-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_valid.py
291 lines (231 loc) · 10 KB
/
train_valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# --------------------------------------------------------
# Copyright (c) 2022 BiRSwinT.
# Licensed under The MIT License.
# --------------------------------------------------------
import torch
from torchvision import datasets, transforms
import torch.nn as nn
import time
from pathlib import Path
from BiRSwinT import BiRSwinT
from timm.data.transforms import RandomResizedCropAndInterpolation
import PIL
from optimizer import build_optimizer
from lr_scheduler import build_scheduler
import argparse
from config import get_config
from context import ctx
def parse_option():
parser = argparse.ArgumentParser("BiRSwinT Test script", add_help=False)
parser.add_argument(
"--cfg",
default="configs/swin_small_patch4_window7_224.yaml",
type=str,
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs="+",
)
# easy config modification
parser.add_argument("--batch-size", type=int, help="batch size for single GPU")
parser.add_argument("--data-path", type=str, help="path to dataset")
parser.add_argument("--zip", action="store_true", help="use zipped dataset instead of folder dataset")
parser.add_argument(
"--cache-mode",
type=str,
default="part",
choices=["no", "full", "part"],
help="no: no cache, "
"full: cache all data, "
"part: sharding the dataset into nonoverlapping pieces and only cache one piece",
)
parser.add_argument(
"--resume",
default="output/swin_small_patch4_window7_224/default/ckpt_epoch_23.pth",
help="resume from checkpoint",
)
parser.add_argument("--accumulation-steps", type=int, help="gradient accumulation steps")
parser.add_argument(
"--use-checkpoint", action="store_true", help="whether to use gradient checkpointing to save memory"
)
parser.add_argument(
"--amp-opt-level",
type=str,
default="O1",
choices=["O0", "O1", "O2"],
help="mixed precision opt level, if O0, no amp is used",
)
parser.add_argument(
"--output",
default="output",
type=str,
metavar="PATH",
help="root of output folder, the full path is <output>/<model_name>/<tag> (default: output)",
)
parser.add_argument("--tag", help="tag of experiment")
parser.add_argument("--eval", action="store_true", help="Perform evaluation only")
parser.add_argument("--throughput", action="store_true", help="Test throughput only")
parser.add_argument("--local_rank", default="0", type=int, help="local rank for DistributedDataParallel")
args, _ = parser.parse_known_args()
config = get_config(args)
return args, config
def train_and_valid(
config, model, train_data, valid_data, loss_function, optimizer, lr_sche, train_data_size, valid_data_size
):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 若有 GPU 可用则使用 GPU
model.to(device)
step = 1
TRAINED_MODEL_PARA = "output/ckpt_"
i = 0
trained_param_path = Path(TRAINED_MODEL_PARA + str(i) + ".pth")
while trained_param_path.is_file():
i += 1
trained_param_path = Path(TRAINED_MODEL_PARA + str(i) + ".pth")
record = []
best_acc = 0.0
best_epoch = 0
epochs = config.TRAIN.NUM_EPOCHS
for epoch in range(epochs):
epoch_start = time.time()
print("Epoch: {}/{}".format(epoch + 1, epochs))
model.train() # training
train_loss = 0.0
train_acc = 0.0
valid_loss = 0.0
valid_acc = 0.0
for _, (inputs, labels) in enumerate(train_data):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
_, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
acc = torch.mean(correct_counts.type(torch.FloatTensor))
train_acc += acc.item() * inputs.size(0)
lr_sche.step()
step += 1
with torch.no_grad():
model.eval() # validation
correct = 0
correct3 = 0
for _, (inputs, labels) in enumerate(valid_data):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = loss_function(outputs, labels)
