forked from GoogleCloudPlatform/professional-services
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhive_table.py
executable file
·150 lines (127 loc) · 5.64 KB
/
hive_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2019 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module to check properties of the Hive table."""
import json
import logging
from collections import OrderedDict
from hive_table_model import HiveTableModel
from properties_reader import PropertiesReader
logger = logging.getLogger('Hive2BigQuery')
class HiveTable(object):
"""Class to get information on the source Hive table.
Runs the descriptive 'DESCRIBE EXTENDED' query on the Hive table and
fetches details of the Hive table such as schema, columns and their data
types, partition columns, input format of the table, location of the data
etc. and initializes the HiveTableModel class.
Attributes:
database_name (str): Hive database name.
table_name (str): Hive Table name.
hive_table_model (hive_table_model.HiveTableModel): Instance of
HiveTableModel which contains the Hive table details.
"""
def __init__(self, hive_component, database_name, table_name,
incremental_col):
logger.debug('Initializing HiveTable object')
self._database_name = database_name
self._table_name = table_name
self.hive_table_model = self.initialize_hive_table_model(
hive_component, incremental_col)
@property
def database_name(self):
return self._database_name
@property
def table_name(self):
return self._table_name
def initialize_hive_table_model(self, hive_component, incremental_col):
"""Fetches details of the Hive table by executing describe query.
Args:
hive_component (:class:`HiveComponent`): Instance of
HiveComponent to connect to Hive.
incremental_col (str): Incremental column name either provided or
obtained from the tracking table.
Returns:
HiveTableModel: Wrapper to Hive table details.
"""
# Executes DESCRIBE EXTENDED <table_name> query.
queries = [
"set hive.ddl.output.format=json",
"desc extended {0}.{1}".format(self.database_name, self.table_name)
]
results = json.loads(hive_component.execute_query(queries)[0][0])
# Gets columns information.
schema = OrderedDict()
for item in results['columns']:
schema[str(item['name'])] = str(item['type'])
# Input format of the data.
input_format = str(results['tableInfo']['sd']['inputFormat']).lower()
logger.debug('Extracted information about Hive table columns')
# Checks whether loading the data in same format is supported in
# BigQuery.
# Avro, ORC, and Parquet formats are supported directly in BigQuery.
if "avro" in input_format:
destination_data_format = "Avro"
is_table_type_supported = True
elif "orc" in input_format:
destination_data_format = "ORC"
is_table_type_supported = True
elif "parquet" in input_format:
destination_data_format = "Parquet"
is_table_type_supported = True
else:
destination_data_format = "Avro"
is_table_type_supported = False
# Gets information of partition columns.
partition_info = OrderedDict()
for item in results['tableInfo']['partitionKeys']:
partition_info[str(item['name'])] = str(item['type'])
logger.debug(
'Extracted information about Hive table partition columns')
# Fetches column names of integer/timestamp/date types.
int_type_col = []
timestamp_type_col = []
for item in schema.keys():
if item in partition_info.keys():
pass
else:
if schema[item] in ["tinyint", "smallint", "int", "bigint"]:
int_type_col.append(item)
elif schema[item] in ["timestamp", "date"]:
timestamp_type_col.append(item)
else:
pass
# CREATE TABLE statement for the Hive staging table.
create_statement = "CREATE TABLE default.TABLE_NAME_HERE ("
create_statement += ','.join("{} {}".format(key, value)
for key, value in schema.items())
create_statement += ") STORED AS {}".format(destination_data_format)
logger.debug('Formed Hive stage table CREATE TABLE statement')
# Initializes HiveTableModel.
hive_table_model = HiveTableModel(
table_details={
"database_name": self.database_name,
"table_name": self.table_name,
"schema": schema,
"input_format": input_format,
"partition_info": partition_info,
"is_table_type_supported": is_table_type_supported,
},
inc_col=incremental_col,
inc_col_options={
"int": int_type_col,
"timestamp": timestamp_type_col
},
destination_data_format=destination_data_format,
bq_table_name=PropertiesReader.get('bq_table'),
create_statement=create_statement)
return hive_table_model