h2_out.numpy())
transition = (state_dict, a, m, fin_r, state_prime_dict, prob, done, need_m)
rollout.append(transition)
if len(rollout) == arg_dict["rollout_len"]:
data_queue.put(rollout)
rollout = []
model.load_state_dict(center_model.state_dict())
steps += 1
score += rew
tot_reward += fin_r
if arg_dict['print_mode']:
print_status(steps,a,m,prob_selected_a,prob_selected_m,prev_obs,obs,fin_r,tot_reward)
loop_t += time.time()-init_t
if done:
if score > 0:
win = 1
print("score {}, total reward {:.2f}, opp num:{}, opp:{} ".format(score,tot_reward,opp_model_num, opp_model_path))
summary_data = (win, score, tot_reward, steps, str(opp_model_num), loop_t/steps, forward_t/steps, wait_t/steps)
summary_queue.put(summary_data)