valid_loss += loss.item() * inputs.size(0)
maxk = max((1, 5))
label_resize = labels.view(-1, 1)
_, predicted = outputs.topk(maxk, 1, True, True)
maxk3 = max((1, 3))
_, predicted2 = outputs.topk(maxk3, 1, True, True)
correct += torch.eq(predicted, label_resize).cpu().sum().float().item()
correct3 += torch.eq(predicted2, label_resize).cpu().sum().float().item()
_, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
acc = torch.mean(correct_counts.type(torch.FloatTensor))
valid_acc += acc.item() * inputs.size(0)
avg_train_loss = train_loss / train_data_size
avg_train_acc = train_acc / train_data_size
avg_valid_loss = valid_loss / valid_data_size
avg_valid_acc = valid_acc / valid_data_size
avg_valid_acc3 = correct3 / valid_data_size
avg_valid_acc5 = correct / valid_data_size
record.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc, avg_valid_acc3, avg_valid_acc5])
if avg_valid_acc > best_acc:
best_acc = avg_valid_acc
best_epoch = epoch + 1
torch.save({"model": "resnet50", "state_dict": model.state_dict()}, trained_param_path)
ctx.latest_round_result = trained_param_path
epoch_end = time.time()
print(
"Epoch: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation: Loss: {:.4f}, Accuracy: {:.4f}%, Accuracy3: {:.4f}%, Accuracy5: {:.4f}%,Time: {:.4f}s".format(
epoch + 1,
avg_train_loss,
avg_train_acc * 100,
avg_valid_loss,
avg_valid_acc * 100,
avg_valid_acc3 * 100,
avg_valid_acc5 * 100,
epoch_end - epoch_start,
)
)
print("Best Accuracy for validation : {:.4f} at epoch {:03d}".format(best_acc, best_epoch))
return model, record
def main():
_, cfg = parse_option()
train_transforms = transforms.Compose(
[
transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)), # 随机裁剪到256*256
RandomResizedCropAndInterpolation(
size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=PIL.Image.BICUBIC
),
transforms.RandomRotation(degrees=15), # 随机旋转
transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.CenterCrop(size=224), # 中心裁剪到224*224
transforms.ToTensor(), # 转化成张量
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), # 归一化
]
)
test_valid_transforms = transforms.Compose(
[
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
train_directory = cfg.DATA.TRAIN_DATASET_DIR
valid_directory = cfg.DATA.VALID_DATASET_DIR
batch_size = cfg.DATA.BATCH_SIZE
train_datasets = datasets.ImageFolder(train_directory, transform=train_transforms)
print(train_datasets.class_to_idx)
train_data_size = len(train_datasets)
train_data = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)
valid_datasets = datasets.ImageFolder(valid_directory, transform=test_valid_transforms)
print(valid_datasets.class_to_idx)
valid_data_size = len(valid_datasets)
valid_data = torch.utils.data.DataLoader(valid_datasets, batch_size=batch_size, shuffle=True)
print(train_data_size, valid_data_size)
# ctx.current_round = 1
# ctx.latest_round_result = "output/ckpt_0.pth"
import os
if not os.path.exists("output"):
os.makedirs("output")
for round in range(2):
# if True:
ctx.current_round = round
model = BiRSwinT(config=cfg)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # if gpu is available
loss_func = nn.CrossEntropyLoss()
loss_func.to(device=device)
optimizer = build_optimizer(config=cfg, model=model)
lr_sche = build_scheduler(config=cfg, optimizer=optimizer, train_data_size=train_data_size)
_, record = train_and_valid(
config=cfg,
model=model,
optimizer=optimizer,
loss_function=loss_func,
lr_sche=lr_sche,
train_data=train_data,
valid_data=valid_data,
train_data_size=train_data_size,
valid_data_size=valid_data_size,
)
TRAINED_MODEL = "output/checkpoint"
i = 0
trained_path = Path(TRAINED_MODEL + str(i) + ".pth")
while trained_path.is_file():
i += 1
trained_path = Path(TRAINED_MODEL + str(i) + ".pth")
torch.save(record, trained_path)
if __name__ == "__main__":
main()