forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeque_doubly.py
143 lines (123 loc) · 3.98 KB
/
deque_doubly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Implementing Deque using DoublyLinkedList ...
Operations:
1. insertion in the front -> O(1)
2. insertion in the end -> O(1)
3. remove from the front -> O(1)
4. remove from the end -> O(1)
"""
class _DoublyLinkedBase:
"""A Private class (to be inherited)"""
class _Node:
__slots__ = "_data", "_next", "_prev"
def __init__(self, link_p, element, link_n):
self._prev = link_p
self._data = element
self._next = link_n
def has_next_and_prev(self):
return (
f" Prev -> {self._prev is not None}, Next -> {self._next is not None}"
)
def __init__(self):
self._header = self._Node(None, None, None)
self._trailer = self._Node(None, None, None)
self._header._next = self._trailer
self._trailer._prev = self._header
self._size = 0
def __len__(self):
return self._size
def is_empty(self):
return self.__len__() == 0
def _insert(self, predecessor, e, successor):
# Create new_node by setting it's prev.link -> header
# setting it's next.link -> trailer
new_node = self._Node(predecessor, e, successor)
predecessor._next = new_node
successor._prev = new_node
self._size += 1
return self
def _delete(self, node):
predecessor = node._prev
successor = node._next
predecessor._next = successor
successor._prev = predecessor
self._size -= 1
temp = node._data
node._prev = node._next = node._data = None
del node
return temp
class LinkedDeque(_DoublyLinkedBase):
def first(self):
"""return first element
>>> d = LinkedDeque()
>>> d.add_first('A').first()
'A'
>>> d.add_first('B').first()
'B'
"""
if self.is_empty():
raise Exception("List is empty")
return self._header._next._data
def last(self):
"""return last element
>>> d = LinkedDeque()
>>> d.add_last('A').last()
'A'
>>> d.add_last('B').last()
'B'
"""
if self.is_empty():
raise Exception("List is empty")
return self._trailer._prev._data
# DEque Insert Operations (At the front, At the end)
def add_first(self, element):
"""insertion in the front
>>> LinkedDeque().add_first('AV').first()
'AV'
"""
return self._insert(self._header, element, self._header._next)
def add_last(self, element):
"""insertion in the end
>>> LinkedDeque().add_last('B').last()
'B'
"""
return self._insert(self._trailer._prev, element, self._trailer)
# DEqueu Remove Operations (At the front, At the end)
def remove_first(self):
"""removal from the front
>>> d = LinkedDeque()
>>> d.is_empty()
True
>>> d.remove_first()
Traceback (most recent call last):
...
IndexError: remove_first from empty list
>>> d.add_first('A') # doctest: +ELLIPSIS
<data_structures.linked_list.deque_doubly.LinkedDeque object at ...
>>> d.remove_first()
'A'
>>> d.is_empty()
True
"""
if self.is_empty():
raise IndexError("remove_first from empty list")
return self._delete(self._header._next)
def remove_last(self):
"""removal in the end
>>> d = LinkedDeque()
>>> d.is_empty()
True
>>> d.remove_last()
Traceback (most recent call last):
...
IndexError: remove_first from empty list
>>> d.add_first('A') # doctest: +ELLIPSIS
<data_structures.linked_list.deque_doubly.LinkedDeque object at ...
>>> d.remove_last()
'A'
>>> d.is_empty()
True
"""
if self.is_empty():
raise IndexError("remove_first from empty list")
return self._delete(self._trailer._prev)